| /* In-software asymmetric public-key crypto subtype |
| * |
| * See Documentation/crypto/asymmetric-keys.txt |
| * |
| * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| |
| #define pr_fmt(fmt) "PKEY: "fmt |
| #include <linux/module.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/seq_file.h> |
| #include <linux/scatterlist.h> |
| #include <keys/asymmetric-subtype.h> |
| #include <crypto/public_key.h> |
| #include <crypto/akcipher.h> |
| |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * Provide a part of a description of the key for /proc/keys. |
| */ |
| static void public_key_describe(const struct key *asymmetric_key, |
| struct seq_file *m) |
| { |
| struct public_key *key = asymmetric_key->payload.data[asym_crypto]; |
| |
| if (key) |
| seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); |
| } |
| |
| /* |
| * Destroy a public key algorithm key. |
| */ |
| void public_key_free(struct public_key *key) |
| { |
| if (key) { |
| kfree(key->key); |
| kfree(key); |
| } |
| } |
| EXPORT_SYMBOL_GPL(public_key_free); |
| |
| /* |
| * Destroy a public key algorithm key. |
| */ |
| static void public_key_destroy(void *payload0, void *payload3) |
| { |
| public_key_free(payload0); |
| public_key_signature_free(payload3); |
| } |
| |
| struct public_key_completion { |
| struct completion completion; |
| int err; |
| }; |
| |
| static void public_key_verify_done(struct crypto_async_request *req, int err) |
| { |
| struct public_key_completion *compl = req->data; |
| |
| if (err == -EINPROGRESS) |
| return; |
| |
| compl->err = err; |
| complete(&compl->completion); |
| } |
| |
| /* |
| * Verify a signature using a public key. |
| */ |
| int public_key_verify_signature(const struct public_key *pkey, |
| const struct public_key_signature *sig) |
| { |
| struct public_key_completion compl; |
| struct crypto_akcipher *tfm; |
| struct akcipher_request *req; |
| struct scatterlist sig_sg, digest_sg; |
| const char *alg_name; |
| char alg_name_buf[CRYPTO_MAX_ALG_NAME]; |
| void *output; |
| unsigned int outlen; |
| int ret = -ENOMEM; |
| |
| pr_devel("==>%s()\n", __func__); |
| |
| BUG_ON(!pkey); |
| BUG_ON(!sig); |
| BUG_ON(!sig->digest); |
| BUG_ON(!sig->s); |
| |
| alg_name = sig->pkey_algo; |
| if (strcmp(sig->pkey_algo, "rsa") == 0) { |
| /* The data wangled by the RSA algorithm is typically padded |
| * and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447 |
| * sec 8.2]. |
| */ |
| if (snprintf(alg_name_buf, CRYPTO_MAX_ALG_NAME, |
| "pkcs1pad(rsa,%s)", sig->hash_algo |
| ) >= CRYPTO_MAX_ALG_NAME) |
| return -EINVAL; |
| alg_name = alg_name_buf; |
| } |
| |
| tfm = crypto_alloc_akcipher(alg_name, 0, 0); |
| if (IS_ERR(tfm)) |
| return PTR_ERR(tfm); |
| |
| req = akcipher_request_alloc(tfm, GFP_KERNEL); |
| if (!req) |
| goto error_free_tfm; |
| |
| ret = crypto_akcipher_set_pub_key(tfm, pkey->key, pkey->keylen); |
| if (ret) |
| goto error_free_req; |
| |
| outlen = crypto_akcipher_maxsize(tfm); |
| output = kmalloc(outlen, GFP_KERNEL); |
| if (!output) |
| goto error_free_req; |
| |
| sg_init_one(&sig_sg, sig->s, sig->s_size); |
| sg_init_one(&digest_sg, output, outlen); |
| akcipher_request_set_crypt(req, &sig_sg, &digest_sg, sig->s_size, |
| outlen); |
| init_completion(&compl.completion); |
| akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP, |
| public_key_verify_done, &compl); |
| |
| /* Perform the verification calculation. This doesn't actually do the |
| * verification, but rather calculates the hash expected by the |
| * signature and returns that to us. |
| */ |
| ret = crypto_akcipher_verify(req); |
| if ((ret == -EINPROGRESS) || (ret == -EBUSY)) { |
| wait_for_completion(&compl.completion); |
| ret = compl.err; |
| } |
| if (ret < 0) |
| goto out_free_output; |
| |
| /* Do the actual verification step. */ |
| if (req->dst_len != sig->digest_size || |
| memcmp(sig->digest, output, sig->digest_size) != 0) |
| ret = -EKEYREJECTED; |
| |
| out_free_output: |
| kfree(output); |
| error_free_req: |
| akcipher_request_free(req); |
| error_free_tfm: |
| crypto_free_akcipher(tfm); |
| pr_devel("<==%s() = %d\n", __func__, ret); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(public_key_verify_signature); |
| |
| static int public_key_verify_signature_2(const struct key *key, |
| const struct public_key_signature *sig) |
| { |
| const struct public_key *pk = key->payload.data[asym_crypto]; |
| return public_key_verify_signature(pk, sig); |
| } |
| |
| /* |
| * Public key algorithm asymmetric key subtype |
| */ |
| struct asymmetric_key_subtype public_key_subtype = { |
| .owner = THIS_MODULE, |
| .name = "public_key", |
| .name_len = sizeof("public_key") - 1, |
| .describe = public_key_describe, |
| .destroy = public_key_destroy, |
| .verify_signature = public_key_verify_signature_2, |
| }; |
| EXPORT_SYMBOL_GPL(public_key_subtype); |