blob: 3fd71cf5cd60aecdd5b87076b1e3c7e21d6ec587 [file] [log] [blame]
/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com>
*/
#include <linux/of_device.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/interrupt.h>
#include "mtk_eth_soc.h"
static int mtk_msg_level = -1;
module_param_named(msg_level, mtk_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
#define MTK_ETHTOOL_STAT(x) { #x, \
offsetof(struct mtk_hw_stats, x) / sizeof(u64) }
/* strings used by ethtool */
static const struct mtk_ethtool_stats {
char str[ETH_GSTRING_LEN];
u32 offset;
} mtk_ethtool_stats[] = {
MTK_ETHTOOL_STAT(tx_bytes),
MTK_ETHTOOL_STAT(tx_packets),
MTK_ETHTOOL_STAT(tx_skip),
MTK_ETHTOOL_STAT(tx_collisions),
MTK_ETHTOOL_STAT(rx_bytes),
MTK_ETHTOOL_STAT(rx_packets),
MTK_ETHTOOL_STAT(rx_overflow),
MTK_ETHTOOL_STAT(rx_fcs_errors),
MTK_ETHTOOL_STAT(rx_short_errors),
MTK_ETHTOOL_STAT(rx_long_errors),
MTK_ETHTOOL_STAT(rx_checksum_errors),
MTK_ETHTOOL_STAT(rx_flow_control_packets),
};
static const char * const mtk_clks_source_name[] = {
"ethif", "esw", "gp0", "gp1", "gp2", "trgpll", "sgmii_tx250m",
"sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii_ck", "eth2pll"
};
void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg)
{
__raw_writel(val, eth->base + reg);
}
u32 mtk_r32(struct mtk_eth *eth, unsigned reg)
{
return __raw_readl(eth->base + reg);
}
static int mtk_mdio_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS))
return 0;
if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT))
break;
usleep_range(10, 20);
}
dev_err(eth->dev, "mdio: MDIO timeout\n");
return -1;
}
static u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr,
u32 phy_register, u32 write_data)
{
if (mtk_mdio_busy_wait(eth))
return -1;
write_data &= 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE |
(phy_register << PHY_IAC_REG_SHIFT) |
(phy_addr << PHY_IAC_ADDR_SHIFT) | write_data,
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return -1;
return 0;
}
static u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg)
{
u32 d;
if (mtk_mdio_busy_wait(eth))
return 0xffff;
mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ |
(phy_reg << PHY_IAC_REG_SHIFT) |
(phy_addr << PHY_IAC_ADDR_SHIFT),
MTK_PHY_IAC);
if (mtk_mdio_busy_wait(eth))
return 0xffff;
d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff;
return d;
}
static int mtk_mdio_write(struct mii_bus *bus, int phy_addr,
int phy_reg, u16 val)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_write(eth, phy_addr, phy_reg, val);
}
static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg)
{
struct mtk_eth *eth = bus->priv;
return _mtk_mdio_read(eth, phy_addr, phy_reg);
}
static void mtk_gmac0_rgmii_adjust(struct mtk_eth *eth, int speed)
{
u32 val;
int ret;
val = (speed == SPEED_1000) ?
INTF_MODE_RGMII_1000 : INTF_MODE_RGMII_10_100;
mtk_w32(eth, val, INTF_MODE);
regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0,
ETHSYS_TRGMII_CLK_SEL362_5,
ETHSYS_TRGMII_CLK_SEL362_5);
val = (speed == SPEED_1000) ? 250000000 : 500000000;
ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val);
if (ret)
dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret);
val = (speed == SPEED_1000) ?
RCK_CTRL_RGMII_1000 : RCK_CTRL_RGMII_10_100;
mtk_w32(eth, val, TRGMII_RCK_CTRL);
val = (speed == SPEED_1000) ?
TCK_CTRL_RGMII_1000 : TCK_CTRL_RGMII_10_100;
mtk_w32(eth, val, TRGMII_TCK_CTRL);
}
static void mtk_gmac_sgmii_hw_setup(struct mtk_eth *eth, int mac_id)
{
u32 val;
/* Setup the link timer and QPHY power up inside SGMIISYS */
regmap_write(eth->sgmiisys, SGMSYS_PCS_LINK_TIMER,
SGMII_LINK_TIMER_DEFAULT);
regmap_read(eth->sgmiisys, SGMSYS_SGMII_MODE, &val);
val |= SGMII_REMOTE_FAULT_DIS;
regmap_write(eth->sgmiisys, SGMSYS_SGMII_MODE, val);
regmap_read(eth->sgmiisys, SGMSYS_PCS_CONTROL_1, &val);
val |= SGMII_AN_RESTART;
regmap_write(eth->sgmiisys, SGMSYS_PCS_CONTROL_1, val);
regmap_read(eth->sgmiisys, SGMSYS_QPHY_PWR_STATE_CTRL, &val);
val &= ~SGMII_PHYA_PWD;
regmap_write(eth->sgmiisys, SGMSYS_QPHY_PWR_STATE_CTRL, val);
/* Determine MUX for which GMAC uses the SGMII interface */
if (MTK_HAS_CAPS(eth->soc->caps, MTK_DUAL_GMAC_SHARED_SGMII)) {
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
val &= ~SYSCFG0_SGMII_MASK;
val |= !mac_id ? SYSCFG0_SGMII_GMAC1 : SYSCFG0_SGMII_GMAC2;
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
dev_info(eth->dev, "setup shared sgmii for gmac=%d\n",
mac_id);
}
/* Setup the GMAC1 going through SGMII path when SoC also support
* ESW on GMAC1
*/
if (MTK_HAS_CAPS(eth->soc->caps, MTK_GMAC1_ESW | MTK_GMAC1_SGMII) &&
!mac_id) {
mtk_w32(eth, 0, MTK_MAC_MISC);
dev_info(eth->dev, "setup gmac1 going through sgmii");
}
}
static void mtk_phy_link_adjust(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
u16 lcl_adv = 0, rmt_adv = 0;
u8 flowctrl;
u32 mcr = MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG |
MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN |
MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN |
MAC_MCR_BACKPR_EN;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return;
switch (dev->phydev->speed) {
case SPEED_1000:
mcr |= MAC_MCR_SPEED_1000;
break;
case SPEED_100:
mcr |= MAC_MCR_SPEED_100;
break;
};
if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII) &&
!mac->id && !mac->trgmii)
mtk_gmac0_rgmii_adjust(mac->hw, dev->phydev->speed);
if (dev->phydev->link)
mcr |= MAC_MCR_FORCE_LINK;
if (dev->phydev->duplex) {
mcr |= MAC_MCR_FORCE_DPX;
if (dev->phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (dev->phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
if (dev->phydev->advertising & ADVERTISED_Pause)
lcl_adv |= ADVERTISE_PAUSE_CAP;
if (dev->phydev->advertising & ADVERTISED_Asym_Pause)
lcl_adv |= ADVERTISE_PAUSE_ASYM;
flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (flowctrl & FLOW_CTRL_TX)
mcr |= MAC_MCR_FORCE_TX_FC;
if (flowctrl & FLOW_CTRL_RX)
mcr |= MAC_MCR_FORCE_RX_FC;
netif_dbg(mac->hw, link, dev, "rx pause %s, tx pause %s\n",
flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled",
flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled");
}
mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id));
if (dev->phydev->link)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
if (!of_phy_is_fixed_link(mac->of_node))
phy_print_status(dev->phydev);
}
static int mtk_phy_connect_node(struct mtk_eth *eth, struct mtk_mac *mac,
struct device_node *phy_node)
{
struct phy_device *phydev;
int phy_mode;
phy_mode = of_get_phy_mode(phy_node);
if (phy_mode < 0) {
dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode);
return -EINVAL;
}
phydev = of_phy_connect(eth->netdev[mac->id], phy_node,
mtk_phy_link_adjust, 0, phy_mode);
if (!phydev) {
dev_err(eth->dev, "could not connect to PHY\n");
return -ENODEV;
}
dev_info(eth->dev,
"connected mac %d to PHY at %s [uid=%08x, driver=%s]\n",
mac->id, phydev_name(phydev), phydev->phy_id,
phydev->drv->name);
return 0;
}
static int mtk_phy_connect(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth;
struct device_node *np;
u32 val;
eth = mac->hw;
np = of_parse_phandle(mac->of_node, "phy-handle", 0);
if (!np && of_phy_is_fixed_link(mac->of_node))
if (!of_phy_register_fixed_link(mac->of_node))
np = of_node_get(mac->of_node);
if (!np)
return -ENODEV;
mac->ge_mode = 0;
switch (of_get_phy_mode(np)) {
case PHY_INTERFACE_MODE_TRGMII:
mac->trgmii = true;
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII:
break;
case PHY_INTERFACE_MODE_SGMII:
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII))
mtk_gmac_sgmii_hw_setup(eth, mac->id);
break;
case PHY_INTERFACE_MODE_MII:
mac->ge_mode = 1;
break;
case PHY_INTERFACE_MODE_REVMII:
mac->ge_mode = 2;
break;
case PHY_INTERFACE_MODE_RMII:
if (!mac->id)
goto err_phy;
mac->ge_mode = 3;
break;
default:
goto err_phy;
}
/* put the gmac into the right mode */
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id);
val |= SYSCFG0_GE_MODE(mac->ge_mode, mac->id);
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
/* couple phydev to net_device */
if (mtk_phy_connect_node(eth, mac, np))
goto err_phy;
dev->phydev->autoneg = AUTONEG_ENABLE;
dev->phydev->speed = 0;
dev->phydev->duplex = 0;
if (of_phy_is_fixed_link(mac->of_node))
dev->phydev->supported |=
SUPPORTED_Pause | SUPPORTED_Asym_Pause;
dev->phydev->supported &= PHY_GBIT_FEATURES | SUPPORTED_Pause |
SUPPORTED_Asym_Pause;
dev->phydev->advertising = dev->phydev->supported |
ADVERTISED_Autoneg;
phy_start_aneg(dev->phydev);
of_node_put(np);
return 0;
err_phy:
if (of_phy_is_fixed_link(mac->of_node))
of_phy_deregister_fixed_link(mac->of_node);
of_node_put(np);
dev_err(eth->dev, "%s: invalid phy\n", __func__);
return -EINVAL;
}
static int mtk_mdio_init(struct mtk_eth *eth)
{
struct device_node *mii_np;
int ret;
mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus");
if (!mii_np) {
dev_err(eth->dev, "no %s child node found", "mdio-bus");
return -ENODEV;
}
if (!of_device_is_available(mii_np)) {
ret = -ENODEV;
goto err_put_node;
}
eth->mii_bus = devm_mdiobus_alloc(eth->dev);
if (!eth->mii_bus) {
ret = -ENOMEM;
goto err_put_node;
}
eth->mii_bus->name = "mdio";
eth->mii_bus->read = mtk_mdio_read;
eth->mii_bus->write = mtk_mdio_write;
eth->mii_bus->priv = eth;
eth->mii_bus->parent = eth->dev;
snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%s", mii_np->name);
ret = of_mdiobus_register(eth->mii_bus, mii_np);
err_put_node:
of_node_put(mii_np);
return ret;
}
static void mtk_mdio_cleanup(struct mtk_eth *eth)
{
if (!eth->mii_bus)
return;
mdiobus_unregister(eth->mii_bus);
}
static inline void mtk_tx_irq_disable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->tx_irq_lock, flags);
val = mtk_r32(eth, MTK_QDMA_INT_MASK);
mtk_w32(eth, val & ~mask, MTK_QDMA_INT_MASK);
spin_unlock_irqrestore(&eth->tx_irq_lock, flags);
}
static inline void mtk_tx_irq_enable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->tx_irq_lock, flags);
val = mtk_r32(eth, MTK_QDMA_INT_MASK);
mtk_w32(eth, val | mask, MTK_QDMA_INT_MASK);
spin_unlock_irqrestore(&eth->tx_irq_lock, flags);
}
static inline void mtk_rx_irq_disable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->rx_irq_lock, flags);
val = mtk_r32(eth, MTK_PDMA_INT_MASK);
mtk_w32(eth, val & ~mask, MTK_PDMA_INT_MASK);
spin_unlock_irqrestore(&eth->rx_irq_lock, flags);
}
static inline void mtk_rx_irq_enable(struct mtk_eth *eth, u32 mask)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&eth->rx_irq_lock, flags);
val = mtk_r32(eth, MTK_PDMA_INT_MASK);
mtk_w32(eth, val | mask, MTK_PDMA_INT_MASK);
spin_unlock_irqrestore(&eth->rx_irq_lock, flags);
}
static int mtk_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
struct mtk_mac *mac = netdev_priv(dev);
const char *macaddr = dev->dev_addr;
if (ret)
return ret;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
spin_lock_bh(&mac->hw->page_lock);
mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1],
MTK_GDMA_MAC_ADRH(mac->id));
mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) |
(macaddr[4] << 8) | macaddr[5],
MTK_GDMA_MAC_ADRL(mac->id));
spin_unlock_bh(&mac->hw->page_lock);
return 0;
}
void mtk_stats_update_mac(struct mtk_mac *mac)
{
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int base = MTK_GDM1_TX_GBCNT;
u64 stats;
base += hw_stats->reg_offset;
u64_stats_update_begin(&hw_stats->syncp);
hw_stats->rx_bytes += mtk_r32(mac->hw, base);
stats = mtk_r32(mac->hw, base + 0x04);
if (stats)
hw_stats->rx_bytes += (stats << 32);
hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08);
hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10);
hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14);
hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18);
hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c);
hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20);
hw_stats->rx_flow_control_packets +=
mtk_r32(mac->hw, base + 0x24);
hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28);
hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c);
hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30);
stats = mtk_r32(mac->hw, base + 0x34);
if (stats)
