|  | /* | 
|  | * Common time routines among all ppc machines. | 
|  | * | 
|  | * Written by Cort Dougan (cort@cs.nmt.edu) to merge | 
|  | * Paul Mackerras' version and mine for PReP and Pmac. | 
|  | * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | 
|  | * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) | 
|  | * | 
|  | * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | 
|  | * to make clock more stable (2.4.0-test5). The only thing | 
|  | * that this code assumes is that the timebases have been synchronized | 
|  | * by firmware on SMP and are never stopped (never do sleep | 
|  | * on SMP then, nap and doze are OK). | 
|  | * | 
|  | * Speeded up do_gettimeofday by getting rid of references to | 
|  | * xtime (which required locks for consistency). (mikejc@us.ibm.com) | 
|  | * | 
|  | * TODO (not necessarily in this file): | 
|  | * - improve precision and reproducibility of timebase frequency | 
|  | * measurement at boot time. (for iSeries, we calibrate the timebase | 
|  | * against the Titan chip's clock.) | 
|  | * - for astronomical applications: add a new function to get | 
|  | * non ambiguous timestamps even around leap seconds. This needs | 
|  | * a new timestamp format and a good name. | 
|  | * | 
|  | * 1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
|  | *             "A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/param.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/rtc.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/irq.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/nvram.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/div64.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/vdso_datapage.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/cputime.h> | 
|  | #ifdef CONFIG_PPC_ISERIES | 
|  | #include <asm/iseries/it_lp_queue.h> | 
|  | #include <asm/iseries/hv_call_xm.h> | 
|  | #endif | 
|  |  | 
|  | /* powerpc clocksource/clockevent code */ | 
|  |  | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/clocksource.h> | 
|  |  | 
|  | static cycle_t rtc_read(struct clocksource *); | 
|  | static struct clocksource clocksource_rtc = { | 
|  | .name         = "rtc", | 
|  | .rating       = 400, | 
|  | .flags        = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | .mask         = CLOCKSOURCE_MASK(64), | 
|  | .shift        = 22, | 
|  | .mult         = 0,	/* To be filled in */ | 
|  | .read         = rtc_read, | 
|  | }; | 
|  |  | 
|  | static cycle_t timebase_read(struct clocksource *); | 
|  | static struct clocksource clocksource_timebase = { | 
|  | .name         = "timebase", | 
|  | .rating       = 400, | 
|  | .flags        = CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | .mask         = CLOCKSOURCE_MASK(64), | 
|  | .shift        = 22, | 
|  | .mult         = 0,	/* To be filled in */ | 
|  | .read         = timebase_read, | 
|  | }; | 
|  |  | 
|  | #define DECREMENTER_MAX	0x7fffffff | 
|  |  | 
|  | static int decrementer_set_next_event(unsigned long evt, | 
|  | struct clock_event_device *dev); | 
|  | static void decrementer_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *dev); | 
|  |  | 
|  | static struct clock_event_device decrementer_clockevent = { | 
|  | .name           = "decrementer", | 
|  | .rating         = 200, | 
|  | .shift          = 16, | 
|  | .mult           = 0,	/* To be filled in */ | 
|  | .irq            = 0, | 
|  | .set_next_event = decrementer_set_next_event, | 
|  | .set_mode       = decrementer_set_mode, | 
|  | .features       = CLOCK_EVT_FEAT_ONESHOT, | 
|  | }; | 
|  |  | 
|  | struct decrementer_clock { | 
|  | struct clock_event_device event; | 
|  | u64 next_tb; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct decrementer_clock, decrementers); | 
|  |  | 
|  | #ifdef CONFIG_PPC_ISERIES | 
|  | static unsigned long __initdata iSeries_recal_titan; | 
|  | static signed long __initdata iSeries_recal_tb; | 
|  |  | 
|  | /* Forward declaration is only needed for iSereis compiles */ | 
|  | static void __init clocksource_init(void); | 
|  | #endif | 
|  |  | 
|  | #define XSEC_PER_SEC (1024*1024) | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC) | 
|  | #else | 
|  | /* compute ((xsec << 12) * max) >> 32 */ | 
|  | #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max) | 
|  | #endif | 
|  |  | 
|  | unsigned long tb_ticks_per_jiffy; | 
|  | unsigned long tb_ticks_per_usec = 100; /* sane default */ | 
|  | EXPORT_SYMBOL(tb_ticks_per_usec); | 
|  | unsigned long tb_ticks_per_sec; | 
|  | EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */ | 
|  | u64 tb_to_xs; | 
|  | unsigned tb_to_us; | 
|  |  | 
