| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Randomized tests for eBPF longest-prefix-match maps |
| * |
| * This program runs randomized tests against the lpm-bpf-map. It implements a |
| * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked |
| * lists. The implementation should be pretty straightforward. |
| * |
| * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies |
| * the trie-based bpf-map implementation behaves the same way as tlpm. |
| */ |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <linux/bpf.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <arpa/inet.h> |
| #include <sys/time.h> |
| #include <sys/resource.h> |
| |
| #include <bpf/bpf.h> |
| #include "bpf_util.h" |
| |
| struct tlpm_node { |
| struct tlpm_node *next; |
| size_t n_bits; |
| uint8_t key[]; |
| }; |
| |
| static struct tlpm_node *tlpm_add(struct tlpm_node *list, |
| const uint8_t *key, |
| size_t n_bits) |
| { |
| struct tlpm_node *node; |
| size_t n; |
| |
| /* add new entry with @key/@n_bits to @list and return new head */ |
| |
| n = (n_bits + 7) / 8; |
| node = malloc(sizeof(*node) + n); |
| assert(node); |
| |
| node->next = list; |
| node->n_bits = n_bits; |
| memcpy(node->key, key, n); |
| |
| return node; |
| } |
| |
| static void tlpm_clear(struct tlpm_node *list) |
| { |
| struct tlpm_node *node; |
| |
| /* free all entries in @list */ |
| |
| while ((node = list)) { |
| list = list->next; |
| free(node); |
| } |
| } |
| |
| static struct tlpm_node *tlpm_match(struct tlpm_node *list, |
| const uint8_t *key, |
| size_t n_bits) |
| { |
| struct tlpm_node *best = NULL; |
| size_t i; |
| |
| /* Perform longest prefix-match on @key/@n_bits. That is, iterate all |
| * entries and match each prefix against @key. Remember the "best" |
| * entry we find (i.e., the longest prefix that matches) and return it |
| * to the caller when done. |
| */ |
| |
| for ( ; list; list = list->next) { |
| for (i = 0; i < n_bits && i < list->n_bits; ++i) { |
| if ((key[i / 8] & (1 << (7 - i % 8))) != |
| (list->key[i / 8] & (1 << (7 - i % 8)))) |
| break; |
| } |
| |
| if (i >= list->n_bits) { |
| if (!best || i > best->n_bits) |
| best = list; |
| } |
| } |
| |
| return best; |
| } |
| |
| static void test_lpm_basic(void) |
| { |
| struct tlpm_node *list = NULL, *t1, *t2; |
| |
| /* very basic, static tests to verify tlpm works as expected */ |
| |
| assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); |
| |
| t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); |
| assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); |
| assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); |
| assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); |
| assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); |
| assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); |
| assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); |
| |
| t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); |
| assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); |
| assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); |
| assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); |
| assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); |
| |
| tlpm_clear(list); |
| } |
| |
| static void test_lpm_order(void) |
| { |
| struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; |
| size_t i, j; |
| |
| /* Verify the tlpm implementation works correctly regardless of the |
| * order of entries. Insert a random set of entries into @l1, and copy |
| * the same data in reverse order into @l2. Then verify a lookup of |
| * random keys will yield the same result in both sets. |
| */ |
| |
| for (i = 0; i < (1 << 12); ++i) |
| l1 = tlpm_add(l1, (uint8_t[]){ |
| rand() % 0xff, |
| rand() % 0xff, |
| }, rand() % 16 + 1); |
| |
| for (t1 = l1; t1; t1 = t1->next) |
| l2 = tlpm_add(l2, t1->key, t1->n_bits); |
| |
| for (i = 0; i < (1 << 8); ++i) { |
| uint8_t key[] = { rand() % 0xff, rand() % 0xff }; |
| |
| t1 = tlpm_match(l1, key, 16); |
| t2 = tlpm_match(l2, key, 16); |
| |
| assert(!t1 == !t2); |
| if (t1) { |
| assert(t1->n_bits == t2->n_bits); |
| for (j = 0; j < t1->n_bits; ++j) |
| assert((t1->key[j / 8] & (1 << (7 - j % 8))) == |
| (t2->key[j / 8] & (1 << (7 - j % 8)))); |
| } |
| } |
| |
| tlpm_clear(l1); |
| tlpm_clear(l2); |
| } |
| |
| static void test_lpm_map(int keysize) |
| { |
| size_t i, j, n_matches, n_nodes, n_lookups; |
| struct tlpm_node *t, *list = NULL; |
| struct bpf_lpm_trie_key *key; |
| uint8_t *data, *value; |
| int r, map; |
| |
| /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of |
| * prefixes and insert it into both tlpm and bpf-lpm. Then run some |
| * randomized lookups and verify both maps return the same result. |
| */ |
| |
| n_matches = 0; |
| n_nodes = 1 << 8; |
| n_lookups = 1 << 16; |
| |
| data = alloca(keysize); |
| memset(data, 0, keysize); |
| |
| value = alloca(keysize + 1); |
| memset(value, 0, keysize + 1); |
| |