hw_stats->tx_bytes += (stats << 32);
hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38);
u64_stats_update_end(&hw_stats->syncp);
}
static void mtk_stats_update(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i] || !eth->mac[i]->hw_stats)
continue;
if (spin_trylock(&eth->mac[i]->hw_stats->stats_lock)) {
mtk_stats_update_mac(eth->mac[i]);
spin_unlock(&eth->mac[i]->hw_stats->stats_lock);
}
}
}
static void mtk_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hw_stats = mac->hw_stats;
unsigned int start;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hw_stats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock_bh(&hw_stats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hw_stats->syncp);
storage->rx_packets = hw_stats->rx_packets;
storage->tx_packets = hw_stats->tx_packets;
storage->rx_bytes = hw_stats->rx_bytes;
storage->tx_bytes = hw_stats->tx_bytes;
storage->collisions = hw_stats->tx_collisions;
storage->rx_length_errors = hw_stats->rx_short_errors +
hw_stats->rx_long_errors;
storage->rx_over_errors = hw_stats->rx_overflow;
storage->rx_crc_errors = hw_stats->rx_fcs_errors;
storage->rx_errors = hw_stats->rx_checksum_errors;
storage->tx_aborted_errors = hw_stats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start));
storage->tx_errors = dev->stats.tx_errors;
storage->rx_dropped = dev->stats.rx_dropped;
storage->tx_dropped = dev->stats.tx_dropped;
}
static inline int mtk_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MTK_MAX_RX_LENGTH */
if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH)
mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN;
return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int mtk_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
WARN_ON(buf_size < MTK_MAX_RX_LENGTH);
return buf_size;
}
static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd,
struct mtk_rx_dma *dma_rxd)
{
rxd->rxd1 = READ_ONCE(dma_rxd->rxd1);
rxd->rxd2 = READ_ONCE(dma_rxd->rxd2);
rxd->rxd3 = READ_ONCE(dma_rxd->rxd3);
rxd->rxd4 = READ_ONCE(dma_rxd->rxd4);
}
/* the qdma core needs scratch memory to be setup */
static int mtk_init_fq_dma(struct mtk_eth *eth)
{
dma_addr_t phy_ring_tail;
int cnt = MTK_DMA_SIZE;
dma_addr_t dma_addr;
int i;
eth->scratch_ring = dma_alloc_coherent(eth->dev,
cnt * sizeof(struct mtk_tx_dma),
&eth->phy_scratch_ring,
GFP_ATOMIC | __GFP_ZERO);
if (unlikely(!eth->scratch_ring))
return -ENOMEM;
eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE,
GFP_KERNEL);
if (unlikely(!eth->scratch_head))
return -ENOMEM;
dma_addr = dma_map_single(eth->dev,
eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
memset(eth->scratch_ring, 0x0, sizeof(struct mtk_tx_dma) * cnt);
phy_ring_tail = eth->phy_scratch_ring +
(sizeof(struct mtk_tx_dma) * (cnt - 1));
for (i = 0; i < cnt; i++) {
eth->scratch_ring[i].txd1 =
(dma_addr + (i * MTK_QDMA_PAGE_SIZE));
if (i < cnt - 1)
eth->scratch_ring[i].txd2 = (eth->phy_scratch_ring +
((i + 1) * sizeof(struct mtk_tx_dma)));
eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE);
}
mtk_w32(eth, eth->phy_scratch_ring, MTK_QDMA_FQ_HEAD);
mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL);
mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT);
mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN);
return 0;
}
static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc)
{
void *ret = ring->dma;
return ret + (desc - ring->phys);
}
static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring,
struct mtk_tx_dma *txd)
{
int idx = txd - ring->dma;
return &ring->buf[idx];
}
static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf)
{
if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) {
dma_unmap_single(eth->dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
} else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) {
dma_unmap_page(eth->dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
}
tx_buf->flags = 0;
if (tx_buf->skb &&
(tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct mtk_tx_ring *ring, bool gso)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_dma *itxd, *txd;
struct mtk_tx_buf *itx_buf, *tx_buf;
dma_addr_t mapped_addr;
unsigned int nr_frags;
int i, n_desc = 1;
u32 txd4 = 0, fport;
itxd = ring->next_free;
if (itxd == ring->last_free)
return -ENOMEM;
/* set the forward port */
fport = (mac->id + 1) << TX_DMA_FPORT_SHIFT;
txd4 |= fport;
itx_buf = mtk_desc_to_tx_buf(ring, itxd);
memset(itx_buf, 0, sizeof(*itx_buf));
if (gso)
txd4 |= TX_DMA_TSO;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb))
txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb);
mapped_addr = dma_map_single(eth->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, mapped_addr)))
return -ENOMEM;
WRITE_ONCE(itxd->txd1, mapped_addr);
itx_buf->flags |= MTK_TX_FLAGS_SINGLE0;
itx_buf->flags |= (!mac->id) ? MTK_TX_FLAGS_FPORT0 :
MTK_TX_FLAGS_FPORT1;
dma_unmap_addr_set(itx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(itx_buf, dma_len0, skb_headlen(skb));
/* TX SG offload */
txd = itxd;
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
unsigned int offset = 0;
int frag_size = skb_frag_size(frag);
while (frag_size) {
bool last_frag = false;
unsigned int frag_map_size;
txd = mtk_qdma_phys_to_virt(ring, txd->txd2);
if (txd == ring->last_free)
goto err_dma;
n_desc++;
frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN);
mapped_addr = skb_frag_dma_map(eth->dev, frag, offset,
frag_map_size,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, mapped_addr)))
goto err_dma;
if (i == nr_frags - 1 &&
(frag_size - frag_map_size) == 0)
last_frag = true;
WRITE_ONCE(txd->txd1, mapped_addr);
WRITE_ONCE(txd->txd3, (TX_DMA_SWC |
TX_DMA_PLEN0(frag_map_size) |
last_frag * TX_DMA_LS0));
WRITE_ONCE(txd->txd4, fport);
tx_buf = mtk_desc_to_tx_buf(ring, txd);
memset(tx_buf, 0, sizeof(*tx_buf));
tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC;
tx_buf->flags |= MTK_TX_FLAGS_PAGE0;
tx_buf->flags |= (!mac->id) ? MTK_TX_FLAGS_FPORT0 :
MTK_TX_FLAGS_FPORT1;
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, frag_map_size);