|  | #define TICKLEN_SCALE	NTP_SCALE_SHIFT | 
|  | static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */ | 
|  | static u64 ticklen_to_xs;	/* 0.64 fraction */ | 
|  |  | 
|  | /* If last_tick_len corresponds to about 1/HZ seconds, then | 
|  | last_tick_len << TICKLEN_SHIFT will be about 2^63. */ | 
|  | #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ) | 
|  |  | 
|  | DEFINE_SPINLOCK(rtc_lock); | 
|  | EXPORT_SYMBOL_GPL(rtc_lock); | 
|  |  | 
|  | static u64 tb_to_ns_scale __read_mostly; | 
|  | static unsigned tb_to_ns_shift __read_mostly; | 
|  | static unsigned long boot_tb __read_mostly; | 
|  |  | 
|  | extern struct timezone sys_tz; | 
|  | static long timezone_offset; | 
|  |  | 
|  | unsigned long ppc_proc_freq; | 
|  | EXPORT_SYMBOL(ppc_proc_freq); | 
|  | unsigned long ppc_tb_freq; | 
|  |  | 
|  | static u64 tb_last_jiffy __cacheline_aligned_in_smp; | 
|  | static DEFINE_PER_CPU(u64, last_jiffy); | 
|  |  | 
|  | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 
|  | /* | 
|  | * Factors for converting from cputime_t (timebase ticks) to | 
|  | * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds). | 
|  | * These are all stored as 0.64 fixed-point binary fractions. | 
|  | */ | 
|  | u64 __cputime_jiffies_factor; | 
|  | EXPORT_SYMBOL(__cputime_jiffies_factor); | 
|  | u64 __cputime_msec_factor; | 
|  | EXPORT_SYMBOL(__cputime_msec_factor); | 
|  | u64 __cputime_sec_factor; | 
|  | EXPORT_SYMBOL(__cputime_sec_factor); | 
|  | u64 __cputime_clockt_factor; | 
|  | EXPORT_SYMBOL(__cputime_clockt_factor); | 
|  | DEFINE_PER_CPU(unsigned long, cputime_last_delta); | 
|  | DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta); | 
|  |  | 
|  | static void calc_cputime_factors(void) | 
|  | { | 
|  | struct div_result res; | 
|  |  | 
|  | div128_by_32(HZ, 0, tb_ticks_per_sec, &res); | 
|  | __cputime_jiffies_factor = res.result_low; | 
|  | div128_by_32(1000, 0, tb_ticks_per_sec, &res); | 
|  | __cputime_msec_factor = res.result_low; | 
|  | div128_by_32(1, 0, tb_ticks_per_sec, &res); | 
|  | __cputime_sec_factor = res.result_low; | 
|  | div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res); | 
|  | __cputime_clockt_factor = res.result_low; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the PURR on systems that have it, otherwise the timebase. | 
|  | */ | 
|  | static u64 read_purr(void) | 
|  | { | 
|  | if (cpu_has_feature(CPU_FTR_PURR)) | 
|  | return mfspr(SPRN_PURR); | 
|  | return mftb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the SPURR on systems that have it, otherwise the purr | 
|  | */ | 
|  | static u64 read_spurr(u64 purr) | 
|  | { | 
|  | /* | 
|  | * cpus without PURR won't have a SPURR | 
|  | * We already know the former when we use this, so tell gcc | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR)) | 
|  | return mfspr(SPRN_SPURR); | 
|  | return purr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account time for a transition between system, hard irq | 
|  | * or soft irq state. | 
|  | */ | 
|  | void account_system_vtime(struct task_struct *tsk) | 
|  | { | 
|  | u64 now, nowscaled, delta, deltascaled, sys_time; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | now = read_purr(); | 
|  | nowscaled = read_spurr(now); | 
|  | delta = now - get_paca()->startpurr; | 
|  | deltascaled = nowscaled - get_paca()->startspurr; | 
|  | get_paca()->startpurr = now; | 
|  | get_paca()->startspurr = nowscaled; | 
|  | if (!in_interrupt()) { | 
|  | /* deltascaled includes both user and system time. | 
|  | * Hence scale it based on the purr ratio to estimate | 
|  | * the system time */ | 
|  | sys_time = get_paca()->system_time; | 
|  | if (get_paca()->user_time) | 
|  | deltascaled = deltascaled * sys_time / | 
|  | (sys_time + get_paca()->user_time); | 
|  | delta += sys_time; | 
|  | get_paca()->system_time = 0; | 
|  | } | 
|  | if (in_irq() || idle_task(smp_processor_id()) != tsk) | 
|  | account_system_time(tsk, 0, delta, deltascaled); | 
|  | else | 
|  | account_idle_time(delta); | 
|  | per_cpu(cputime_last_delta, smp_processor_id()) = delta; | 
|  | per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transfer the user and system times accumulated in the paca | 
|  | * by the exception entry and exit code to the generic process | 
|  | * user and system time records. | 
|  | * Must be called with interrupts disabled. | 
|  | */ | 
|  | void account_process_tick(struct task_struct *tsk, int user_tick) | 
|  | { | 
|  | cputime_t utime, utimescaled; | 
|  |  | 
|  | utime = get_paca()->user_time; | 
|  | get_paca()->user_time = 0; | 
|  | utimescaled = cputime_to_scaled(utime); | 