| key = alloca(sizeof(*key) + keysize); |
| memset(key, 0, sizeof(*key) + keysize); |
| |
| map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, |
| sizeof(*key) + keysize, |
| keysize + 1, |
| 4096, |
| BPF_F_NO_PREALLOC); |
| assert(map >= 0); |
| |
| for (i = 0; i < n_nodes; ++i) { |
| for (j = 0; j < keysize; ++j) |
| value[j] = rand() & 0xff; |
| value[keysize] = rand() % (8 * keysize + 1); |
| |
| list = tlpm_add(list, value, value[keysize]); |
| |
| key->prefixlen = value[keysize]; |
| memcpy(key->data, value, keysize); |
| r = bpf_map_update_elem(map, key, value, 0); |
| assert(!r); |
| } |
| |
| for (i = 0; i < n_lookups; ++i) { |
| for (j = 0; j < keysize; ++j) |
| data[j] = rand() & 0xff; |
| |
| t = tlpm_match(list, data, 8 * keysize); |
| |
| key->prefixlen = 8 * keysize; |
| memcpy(key->data, data, keysize); |
| r = bpf_map_lookup_elem(map, key, value); |
| assert(!r || errno == ENOENT); |
| assert(!t == !!r); |
| |
| if (t) { |
| ++n_matches; |
| assert(t->n_bits == value[keysize]); |
| for (j = 0; j < t->n_bits; ++j) |
| assert((t->key[j / 8] & (1 << (7 - j % 8))) == |
| (value[j / 8] & (1 << (7 - j % 8)))); |
| } |
| } |
| |
| close(map); |
| tlpm_clear(list); |
| |
| /* With 255 random nodes in the map, we are pretty likely to match |
| * something on every lookup. For statistics, use this: |
| * |
| * printf(" nodes: %zu\n" |
| * "lookups: %zu\n" |
| * "matches: %zu\n", n_nodes, n_lookups, n_matches); |
| */ |
| } |
| |
| /* Test the implementation with some 'real world' examples */ |
| |
| static void test_lpm_ipaddr(void) |
| { |
| struct bpf_lpm_trie_key *key_ipv4; |
| struct bpf_lpm_trie_key *key_ipv6; |
| size_t key_size_ipv4; |
| size_t key_size_ipv6; |
| int map_fd_ipv4; |
| int map_fd_ipv6; |
| __u64 value; |
| |
| key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); |
| key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; |
| key_ipv4 = alloca(key_size_ipv4); |
| key_ipv6 = alloca(key_size_ipv6); |
| |
| map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, |
| key_size_ipv4, sizeof(value), |
| 100, BPF_F_NO_PREALLOC); |
| assert(map_fd_ipv4 >= 0); |
| |
| map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, |
| key_size_ipv6, sizeof(value), |
| 100, BPF_F_NO_PREALLOC); |
| assert(map_fd_ipv6 >= 0); |
| |
| /* Fill data some IPv4 and IPv6 address ranges */ |
| value = 1; |
| key_ipv4->prefixlen = 16; |
| inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); |
| assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); |
| |
| value = 2; |
| key_ipv4->prefixlen = 24; |
| inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); |
| assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); |
| |
| value = 3; |
| key_ipv4->prefixlen = 24; |
| inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); |
| assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); |
| |
| value = 5; |
| key_ipv4->prefixlen = 24; |
| inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); |
| assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); |
| |
| value = 4; |
| key_ipv4->prefixlen = 23; |
| inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); |
| assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); |
| |
| value = 0xdeadbeef; |
| key_ipv6->prefixlen = 64; |
| inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); |
| assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); |
| |
| /* Set tprefixlen to maximum for lookups */ |
| key_ipv4->prefixlen = 32; |
| key_ipv6->prefixlen = 128; |
| |
| /* Test some lookups that should come back with a value */ |
| inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); |
| assert(value == 3); |
| |
| inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); |
| assert(value == 2); |
| |
| inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); |
| assert(value == 0xdeadbeef); |
| |
| inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); |
| assert(value == 0xdeadbeef); |
| |
| /* Test some lookups that should not match any entry */ |
| inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && |
| errno == ENOENT); |
| |
| inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && |
| errno == ENOENT); |
| |
| inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); |
| assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && |
| errno == ENOENT); |
| |
| close(map_fd_ipv4); |
| close(map_fd_ipv6); |
| } |
| |
| int main(void) |
| { |
| struct rlimit limit = { RLIM_INFINITY, RLIM_INFINITY }; |
| int i, ret; |
| |
| /* we want predictable, pseudo random tests */ |
| srand(0xf00ba1); |
| |
| /* allow unlimited locked memory */ |
| ret = setrlimit(RLIMIT_MEMLOCK, &limit); |
| if (ret < 0) |
| perror("Unable to lift memlock rlimit"); |
| |
| test_lpm_basic(); |
| test_lpm_order(); |
| |
| /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ |
| for (i = 1; i <= 16; ++i) |
| test_lpm_map(i); |
| |
| test_lpm_ipaddr(); |
| |
| printf("test_lpm: OK\n"); |
| return 0; |
| } |