frag_size -= frag_map_size;
offset += frag_map_size;
}
}
/* store skb to cleanup */
itx_buf->skb = skb;
WRITE_ONCE(itxd->txd4, txd4);
WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) |
(!nr_frags * TX_DMA_LS0)));
netdev_sent_queue(dev, skb->len);
skb_tx_timestamp(skb);
ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2);
atomic_sub(n_desc, &ring->free_count);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !skb->xmit_more)
mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR);
return 0;
err_dma:
do {
tx_buf = mtk_desc_to_tx_buf(ring, itxd);
/* unmap dma */
mtk_tx_unmap(eth, tx_buf);
itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2);
} while (itxd != txd);
return -ENOMEM;
}
static inline int mtk_cal_txd_req(struct sk_buff *skb)
{
int i, nfrags;
struct skb_frag_struct *frag;
nfrags = 1;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(frag->size, MTK_TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
return nfrags;
}
static int mtk_queue_stopped(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
if (netif_queue_stopped(eth->netdev[i]))
return 1;
}
return 0;
}
static void mtk_wake_queue(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
netif_wake_queue(eth->netdev[i]);
}
}
static void mtk_stop_queue(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
netif_stop_queue(eth->netdev[i]);
}
}
static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
struct mtk_tx_ring *ring = &eth->tx_ring;
struct net_device_stats *stats = &dev->stats;
bool gso = false;
int tx_num;
/* normally we can rely on the stack not calling this more than once,
* however we have 2 queues running on the same ring so we need to lock
* the ring access
*/
spin_lock(&eth->page_lock);
if (unlikely(test_bit(MTK_RESETTING, &eth->state)))
goto drop;
tx_num = mtk_cal_txd_req(skb);
if (unlikely(atomic_read(&ring->free_count) <= tx_num)) {
mtk_stop_queue(eth);
netif_err(eth, tx_queued, dev,
"Tx Ring full when queue awake!\n");
spin_unlock(&eth->page_lock);
return NETDEV_TX_BUSY;
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(eth, tx_err, dev,
"GSO expand head fail.\n");
goto drop;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
gso = true;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0)
goto drop;
if (unlikely(atomic_read(&ring->free_count) <= ring->thresh))
mtk_stop_queue(eth);
spin_unlock(&eth->page_lock);
return NETDEV_TX_OK;
drop:
spin_unlock(&eth->page_lock);
stats->tx_dropped++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static struct mtk_rx_ring *mtk_get_rx_ring(struct mtk_eth *eth)
{
int i;
struct mtk_rx_ring *ring;
int idx;
if (!eth->hwlro)
return &eth->rx_ring[0];
for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) {
ring = &eth->rx_ring[i];
idx = NEXT_RX_DESP_IDX(ring->calc_idx, ring->dma_size);
if (ring->dma[idx].rxd2 & RX_DMA_DONE) {
ring->calc_idx_update = true;
return ring;
}
}
return NULL;
}
static void mtk_update_rx_cpu_idx(struct mtk_eth *eth)
{
struct mtk_rx_ring *ring;
int i;
if (!eth->hwlro) {
ring = &eth->rx_ring[0];
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg);
} else {
for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) {
ring = &eth->rx_ring[i];
if (ring->calc_idx_update) {
ring->calc_idx_update = false;
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg);
}
}
}
}
static int mtk_poll_rx(struct napi_struct *napi, int budget,
struct mtk_eth *eth)
{
struct mtk_rx_ring *ring;
int idx;
struct sk_buff *skb;
u8 *data, *new_data;
struct mtk_rx_dma *rxd, trxd;
int done = 0;
while (done < budget) {
struct net_device *netdev;
unsigned int pktlen;
dma_addr_t dma_addr;
int mac = 0;
ring = mtk_get_rx_ring(eth);
if (unlikely(!ring))
goto rx_done;
idx = NEXT_RX_DESP_IDX(ring->calc_idx, ring->dma_size);
rxd = &ring->dma[idx];
data = ring->data[idx];
mtk_rx_get_desc(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* find out which mac the packet come from. values start at 1 */
mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) &
RX_DMA_FPORT_MASK;
mac--;
if (unlikely(mac < 0 || mac >= MTK_MAC_COUNT ||
!eth->netdev[mac]))
goto release_desc;
netdev = eth->netdev[mac];
if (unlikely(test_bit(MTK_RESETTING, &eth->state)))
goto release_desc;
/* alloc new buffer */
new_data = napi_alloc_frag(ring->frag_size);
if (unlikely(!new_data)) {
netdev->stats.rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(eth->dev,
new_data + NET_SKB_PAD,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr))) {
skb_free_frag(new_data);
netdev->stats.rx_dropped++;
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
skb_free_frag(new_data);
netdev->stats.rx_dropped++;
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(eth->dev, trxd.rxd1,
ring->buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & RX_DMA_L4_VALID)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
skb_record_rx_queue(skb, 0);
napi_gro_receive(napi, skb);
ring->data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size);
ring->calc_idx = idx;
done++;
}
rx_done:
if (done) {
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
mtk_update_rx_cpu_idx(eth);
}
return done;
}
static int mtk_poll_tx(struct mtk_eth *eth, int budget)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
struct mtk_tx_dma *desc;
struct sk_buff *skb;
struct mtk_tx_buf *tx_buf;
unsigned int done[MTK_MAX_DEVS];
unsigned int bytes[MTK_MAX_DEVS];
u32 cpu, dma;
int total = 0, i;
memset(done, 0, sizeof(done));
memset(bytes, 0, sizeof(bytes));
cpu = mtk_r32(eth, MTK_QTX_CRX_PTR);
dma = mtk_r32(eth, MTK_QTX_DRX_PTR);
desc = mtk_qdma_phys_to_virt(ring, cpu);
while ((cpu != dma) && budget) {
u32 next_cpu = desc->txd2;
int mac = 0;
desc = mtk_qdma_phys_to_virt(ring, desc->txd2);
if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0)
break;
tx_buf = mtk_desc_to_tx_buf(ring, desc);
if (tx_buf->flags & MTK_TX_FLAGS_FPORT1)
mac = 1;
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) {
bytes[mac] += skb->len;
done[mac]++;
budget--;
}
mtk_tx_unmap(eth, tx_buf);
ring->last_free = desc;
atomic_inc(&ring->free_count);