|  | account_user_time(tsk, utime, utimescaled); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stuff for accounting stolen time. | 
|  | */ | 
|  | struct cpu_purr_data { | 
|  | int	initialized;			/* thread is running */ | 
|  | u64	tb;			/* last TB value read */ | 
|  | u64	purr;			/* last PURR value read */ | 
|  | u64	spurr;			/* last SPURR value read */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Each entry in the cpu_purr_data array is manipulated only by its | 
|  | * "owner" cpu -- usually in the timer interrupt but also occasionally | 
|  | * in process context for cpu online.  As long as cpus do not touch | 
|  | * each others' cpu_purr_data, disabling local interrupts is | 
|  | * sufficient to serialize accesses. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data); | 
|  |  | 
|  | static void snapshot_tb_and_purr(void *data) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data); | 
|  |  | 
|  | local_irq_save(flags); | 
|  | p->tb = get_tb_or_rtc(); | 
|  | p->purr = mfspr(SPRN_PURR); | 
|  | wmb(); | 
|  | p->initialized = 1; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called during boot when all cpus have come up. | 
|  | */ | 
|  | void snapshot_timebases(void) | 
|  | { | 
|  | if (!cpu_has_feature(CPU_FTR_PURR)) | 
|  | return; | 
|  | on_each_cpu(snapshot_tb_and_purr, NULL, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with interrupts disabled. | 
|  | */ | 
|  | void calculate_steal_time(void) | 
|  | { | 
|  | u64 tb, purr; | 
|  | s64 stolen; | 
|  | struct cpu_purr_data *pme; | 
|  |  | 
|  | pme = &__get_cpu_var(cpu_purr_data); | 
|  | if (!pme->initialized) | 
|  | return;		/* !CPU_FTR_PURR or early in early boot */ | 
|  | tb = mftb(); | 
|  | purr = mfspr(SPRN_PURR); | 
|  | stolen = (tb - pme->tb) - (purr - pme->purr); | 
|  | if (stolen > 0) { | 
|  | if (idle_task(smp_processor_id()) != current) | 
|  | account_steal_time(stolen); | 
|  | else | 
|  | account_idle_time(stolen); | 
|  | } | 
|  | pme->tb = tb; | 
|  | pme->purr = purr; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_SPLPAR | 
|  | /* | 
|  | * Must be called before the cpu is added to the online map when | 
|  | * a cpu is being brought up at runtime. | 
|  | */ | 
|  | static void snapshot_purr(void) | 
|  | { | 
|  | struct cpu_purr_data *pme; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_PURR)) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | pme = &__get_cpu_var(cpu_purr_data); | 
|  | pme->tb = mftb(); | 
|  | pme->purr = mfspr(SPRN_PURR); | 
|  | pme->initialized = 1; | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PPC_SPLPAR */ | 
|  |  | 
|  | #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */ | 
|  | #define calc_cputime_factors() | 
|  | #define calculate_steal_time()		do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR)) | 
|  | #define snapshot_purr()			do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Called when a cpu comes up after the system has finished booting, | 
|  | * i.e. as a result of a hotplug cpu action. | 
|  | */ | 
|  | void snapshot_timebase(void) | 
|  | { | 
|  | __get_cpu_var(last_jiffy) = get_tb_or_rtc(); | 
|  | snapshot_purr(); | 
|  | } | 
|  |  | 
|  | void __delay(unsigned long loops) | 
|  | { | 
|  | unsigned long start; | 
|  | int diff; | 
|  |  | 
|  | if (__USE_RTC()) { | 
|  | start = get_rtcl(); | 
|  | do { | 
|  | /* the RTCL register wraps at 1000000000 */ | 
|  | diff = get_rtcl() - start; | 
|  | if (diff < 0) | 
|  | diff += 1000000000; | 
|  | } while (diff < loops); | 
|  | } else { | 
|  | start = get_tbl(); | 
|  | while (get_tbl() - start < loops) | 
|  | HMT_low(); | 
|  | HMT_medium(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__delay); | 
|  |  | 
|  | void udelay(unsigned long usecs) | 
|  | { | 
|  | __delay(tb_ticks_per_usec * usecs); | 
|  | } | 
|  | EXPORT_SYMBOL(udelay); | 
|  |  | 
|  | static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, | 
|  | u64 new_tb_to_xs) | 
|  | { | 
|  | /* | 
|  | * tb_update_count is used to allow the userspace gettimeofday code | 
|  | * to assure itself that it sees a consistent view of the tb_to_xs and | 
|  | * stamp_xsec variables.  It reads the tb_update_count, then reads | 
|  | * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If | 
|  | * the two values of tb_update_count match and are even then the | 
|  | * tb_to_xs and stamp_xsec values are consistent.  If not, then it | 
|  | * loops back and reads them again until this criteria is met. | 
|  | * We expect the caller to have done the first increment of | 
|  | * vdso_data->tb_update_count already. | 