cpu = next_cpu;
}
mtk_w32(eth, cpu, MTK_QTX_CRX_PTR);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i] || !done[i])
continue;
netdev_completed_queue(eth->netdev[i], done[i], bytes[i]);
total += done[i];
}
if (mtk_queue_stopped(eth) &&
(atomic_read(&ring->free_count) > ring->thresh))
mtk_wake_queue(eth);
return total;
}
static void mtk_handle_status_irq(struct mtk_eth *eth)
{
u32 status2 = mtk_r32(eth, MTK_INT_STATUS2);
if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) {
mtk_stats_update(eth);
mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF),
MTK_INT_STATUS2);
}
}
static int mtk_napi_tx(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi);
u32 status, mask;
int tx_done = 0;
mtk_handle_status_irq(eth);
mtk_w32(eth, MTK_TX_DONE_INT, MTK_QMTK_INT_STATUS);
tx_done = mtk_poll_tx(eth, budget);
if (unlikely(netif_msg_intr(eth))) {
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
mask = mtk_r32(eth, MTK_QDMA_INT_MASK);
dev_info(eth->dev,
"done tx %d, intr 0x%08x/0x%x\n",
tx_done, status, mask);
}
if (tx_done == budget)
return budget;
status = mtk_r32(eth, MTK_QMTK_INT_STATUS);
if (status & MTK_TX_DONE_INT)
return budget;
napi_complete(napi);
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
return tx_done;
}
static int mtk_napi_rx(struct napi_struct *napi, int budget)
{
struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi);
u32 status, mask;
int rx_done = 0;
int remain_budget = budget;
mtk_handle_status_irq(eth);
poll_again:
mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_STATUS);
rx_done = mtk_poll_rx(napi, remain_budget, eth);
if (unlikely(netif_msg_intr(eth))) {
status = mtk_r32(eth, MTK_PDMA_INT_STATUS);
mask = mtk_r32(eth, MTK_PDMA_INT_MASK);
dev_info(eth->dev,
"done rx %d, intr 0x%08x/0x%x\n",
rx_done, status, mask);
}
if (rx_done == remain_budget)
return budget;
status = mtk_r32(eth, MTK_PDMA_INT_STATUS);
if (status & MTK_RX_DONE_INT) {
remain_budget -= rx_done;
goto poll_again;
}
napi_complete(napi);
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT);
return rx_done + budget - remain_budget;
}
static int mtk_tx_alloc(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i, sz = sizeof(*ring->dma);
ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf),
GFP_KERNEL);
if (!ring->buf)
goto no_tx_mem;
ring->dma = dma_alloc_coherent(eth->dev,
MTK_DMA_SIZE * sz,
&ring->phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->dma)
goto no_tx_mem;
memset(ring->dma, 0, MTK_DMA_SIZE * sz);
for (i = 0; i < MTK_DMA_SIZE; i++) {
int next = (i + 1) % MTK_DMA_SIZE;
u32 next_ptr = ring->phys + next * sz;
ring->dma[i].txd2 = next_ptr;
ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU;
}
atomic_set(&ring->free_count, MTK_DMA_SIZE - 2);
ring->next_free = &ring->dma[0];
ring->last_free = &ring->dma[MTK_DMA_SIZE - 1];
ring->thresh = MAX_SKB_FRAGS;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR);
mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
MTK_QTX_CRX_PTR);
mtk_w32(eth,
ring->phys + ((MTK_DMA_SIZE - 1) * sz),
MTK_QTX_DRX_PTR);
mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0));
return 0;
no_tx_mem:
return -ENOMEM;
}
static void mtk_tx_clean(struct mtk_eth *eth)
{
struct mtk_tx_ring *ring = &eth->tx_ring;
int i;
if (ring->buf) {
for (i = 0; i < MTK_DMA_SIZE; i++)
mtk_tx_unmap(eth, &ring->buf[i]);
kfree(ring->buf);
ring->buf = NULL;
}
if (ring->dma) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(*ring->dma),
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag)
{
struct mtk_rx_ring *ring;
int rx_data_len, rx_dma_size;
int i;
u32 offset = 0;
if (rx_flag == MTK_RX_FLAGS_QDMA) {
if (ring_no)
return -EINVAL;
ring = &eth->rx_ring_qdma;
offset = 0x1000;
} else {
ring = &eth->rx_ring[ring_no];
}
if (rx_flag == MTK_RX_FLAGS_HWLRO) {
rx_data_len = MTK_MAX_LRO_RX_LENGTH;
rx_dma_size = MTK_HW_LRO_DMA_SIZE;
} else {
rx_data_len = ETH_DATA_LEN;
rx_dma_size = MTK_DMA_SIZE;
}
ring->frag_size = mtk_max_frag_size(rx_data_len);
ring->buf_size = mtk_max_buf_size(ring->frag_size);
ring->data = kcalloc(rx_dma_size, sizeof(*ring->data),
GFP_KERNEL);
if (!ring->data)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
ring->data[i] = netdev_alloc_frag(ring->frag_size);
if (!ring->data[i])
return -ENOMEM;
}
ring->dma = dma_alloc_coherent(eth->dev,
rx_dma_size * sizeof(*ring->dma),
&ring->phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->dma)
return -ENOMEM;
for (i = 0; i < rx_dma_size; i++) {
dma_addr_t dma_addr = dma_map_single(eth->dev,
ring->data[i] + NET_SKB_PAD,
ring->buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(eth->dev, dma_addr)))
return -ENOMEM;
ring->dma[i].rxd1 = (unsigned int)dma_addr;
ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size);
}
ring->dma_size = rx_dma_size;
ring->calc_idx_update = false;
ring->calc_idx = rx_dma_size - 1;
ring->crx_idx_reg = MTK_PRX_CRX_IDX_CFG(ring_no);
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
mtk_w32(eth, ring->phys, MTK_PRX_BASE_PTR_CFG(ring_no) + offset);
mtk_w32(eth, rx_dma_size, MTK_PRX_MAX_CNT_CFG(ring_no) + offset);
mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg + offset);
mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no), MTK_PDMA_RST_IDX + offset);
return 0;
}
static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring)
{
int i;
if (ring->data && ring->dma) {
for (i = 0; i < ring->dma_size; i++) {
if (!ring->data[i])
continue;
if (!ring->dma[i].rxd1)
continue;
dma_unmap_single(eth->dev,
ring->dma[i].rxd1,
ring->buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->data[i]);
}
kfree(ring->data);
ring->data = NULL;
}
if (ring->dma) {
dma_free_coherent(eth->dev,
ring->dma_size * sizeof(*ring->dma),
ring->dma,
ring->phys);
ring->dma = NULL;
}
}
static int mtk_hwlro_rx_init(struct mtk_eth *eth)
{
int i;
u32 ring_ctrl_dw1 = 0, ring_ctrl_dw2 = 0, ring_ctrl_dw3 = 0;
u32 lro_ctrl_dw0 = 0, lro_ctrl_dw3 = 0;
/* set LRO rings to auto-learn modes */
ring_ctrl_dw2 |= MTK_RING_AUTO_LERAN_MODE;
/* validate LRO ring */
ring_ctrl_dw2 |= MTK_RING_VLD;