|  | */ | 
|  | vdso_data->tb_orig_stamp = new_tb_stamp; | 
|  | vdso_data->stamp_xsec = new_stamp_xsec; | 
|  | vdso_data->tb_to_xs = new_tb_to_xs; | 
|  | vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; | 
|  | vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; | 
|  | vdso_data->stamp_xtime = xtime; | 
|  | smp_wmb(); | 
|  | ++(vdso_data->tb_update_count); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long profile_pc(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long pc = instruction_pointer(regs); | 
|  |  | 
|  | if (in_lock_functions(pc)) | 
|  | return regs->link; | 
|  |  | 
|  | return pc; | 
|  | } | 
|  | EXPORT_SYMBOL(profile_pc); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PPC_ISERIES | 
|  |  | 
|  | /* | 
|  | * This function recalibrates the timebase based on the 49-bit time-of-day | 
|  | * value in the Titan chip.  The Titan is much more accurate than the value | 
|  | * returned by the service processor for the timebase frequency. | 
|  | */ | 
|  |  | 
|  | static int __init iSeries_tb_recal(void) | 
|  | { | 
|  | struct div_result divres; | 
|  | unsigned long titan, tb; | 
|  |  | 
|  | /* Make sure we only run on iSeries */ | 
|  | if (!firmware_has_feature(FW_FEATURE_ISERIES)) | 
|  | return -ENODEV; | 
|  |  | 
|  | tb = get_tb(); | 
|  | titan = HvCallXm_loadTod(); | 
|  | if ( iSeries_recal_titan ) { | 
|  | unsigned long tb_ticks = tb - iSeries_recal_tb; | 
|  | unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; | 
|  | unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec; | 
|  | unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; | 
|  | long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; | 
|  | char sign = '+'; | 
|  | /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ | 
|  | new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; | 
|  |  | 
|  | if ( tick_diff < 0 ) { | 
|  | tick_diff = -tick_diff; | 
|  | sign = '-'; | 
|  | } | 
|  | if ( tick_diff ) { | 
|  | if ( tick_diff < tb_ticks_per_jiffy/25 ) { | 
|  | printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", | 
|  | new_tb_ticks_per_jiffy, sign, tick_diff ); | 
|  | tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; | 
|  | tb_ticks_per_sec   = new_tb_ticks_per_sec; | 
|  | calc_cputime_factors(); | 
|  | div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); | 
|  | tb_to_xs = divres.result_low; | 
|  | vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; | 
|  | vdso_data->tb_to_xs = tb_to_xs; | 
|  | } | 
|  | else { | 
|  | printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" | 
|  | "                   new tb_ticks_per_jiffy = %lu\n" | 
|  | "                   old tb_ticks_per_jiffy = %lu\n", | 
|  | new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); | 
|  | } | 
|  | } | 
|  | } | 
|  | iSeries_recal_titan = titan; | 
|  | iSeries_recal_tb = tb; | 
|  |  | 
|  | /* Called here as now we know accurate values for the timebase */ | 
|  | clocksource_init(); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(iSeries_tb_recal); | 
|  |  | 
|  | /* Called from platform early init */ | 
|  | void __init iSeries_time_init_early(void) | 
|  | { | 
|  | iSeries_recal_tb = get_tb(); | 
|  | iSeries_recal_titan = HvCallXm_loadTod(); | 
|  | } | 
|  | #endif /* CONFIG_PPC_ISERIES */ | 
|  |  | 
|  | /* | 
|  | * For iSeries shared processors, we have to let the hypervisor | 
|  | * set the hardware decrementer.  We set a virtual decrementer | 
|  | * in the lppaca and call the hypervisor if the virtual | 
|  | * decrementer is less than the current value in the hardware | 
|  | * decrementer. (almost always the new decrementer value will | 
|  | * be greater than the current hardware decementer so the hypervisor | 
|  | * call will not be needed) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * timer_interrupt - gets called when the decrementer overflows, | 
|  | * with interrupts disabled. | 
|  | */ | 
|  | void timer_interrupt(struct pt_regs * regs) | 
|  | { | 
|  | struct pt_regs *old_regs; | 
|  | struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers); | 
|  | struct clock_event_device *evt = &decrementer->event; | 
|  | u64 now; | 
|  |  | 
|  | /* Ensure a positive value is written to the decrementer, or else | 
|  | * some CPUs will continuue to take decrementer exceptions */ | 
|  | set_dec(DECREMENTER_MAX); | 
|  |  | 
|  | #ifdef CONFIG_PPC32 | 
|  | if (atomic_read(&ppc_n_lost_interrupts) != 0) | 
|  | do_IRQ(regs); | 
|  | #endif | 
|  |  | 
|  | now = get_tb_or_rtc(); | 
|  | if (now < decrementer->next_tb) { | 
|  | /* not time for this event yet */ | 