/* set AGE timer (unit: 20us) */
ring_ctrl_dw2 |= MTK_RING_AGE_TIME_H;
ring_ctrl_dw1 |= MTK_RING_AGE_TIME_L;
/* set max AGG timer (unit: 20us) */
ring_ctrl_dw2 |= MTK_RING_MAX_AGG_TIME;
/* set max LRO AGG count */
ring_ctrl_dw2 |= MTK_RING_MAX_AGG_CNT_L;
ring_ctrl_dw3 |= MTK_RING_MAX_AGG_CNT_H;
for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) {
mtk_w32(eth, ring_ctrl_dw1, MTK_LRO_CTRL_DW1_CFG(i));
mtk_w32(eth, ring_ctrl_dw2, MTK_LRO_CTRL_DW2_CFG(i));
mtk_w32(eth, ring_ctrl_dw3, MTK_LRO_CTRL_DW3_CFG(i));
}
/* IPv4 checksum update enable */
lro_ctrl_dw0 |= MTK_L3_CKS_UPD_EN;
/* switch priority comparison to packet count mode */
lro_ctrl_dw0 |= MTK_LRO_ALT_PKT_CNT_MODE;
/* bandwidth threshold setting */
mtk_w32(eth, MTK_HW_LRO_BW_THRE, MTK_PDMA_LRO_CTRL_DW2);
/* auto-learn score delta setting */
mtk_w32(eth, MTK_HW_LRO_REPLACE_DELTA, MTK_PDMA_LRO_ALT_SCORE_DELTA);
/* set refresh timer for altering flows to 1 sec. (unit: 20us) */
mtk_w32(eth, (MTK_HW_LRO_TIMER_UNIT << 16) | MTK_HW_LRO_REFRESH_TIME,
MTK_PDMA_LRO_ALT_REFRESH_TIMER);
/* set HW LRO mode & the max aggregation count for rx packets */
lro_ctrl_dw3 |= MTK_ADMA_MODE | (MTK_HW_LRO_MAX_AGG_CNT & 0xff);
/* the minimal remaining room of SDL0 in RXD for lro aggregation */
lro_ctrl_dw3 |= MTK_LRO_MIN_RXD_SDL;
/* enable HW LRO */
lro_ctrl_dw0 |= MTK_LRO_EN;
mtk_w32(eth, lro_ctrl_dw3, MTK_PDMA_LRO_CTRL_DW3);
mtk_w32(eth, lro_ctrl_dw0, MTK_PDMA_LRO_CTRL_DW0);
return 0;
}
static void mtk_hwlro_rx_uninit(struct mtk_eth *eth)
{
int i;
u32 val;
/* relinquish lro rings, flush aggregated packets */
mtk_w32(eth, MTK_LRO_RING_RELINQUISH_REQ, MTK_PDMA_LRO_CTRL_DW0);
/* wait for relinquishments done */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0);
if (val & MTK_LRO_RING_RELINQUISH_DONE) {
msleep(20);
continue;
}
break;
}
/* invalidate lro rings */
for (i = 1; i < MTK_MAX_RX_RING_NUM; i++)
mtk_w32(eth, 0, MTK_LRO_CTRL_DW2_CFG(i));
/* disable HW LRO */
mtk_w32(eth, 0, MTK_PDMA_LRO_CTRL_DW0);
}
static void mtk_hwlro_val_ipaddr(struct mtk_eth *eth, int idx, __be32 ip)
{
u32 reg_val;
reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx));
/* invalidate the IP setting */
mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx));
mtk_w32(eth, ip, MTK_LRO_DIP_DW0_CFG(idx));
/* validate the IP setting */
mtk_w32(eth, (reg_val | MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx));
}
static void mtk_hwlro_inval_ipaddr(struct mtk_eth *eth, int idx)
{
u32 reg_val;
reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx));
/* invalidate the IP setting */
mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx));
mtk_w32(eth, 0, MTK_LRO_DIP_DW0_CFG(idx));
}
static int mtk_hwlro_get_ip_cnt(struct mtk_mac *mac)
{
int cnt = 0;
int i;
for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) {
if (mac->hwlro_ip[i])
cnt++;
}
return cnt;
}
static int mtk_hwlro_add_ipaddr(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int hwlro_idx;
if ((fsp->flow_type != TCP_V4_FLOW) ||
(!fsp->h_u.tcp_ip4_spec.ip4dst) ||
(fsp->location > 1))
return -EINVAL;
mac->hwlro_ip[fsp->location] = htonl(fsp->h_u.tcp_ip4_spec.ip4dst);
hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location;
mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac);
mtk_hwlro_val_ipaddr(eth, hwlro_idx, mac->hwlro_ip[fsp->location]);
return 0;
}
static int mtk_hwlro_del_ipaddr(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int hwlro_idx;
if (fsp->location > 1)
return -EINVAL;
mac->hwlro_ip[fsp->location] = 0;
hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location;
mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac);
mtk_hwlro_inval_ipaddr(eth, hwlro_idx);
return 0;
}
static void mtk_hwlro_netdev_disable(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
int i, hwlro_idx;
for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) {
mac->hwlro_ip[i] = 0;
hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + i;
mtk_hwlro_inval_ipaddr(eth, hwlro_idx);
}
mac->hwlro_ip_cnt = 0;
}
static int mtk_hwlro_get_fdir_entry(struct net_device *dev,
struct ethtool_rxnfc *cmd)
{
struct mtk_mac *mac = netdev_priv(dev);
struct ethtool_rx_flow_spec *fsp =
(struct ethtool_rx_flow_spec *)&cmd->fs;
/* only tcp dst ipv4 is meaningful, others are meaningless */
fsp->flow_type = TCP_V4_FLOW;
fsp->h_u.tcp_ip4_spec.ip4dst = ntohl(mac->hwlro_ip[fsp->location]);
fsp->m_u.tcp_ip4_spec.ip4dst = 0;
fsp->h_u.tcp_ip4_spec.ip4src = 0;
fsp->m_u.tcp_ip4_spec.ip4src = 0xffffffff;
fsp->h_u.tcp_ip4_spec.psrc = 0;
fsp->m_u.tcp_ip4_spec.psrc = 0xffff;
fsp->h_u.tcp_ip4_spec.pdst = 0;
fsp->m_u.tcp_ip4_spec.pdst = 0xffff;
fsp->h_u.tcp_ip4_spec.tos = 0;
fsp->m_u.tcp_ip4_spec.tos = 0xff;
return 0;
}
static int mtk_hwlro_get_fdir_all(struct net_device *dev,
struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct mtk_mac *mac = netdev_priv(dev);
int cnt = 0;
int i;
for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) {
if (mac->hwlro_ip[i]) {
rule_locs[cnt] = i;
cnt++;
}
}
cmd->rule_cnt = cnt;
return 0;
}
static netdev_features_t mtk_fix_features(struct net_device *dev,
netdev_features_t features)
{
if (!(features & NETIF_F_LRO)) {
struct mtk_mac *mac = netdev_priv(dev);
int ip_cnt = mtk_hwlro_get_ip_cnt(mac);
if (ip_cnt) {
netdev_info(dev, "RX flow is programmed, LRO should keep on\n");
features |= NETIF_F_LRO;
}
}
return features;
}
static int mtk_set_features(struct net_device *dev, netdev_features_t features)
{
int err = 0;
if (!((dev->features ^ features) & NETIF_F_LRO))
return 0;
if (!(features & NETIF_F_LRO))
mtk_hwlro_netdev_disable(dev);
return err;
}
/* wait for DMA to finish whatever it is doing before we start using it again */
static int mtk_dma_busy_wait(struct mtk_eth *eth)
{
unsigned long t_start = jiffies;
while (1) {
if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) &
(MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)))
return 0;
if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT))
break;
}
dev_err(eth->dev, "DMA init timeout\n");
return -1;
}