|  | now = decrementer->next_tb - now; | 
|  | if (now <= DECREMENTER_MAX) | 
|  | set_dec((int)now); | 
|  | return; | 
|  | } | 
|  | old_regs = set_irq_regs(regs); | 
|  | irq_enter(); | 
|  |  | 
|  | calculate_steal_time(); | 
|  |  | 
|  | #ifdef CONFIG_PPC_ISERIES | 
|  | if (firmware_has_feature(FW_FEATURE_ISERIES)) | 
|  | get_lppaca()->int_dword.fields.decr_int = 0; | 
|  | #endif | 
|  |  | 
|  | if (evt->event_handler) | 
|  | evt->event_handler(evt); | 
|  |  | 
|  | #ifdef CONFIG_PPC_ISERIES | 
|  | if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending()) | 
|  | process_hvlpevents(); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | /* collect purr register values often, for accurate calculations */ | 
|  | if (firmware_has_feature(FW_FEATURE_SPLPAR)) { | 
|  | struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); | 
|  | cu->current_tb = mfspr(SPRN_PURR); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | irq_exit(); | 
|  | set_irq_regs(old_regs); | 
|  | } | 
|  |  | 
|  | void wakeup_decrementer(void) | 
|  | { | 
|  | unsigned long ticks; | 
|  |  | 
|  | /* | 
|  | * The timebase gets saved on sleep and restored on wakeup, | 
|  | * so all we need to do is to reset the decrementer. | 
|  | */ | 
|  | ticks = tb_ticks_since(__get_cpu_var(last_jiffy)); | 
|  | if (ticks < tb_ticks_per_jiffy) | 
|  | ticks = tb_ticks_per_jiffy - ticks; | 
|  | else | 
|  | ticks = 1; | 
|  | set_dec(ticks); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  | void generic_suspend_disable_irqs(void) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | /* Disable the decrementer, so that it doesn't interfere | 
|  | * with suspending. | 
|  | */ | 
|  |  | 
|  | set_dec(0x7fffffff); | 
|  | local_irq_disable(); | 
|  | set_dec(0x7fffffff); | 
|  | } | 
|  |  | 
|  | void generic_suspend_enable_irqs(void) | 
|  | { | 
|  | wakeup_decrementer(); | 
|  |  | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* Overrides the weak version in kernel/power/main.c */ | 
|  | void arch_suspend_disable_irqs(void) | 
|  | { | 
|  | if (ppc_md.suspend_disable_irqs) | 
|  | ppc_md.suspend_disable_irqs(); | 
|  | generic_suspend_disable_irqs(); | 
|  | } | 
|  |  | 
|  | /* Overrides the weak version in kernel/power/main.c */ | 
|  | void arch_suspend_enable_irqs(void) | 
|  | { | 
|  | generic_suspend_enable_irqs(); | 
|  | if (ppc_md.suspend_enable_irqs) | 
|  | ppc_md.suspend_enable_irqs(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void __init smp_space_timers(unsigned int max_cpus) | 
|  | { | 
|  | int i; | 
|  | u64 previous_tb = per_cpu(last_jiffy, boot_cpuid); | 
|  |  | 
|  | /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ | 
|  | previous_tb -= tb_ticks_per_jiffy; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (i == boot_cpuid) | 
|  | continue; | 
|  | per_cpu(last_jiffy, i) = previous_tb; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | * | 
|  | * Note: mulhdu(a, b) (multiply high double unsigned) returns | 
|  | * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b | 
|  | * are 64-bit unsigned numbers. | 
|  | */ | 
|  | unsigned long long sched_clock(void) | 
|  | { | 
|  | if (__USE_RTC()) | 
|  | return get_rtc(); | 
|  | return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift; | 
|  | } | 
|  |  | 
|  | static int __init get_freq(char *name, int cells, unsigned long *val) | 
|  | { | 
|  | struct device_node *cpu; | 
|  | const unsigned int *fp; | 
|  | int found = 0; | 
|  |  | 
|  | /* The cpu node should have timebase and clock frequency properties */ | 
|  | cpu = of_find_node_by_type(NULL, "cpu"); | 
|  |  | 
|  | if (cpu) { | 
|  | fp = of_get_property(cpu, name, NULL); | 
|  | if (fp) { | 
|  | found = 1; | 
|  | *val = of_read_ulong(fp, cells); | 
|  | } | 
|  |  | 
|  | of_node_put(cpu); | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | void __init generic_calibrate_decr(void) | 
|  | { | 
|  | ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */ | 
|  |  | 
|  | if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) && | 
|  | !get_freq("timebase-frequency", 1, &ppc_tb_freq)) { | 
|  |  | 
|  | printk(KERN_ERR "WARNING: Estimating decrementer frequency " | 
|  | "(not found)\n"); | 
|  | } | 
|  |  | 
|  | ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */ | 
|  |  | 
|  | if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) && | 
|  | !get_freq("clock-frequency", 1, &ppc_proc_freq)) { | 
|  |  | 
|  | printk(KERN_ERR "WARNING: Estimating processor frequency " | 
|  | "(not found)\n"); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_BOOKE) || defined(CONFIG_40x) | 
|  | /* Clear any pending timer interrupts */ | 
|  | mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); | 
|  |  | 
|  | /* Enable decrementer interrupt */ | 
|  | mtspr(SPRN_TCR, TCR_DIE); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int update_persistent_clock(struct timespec now) | 
|  | { | 
|  | struct rtc_time tm; | 
|  |  | 
|  | if (!ppc_md.set_rtc_time) | 
|  | return 0; | 
|  |  | 
|  | to_tm(now.tv_sec + 1 + timezone_offset, &tm); | 
|  | tm.tm_year -= 1900; | 
|  | tm.tm_mon -= 1; | 
|  |  | 
|  | return ppc_md.set_rtc_time(&tm); | 
|  | } | 
|  |  | 
|  | unsigned long read_persistent_clock(void) | 
|  | { | 
|  | struct rtc_time tm; | 
|  | static int first = 1; | 
|  |  | 
|  | /* XXX this is a litle fragile but will work okay in the short term */ | 
|  | if (first) { | 
|  | first = 0; | 
|  | if (ppc_md.time_init) | 
|  | timezone_offset = ppc_md.time_init(); | 
|  |  | 
|  | /* get_boot_time() isn't guaranteed to be safe to call late */ | 
|  | if (ppc_md.get_boot_time) | 
|  | return ppc_md.get_boot_time() -timezone_offset; | 
|  | } | 
|  | if (!ppc_md.get_rtc_time) | 
|  | return 0; | 
|  | ppc_md.get_rtc_time(&tm); | 
|  | return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, | 
|  | tm.tm_hour, tm.tm_min, tm.tm_sec); | 
|  | } | 
|  |  | 
|  | /* clocksource code */ | 
|  | static cycle_t rtc_read(struct clocksource *cs) | 
|  | { | 
|  | return (cycle_t)get_rtc(); | 
|  | } | 
|  |  | 
|  | static cycle_t timebase_read(struct clocksource *cs) | 
|  | { | 
|  | return (cycle_t)get_tb(); | 
|  | } | 
|  |  | 
|  | void update_vsyscall(struct timespec *wall_time, struct clocksource *clock) | 
|  | { | 
|  | u64 t2x, stamp_xsec; | 
|  |  | 
|  | if (clock != &clocksource_timebase) | 
|  | return; | 
|  |  | 
|  | /* Make userspace gettimeofday spin until we're done. */ | 
|  | ++vdso_data->tb_update_count; | 
|  | smp_mb(); | 
|  |  | 
|  | /* XXX this assumes clock->shift == 22 */ | 
|  | /* 4611686018 ~= 2^(20+64-22) / 1e9 */ | 
|  | t2x = (u64) clock->mult * 4611686018ULL; | 
|  | stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC; | 
|  | do_div(stamp_xsec, 1000000000); | 
|  | stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC; | 
|  | update_gtod(clock->cycle_last, stamp_xsec, t2x); | 
|  | } | 
|  |  | 
|  | void update_vsyscall_tz(void) | 
|  | { | 
|  | /* Make userspace gettimeofday spin until we're done. */ | 
|  | ++vdso_data->tb_update_count; | 
|  | smp_mb(); | 
|  | vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; | 
|  | vdso_data->tz_dsttime = sys_tz.tz_dsttime; | 
|  | smp_mb(); | 
|  | ++vdso_data->tb_update_count; | 
|  | } | 
|  |  | 
|  | static void __init clocksource_init(void) | 
|  | { | 
|  | struct clocksource *clock; | 
|  |  | 
|  | if (__USE_RTC()) | 
|  | clock = &clocksource_rtc; | 
|  | else | 
|  | clock = &clocksource_timebase; | 
|  |  | 
|  | clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift); | 
|  |  | 
|  | if (clocksource_register(clock)) { | 
|  | printk(KERN_ERR "clocksource: %s is already registered\n", | 
|  | clock->name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n", | 
|  | clock->name, clock->mult, clock->shift); | 
|  | } | 
|  |  | 
|  | static int decrementer_set_next_event(unsigned long evt, | 
|  | struct clock_event_device *dev) | 
|  | { | 
|  | __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt; | 
|  | set_dec(evt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void decrementer_set_mode(enum clock_event_mode mode, | 
|  | struct clock_event_device *dev) | 
|  | { | 
|  | if (mode != CLOCK_EVT_MODE_ONESHOT) | 
|  | decrementer_set_next_event(DECREMENTER_MAX, dev); | 
|  | } | 
|  |  | 
|  | static void register_decrementer_clockevent(int cpu) | 
|  | { | 
|  | struct clock_event_device *dec = &per_cpu(decrementers, cpu).event; | 
|  |  | 
|  | *dec = decrementer_clockevent; | 
|  | dec->cpumask = cpumask_of(cpu); | 
|  |  | 
|  | printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n", | 
|  | dec->name, dec->mult, dec->shift, cpu); | 
|  |  | 
|  | clockevents_register_device(dec); | 
|  | } | 
|  |  | 
|  | static void __init init_decrementer_clockevent(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC, | 
|  | decrementer_clockevent.shift); | 
|  | decrementer_clockevent.max_delta_ns = | 
|  | clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent); | 
|  | decrementer_clockevent.min_delta_ns = | 
|  | clockevent_delta2ns(2, &decrementer_clockevent); | 
|  |  | 
|  | register_decrementer_clockevent(cpu); | 
|  | } | 
|  |  | 
|  | void secondary_cpu_time_init(void) | 
|  | { | 