static int mtk_dma_init(struct mtk_eth *eth)
{
int err;
u32 i;
if (mtk_dma_busy_wait(eth))
return -EBUSY;
/* QDMA needs scratch memory for internal reordering of the
* descriptors
*/
err = mtk_init_fq_dma(eth);
if (err)
return err;
err = mtk_tx_alloc(eth);
if (err)
return err;
err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_QDMA);
if (err)
return err;
err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_NORMAL);
if (err)
return err;
if (eth->hwlro) {
for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) {
err = mtk_rx_alloc(eth, i, MTK_RX_FLAGS_HWLRO);
if (err)
return err;
}
err = mtk_hwlro_rx_init(eth);
if (err)
return err;
}
/* Enable random early drop and set drop threshold automatically */
mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN,
MTK_QDMA_FC_THRES);
mtk_w32(eth, 0x0, MTK_QDMA_HRED2);
return 0;
}
static void mtk_dma_free(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++)
if (eth->netdev[i])
netdev_reset_queue(eth->netdev[i]);
if (eth->scratch_ring) {
dma_free_coherent(eth->dev,
MTK_DMA_SIZE * sizeof(struct mtk_tx_dma),
eth->scratch_ring,
eth->phy_scratch_ring);
eth->scratch_ring = NULL;
eth->phy_scratch_ring = 0;
}
mtk_tx_clean(eth);
mtk_rx_clean(eth, &eth->rx_ring[0]);
mtk_rx_clean(eth, &eth->rx_ring_qdma);
if (eth->hwlro) {
mtk_hwlro_rx_uninit(eth);
for (i = 1; i < MTK_MAX_RX_RING_NUM; i++)
mtk_rx_clean(eth, &eth->rx_ring[i]);
}
kfree(eth->scratch_head);
}
static void mtk_tx_timeout(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
eth->netdev[mac->id]->stats.tx_errors++;
netif_err(eth, tx_err, dev,
"transmit timed out\n");
schedule_work(&eth->pending_work);
}
static irqreturn_t mtk_handle_irq_rx(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
if (likely(napi_schedule_prep(&eth->rx_napi))) {
__napi_schedule(&eth->rx_napi);
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT);
}
return IRQ_HANDLED;
}
static irqreturn_t mtk_handle_irq_tx(int irq, void *_eth)
{
struct mtk_eth *eth = _eth;
if (likely(napi_schedule_prep(&eth->tx_napi))) {
__napi_schedule(&eth->tx_napi);
mtk_tx_irq_disable(eth, MTK_TX_DONE_INT);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void mtk_poll_controller(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
mtk_tx_irq_disable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT);
mtk_handle_irq_rx(eth->irq[2], dev);
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT);
}
#endif
static int mtk_start_dma(struct mtk_eth *eth)
{
int err;
err = mtk_dma_init(eth);
if (err) {
mtk_dma_free(eth);
return err;
}
mtk_w32(eth,
MTK_TX_WB_DDONE | MTK_TX_DMA_EN |
MTK_DMA_SIZE_16DWORDS | MTK_NDP_CO_PRO |
MTK_RX_DMA_EN | MTK_RX_2B_OFFSET |
MTK_RX_BT_32DWORDS,
MTK_QDMA_GLO_CFG);
mtk_w32(eth,
MTK_RX_DMA_EN | MTK_RX_2B_OFFSET |
MTK_RX_BT_32DWORDS | MTK_MULTI_EN,
MTK_PDMA_GLO_CFG);
return 0;
}
static int mtk_open(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
/* we run 2 netdevs on the same dma ring so we only bring it up once */
if (!atomic_read(&eth->dma_refcnt)) {
int err = mtk_start_dma(eth);
if (err)
return err;
napi_enable(&eth->tx_napi);
napi_enable(&eth->rx_napi);
mtk_tx_irq_enable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_enable(eth, MTK_RX_DONE_INT);
}
atomic_inc(&eth->dma_refcnt);
phy_start(dev->phydev);
netif_start_queue(dev);
return 0;
}
static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg)
{
u32 val;
int i;
/* stop the dma engine */
spin_lock_bh(&eth->page_lock);
val = mtk_r32(eth, glo_cfg);
mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN),
glo_cfg);
spin_unlock_bh(&eth->page_lock);
/* wait for dma stop */
for (i = 0; i < 10; i++) {
val = mtk_r32(eth, glo_cfg);
if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
}
static int mtk_stop(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
netif_tx_disable(dev);
phy_stop(dev->phydev);
/* only shutdown DMA if this is the last user */
if (!atomic_dec_and_test(&eth->dma_refcnt))
return 0;
mtk_tx_irq_disable(eth, MTK_TX_DONE_INT);
mtk_rx_irq_disable(eth, MTK_RX_DONE_INT);
napi_disable(&eth->tx_napi);
napi_disable(&eth->rx_napi);
mtk_stop_dma(eth, MTK_QDMA_GLO_CFG);
mtk_stop_dma(eth, MTK_PDMA_GLO_CFG);
mtk_dma_free(eth);
return 0;
}
static void ethsys_reset(struct mtk_eth *eth, u32 reset_bits)
{
regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL,
reset_bits,
reset_bits);
usleep_range(1000, 1100);
regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL,
reset_bits,
~reset_bits);
mdelay(10);
}
static void mtk_clk_disable(struct mtk_eth *eth)
{
int clk;
for (clk = MTK_CLK_MAX - 1; clk >= 0; clk--)
clk_disable_unprepare(eth->clks[clk]);
}
static int mtk_clk_enable(struct mtk_eth *eth)
{
int clk, ret;
for (clk = 0; clk < MTK_CLK_MAX ; clk++) {
ret = clk_prepare_enable(eth->clks[clk]);
if (ret)
goto err_disable_clks;
}
return 0;
err_disable_clks:
while (--clk >= 0)
clk_disable_unprepare(eth->clks[clk]);
return ret;
}
static int mtk_hw_init(struct mtk_eth *eth)
{
int i, val, ret;
if (test_and_set_bit(MTK_HW_INIT, &eth->state))
return 0;
pm_runtime_enable(eth->dev);
pm_runtime_get_sync(eth->dev);
ret = mtk_clk_enable(eth);
if (ret)
goto err_disable_pm;
ethsys_reset(eth, RSTCTRL_FE);
ethsys_reset(eth, RSTCTRL_PPE);
regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i])
continue;
val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, eth->mac[i]->id);
val |= SYSCFG0_GE_MODE(eth->mac[i]->ge_mode, eth->mac[i]->id);
}
regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val);
/* Set GE2 driving and slew rate */
regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00);
/* set GE2 TDSEL */
regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5);
/* set GE2 TUNE */
regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0);
/* Set linkdown as the default for each GMAC. Its own MCR would be set
* up with the more appropriate value when mtk_phy_link_adjust call is
* being invoked.
*/
for (i = 0; i < MTK_MAC_COUNT; i++)
mtk_w32(eth, 0, MTK_MAC_MCR(i));
/* Indicates CDM to parse the MTK special tag from CPU
* which also is working out for untag packets.