|  | /* FIME: Should make unrelatred change to move snapshot_timebase | 
|  | * call here ! */ | 
|  | register_decrementer_clockevent(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | /* This function is only called on the boot processor */ | 
|  | void __init time_init(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct div_result res; | 
|  | u64 scale, x; | 
|  | unsigned shift; | 
|  |  | 
|  | if (__USE_RTC()) { | 
|  | /* 601 processor: dec counts down by 128 every 128ns */ | 
|  | ppc_tb_freq = 1000000000; | 
|  | tb_last_jiffy = get_rtcl(); | 
|  | } else { | 
|  | /* Normal PowerPC with timebase register */ | 
|  | ppc_md.calibrate_decr(); | 
|  | printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n", | 
|  | ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); | 
|  | printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n", | 
|  | ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); | 
|  | tb_last_jiffy = get_tb(); | 
|  | } | 
|  |  | 
|  | tb_ticks_per_jiffy = ppc_tb_freq / HZ; | 
|  | tb_ticks_per_sec = ppc_tb_freq; | 
|  | tb_ticks_per_usec = ppc_tb_freq / 1000000; | 
|  | tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); | 
|  | calc_cputime_factors(); | 
|  |  | 
|  | /* | 
|  | * Calculate the length of each tick in ns.  It will not be | 
|  | * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ. | 
|  | * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq, | 
|  | * rounded up. | 
|  | */ | 
|  | x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1; | 
|  | do_div(x, ppc_tb_freq); | 
|  | tick_nsec = x; | 
|  | last_tick_len = x << TICKLEN_SCALE; | 
|  |  | 
|  | /* | 
|  | * Compute ticklen_to_xs, which is a factor which gets multiplied | 
|  | * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value. | 
|  | * It is computed as: | 
|  | * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9) | 
|  | * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT | 
|  | * which turns out to be N = 51 - SHIFT_HZ. | 
|  | * This gives the result as a 0.64 fixed-point fraction. | 
|  | * That value is reduced by an offset amounting to 1 xsec per | 
|  | * 2^31 timebase ticks to avoid problems with time going backwards | 
|  | * by 1 xsec when we do timer_recalc_offset due to losing the | 
|  | * fractional xsec.  That offset is equal to ppc_tb_freq/2^51 | 
|  | * since there are 2^20 xsec in a second. | 
|  | */ | 
|  | div128_by_32((1ULL << 51) - ppc_tb_freq, 0, | 
|  | tb_ticks_per_jiffy << SHIFT_HZ, &res); | 
|  | div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res); | 
|  | ticklen_to_xs = res.result_low; | 
|  |  | 
|  | /* Compute tb_to_xs from tick_nsec */ | 
|  | tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs); | 
|  |  | 
|  | /* | 
|  | * Compute scale factor for sched_clock. | 
|  | * The calibrate_decr() function has set tb_ticks_per_sec, | 
|  | * which is the timebase frequency. | 
|  | * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret | 
|  | * the 128-bit result as a 64.64 fixed-point number. | 
|  | * We then shift that number right until it is less than 1.0, | 
|  | * giving us the scale factor and shift count to use in | 
|  | * sched_clock(). | 
|  | */ | 
|  | div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); | 
|  | scale = res.result_low; | 
|  | for (shift = 0; res.result_high != 0; ++shift) { | 
|  | scale = (scale >> 1) | (res.result_high << 63); | 
|  | res.result_high >>= 1; | 
|  | } | 
|  | tb_to_ns_scale = scale; | 
|  | tb_to_ns_shift = shift; | 
|  | /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */ | 
|  | boot_tb = get_tb_or_rtc(); | 
|  |  | 
|  | write_seqlock_irqsave(&xtime_lock, flags); | 
|  |  | 
|  | /* If platform provided a timezone (pmac), we correct the time */ | 
|  | if (timezone_offset) { | 
|  | sys_tz.tz_minuteswest = -timezone_offset / 60; | 
|  | sys_tz.tz_dsttime = 0; | 
|  | } | 
|  |  | 
|  | vdso_data->tb_orig_stamp = tb_last_jiffy; | 
|  | vdso_data->tb_update_count = 0; | 
|  | vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; | 
|  | vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; | 
|  | vdso_data->tb_to_xs = tb_to_xs; | 
|  |  | 
|  | write_sequnlock_irqrestore(&xtime_lock, flags); | 
|  |  | 
|  | /* Register the clocksource, if we're not running on iSeries */ | 
|  | if (!firmware_has_feature(FW_FEATURE_ISERIES)) | 
|  | clocksource_init(); | 
|  |  | 
|  | init_decrementer_clockevent(); | 
|  | } | 
|  |  | 
|  |  | 
|  | #define FEBRUARY	2 | 
|  | #define	STARTOFTIME	1970 | 
|  | #define SECDAY		86400L | 
|  | #define SECYR		(SECDAY * 365) | 
|  | #define	leapyear(year)		((year) % 4 == 0 && \ | 
|  | ((year) % 100 != 0 || (year) % 400 == 0)) | 
|  | #define	days_in_year(a) 	(leapyear(a) ? 366 : 365) | 
|  | #define	days_in_month(a) 	(month_days[(a) - 1]) | 
|  |  | 
|  | static int month_days[12] = { | 
|  | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) | 
|  | */ | 
|  | void GregorianDay(struct rtc_time * tm) | 
|  | { | 
|  | int leapsToDate; | 
|  | int lastYear; | 
|  | int day; | 
|  | int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; | 
|  |  | 
|  | lastYear = tm->tm_year - 1; | 
|  |  | 
|  | /* | 
|  | * Number of leap corrections to apply up to end of last year | 
|  | */ | 
|  | leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; | 
|  |  | 
|  | /* | 
|  | * This year is a leap year if it is divisible by 4 except when it is | 
|  | * divisible by 100 unless it is divisible by 400 | 
|  | * | 
|  | * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was | 
|  | */ | 
|  | day = tm->tm_mon > 2 && leapyear(tm->tm_year); | 
|  |  | 
|  | day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + | 
|  | tm->tm_mday; | 
|  |  | 
|  | tm->tm_wday = day % 7; | 
|  | } | 
|  |  | 
|  | void to_tm(int tim, struct rtc_time * tm) | 
|  | { | 
|  | register int    i; | 
|  | register long   hms, day; | 
|  |  | 
|  | day = tim / SECDAY; | 
|  | hms = tim % SECDAY; | 
|  |  | 
|  | /* Hours, minutes, seconds are easy */ | 
|  | tm->tm_hour = hms / 3600; | 
|  | tm->tm_min = (hms % 3600) / 60; | 
|  | tm->tm_sec = (hms % 3600) % 60; | 
|  |  | 
|  | /* Number of years in days */ | 
|  | for (i = STARTOFTIME; day >= days_in_year(i); i++) | 
|  | day -= days_in_year(i); | 
|  | tm->tm_year = i; | 
|  |  | 
|  | /* Number of months in days left */ | 
|  | if (leapyear(tm->tm_year)) | 
|  | days_in_month(FEBRUARY) = 29; | 
|  | for (i = 1; day >= days_in_month(i); i++) | 
|  | day -= days_in_month(i); | 
|  | days_in_month(FEBRUARY) = 28; | 
|  | tm->tm_mon = i; | 
|  |  | 
|  | /* Days are what is left over (+1) from all that. */ | 
|  | tm->tm_mday = day + 1; | 
|  |  | 
|  | /* | 
|  | * Determine the day of week | 
|  | */ | 
|  | GregorianDay(tm); | 
|  | } | 
|  |  | 
|  | /* Auxiliary function to compute scaling factors */ | 
|  | /* Actually the choice of a timebase running at 1/4 the of the bus | 
|  | * frequency giving resolution of a few tens of nanoseconds is quite nice. | 
|  | * It makes this computation very precise (27-28 bits typically) which | 
|  | * is optimistic considering the stability of most processor clock | 
|  | * oscillators and the precision with which the timebase frequency | 
|  | * is measured but does not harm. | 
|  | */ | 
|  | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) | 
|  | { | 
|  | unsigned mlt=0, tmp, err; | 
|  | /* No concern for performance, it's done once: use a stupid | 
|  | * but safe and compact method to find the multiplier. | 
|  | */ | 
|  |  | 
|  | for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | 
|  | if (mulhwu(inscale, mlt|tmp) < outscale) | 
|  | mlt |= tmp; | 
|  | } | 
|  |  | 
|  | /* We might still be off by 1 for the best approximation. | 
|  | * A side effect of this is that if outscale is too large | 
|  | * the returned value will be zero. | 
|  | * Many corner cases have been checked and seem to work, | 
|  | * some might have been forgotten in the test however. | 
|  | */ | 
|  |  | 
|  | err = inscale * (mlt+1); | 
|  | if (err <= inscale/2) | 
|  | mlt++; | 
|  | return mlt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit | 
|  | * result. | 
|  | */ | 
|  | void div128_by_32(u64 dividend_high, u64 dividend_low, | 
|  | unsigned divisor, struct div_result *dr) | 
|  | { | 
|  | unsigned long a, b, c, d; | 
|  | unsigned long w, x, y, z; | 
|  | u64 ra, rb, rc; | 
|  |  | 
|  | a = dividend_high >> 32; | 
|  | b = dividend_high & 0xffffffff; | 
|  | c = dividend_low >> 32; | 
|  | d = dividend_low & 0xffffffff; | 
|  |  | 
|  | w = a / divisor; | 
|  | ra = ((u64)(a - (w * divisor)) << 32) + b; | 
|  |  | 
|  | rb = ((u64) do_div(ra, divisor) << 32) + c; | 
|  | x = ra; | 
|  |  | 
|  | rc = ((u64) do_div(rb, divisor) << 32) + d; | 
|  | y = rb; | 
|  |  | 
|  | do_div(rc, divisor); | 
|  | z = rc; | 
|  |  | 
|  | dr->result_high = ((u64)w << 32) + x; | 
|  | dr->result_low  = ((u64)y << 32) + z; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __init rtc_init(void) | 
|  | { | 
|  | struct platform_device *pdev; | 
|  |  | 
|  | if (!ppc_md.get_rtc_time) | 
|  | return -ENODEV; | 
|  |  | 
|  | pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0); | 
|  | if (IS_ERR(pdev)) | 
|  | return PTR_ERR(pdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(rtc_init); |