*/
val = mtk_r32(eth, MTK_CDMQ_IG_CTRL);
mtk_w32(eth, val | MTK_CDMQ_STAG_EN, MTK_CDMQ_IG_CTRL);
/* Enable RX VLan Offloading */
mtk_w32(eth, 1, MTK_CDMP_EG_CTRL);
/* enable interrupt delay for RX */
mtk_w32(eth, MTK_PDMA_DELAY_RX_DELAY, MTK_PDMA_DELAY_INT);
/* disable delay and normal interrupt */
mtk_w32(eth, 0, MTK_QDMA_DELAY_INT);
mtk_tx_irq_disable(eth, ~0);
mtk_rx_irq_disable(eth, ~0);
mtk_w32(eth, RST_GL_PSE, MTK_RST_GL);
mtk_w32(eth, 0, MTK_RST_GL);
/* FE int grouping */
mtk_w32(eth, MTK_TX_DONE_INT, MTK_PDMA_INT_GRP1);
mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_GRP2);
mtk_w32(eth, MTK_TX_DONE_INT, MTK_QDMA_INT_GRP1);
mtk_w32(eth, MTK_RX_DONE_INT, MTK_QDMA_INT_GRP2);
mtk_w32(eth, 0x21021000, MTK_FE_INT_GRP);
for (i = 0; i < 2; i++) {
u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i));
/* setup the forward port to send frame to PDMA */
val &= ~0xffff;
/* Enable RX checksum */
val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN;
/* setup the mac dma */
mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i));
}
return 0;
err_disable_pm:
pm_runtime_put_sync(eth->dev);
pm_runtime_disable(eth->dev);
return ret;
}
static int mtk_hw_deinit(struct mtk_eth *eth)
{
if (!test_and_clear_bit(MTK_HW_INIT, &eth->state))
return 0;
mtk_clk_disable(eth);
pm_runtime_put_sync(eth->dev);
pm_runtime_disable(eth->dev);
return 0;
}
static int __init mtk_init(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
const char *mac_addr;
mac_addr = of_get_mac_address(mac->of_node);
if (mac_addr)
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
dev_err(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
return mtk_phy_connect(dev);
}
static void mtk_uninit(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_eth *eth = mac->hw;
phy_disconnect(dev->phydev);
if (of_phy_is_fixed_link(mac->of_node))
of_phy_deregister_fixed_link(mac->of_node);
mtk_tx_irq_disable(eth, ~0);
mtk_rx_irq_disable(eth, ~0);
}
static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return phy_mii_ioctl(dev->phydev, ifr, cmd);
default:
break;
}
return -EOPNOTSUPP;
}
static void mtk_pending_work(struct work_struct *work)
{
struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work);
int err, i;
unsigned long restart = 0;
rtnl_lock();
dev_dbg(eth->dev, "[%s][%d] reset\n", __func__, __LINE__);
while (test_and_set_bit_lock(MTK_RESETTING, &eth->state))
cpu_relax();
dev_dbg(eth->dev, "[%s][%d] mtk_stop starts\n", __func__, __LINE__);
/* stop all devices to make sure that dma is properly shut down */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
mtk_stop(eth->netdev[i]);
__set_bit(i, &restart);
}
dev_dbg(eth->dev, "[%s][%d] mtk_stop ends\n", __func__, __LINE__);
/* restart underlying hardware such as power, clock, pin mux
* and the connected phy
*/
mtk_hw_deinit(eth);
if (eth->dev->pins)
pinctrl_select_state(eth->dev->pins->p,
eth->dev->pins->default_state);
mtk_hw_init(eth);
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->mac[i] ||
of_phy_is_fixed_link(eth->mac[i]->of_node))
continue;
err = phy_init_hw(eth->netdev[i]->phydev);
if (err)
dev_err(eth->dev, "%s: PHY init failed.\n",
eth->netdev[i]->name);
}
/* restart DMA and enable IRQs */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!test_bit(i, &restart))
continue;
err = mtk_open(eth->netdev[i]);
if (err) {
netif_alert(eth, ifup, eth->netdev[i],
"Driver up/down cycle failed, closing device.\n");
dev_close(eth->netdev[i]);
}
}
dev_dbg(eth->dev, "[%s][%d] reset done\n", __func__, __LINE__);
clear_bit_unlock(MTK_RESETTING, &eth->state);
rtnl_unlock();
}
static int mtk_free_dev(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
free_netdev(eth->netdev[i]);
}
return 0;
}
static int mtk_unreg_dev(struct mtk_eth *eth)
{
int i;
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
unregister_netdev(eth->netdev[i]);
}
return 0;
}
static int mtk_cleanup(struct mtk_eth *eth)
{
mtk_unreg_dev(eth);
mtk_free_dev(eth);
cancel_work_sync(&eth->pending_work);
return 0;
}
static int mtk_get_link_ksettings(struct net_device *ndev,
struct ethtool_link_ksettings *cmd)
{
struct mtk_mac *mac = netdev_priv(ndev);
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
phy_ethtool_ksettings_get(ndev->phydev, cmd);
return 0;
}
static int mtk_set_link_ksettings(struct net_device *ndev,
const struct ethtool_link_ksettings *cmd)
{
struct mtk_mac *mac = netdev_priv(ndev);
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
return phy_ethtool_ksettings_set(ndev->phydev, cmd);
}
static void mtk_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct mtk_mac *mac = netdev_priv(dev);
strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver));
strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info));
info->n_stats = ARRAY_SIZE(mtk_ethtool_stats);
}
static u32 mtk_get_msglevel(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
return mac->hw->msg_enable;
}
static void mtk_set_msglevel(struct net_device *dev, u32 value)
{
struct mtk_mac *mac = netdev_priv(dev);
mac->hw->msg_enable = value;
}
static int mtk_nway_reset(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
return genphy_restart_aneg(dev->phydev);
}
static u32 mtk_get_link(struct net_device *dev)
{
struct mtk_mac *mac = netdev_priv(dev);
int err;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return -EBUSY;
err = genphy_update_link(dev->phydev);
if (err)
return ethtool_op_get_link(dev);
return dev->phydev->link;
}
static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) {
memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN);
data += ETH_GSTRING_LEN;
}
break;
}
}
static int mtk_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(mtk_ethtool_stats);
default:
return -EOPNOTSUPP;
}
}
static void mtk_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct mtk_mac *mac = netdev_priv(dev);
struct mtk_hw_stats *hwstats = mac->hw_stats;
u64 *data_src, *data_dst;
unsigned int start;
int i;
if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state)))
return;
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hwstats->stats_lock)) {
mtk_stats_update_mac(mac);
spin_unlock_bh(&hwstats->stats_lock);
}
}
data_src = (u64 *)hwstats;
do {
data_dst = data;
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++)
*data_dst++ = *(data_src + mtk_ethtool_stats[i].offset);
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
}
static int mtk_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
if (dev->features & NETIF_F_LRO) {
cmd->data = MTK_MAX_RX_RING_NUM;
ret = 0;
}
break;
case ETHTOOL_GRXCLSRLCNT:
if (dev->features & NETIF_F_LRO) {
struct mtk_mac *mac = netdev_priv(dev);
cmd->rule_cnt = mac->hwlro_ip_cnt;
ret = 0;
}
break;
case ETHTOOL_GRXCLSRULE:
if (dev->features & NETIF_F_LRO)
ret = mtk_hwlro_get_fdir_entry(dev, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
if (dev->features & NETIF_F_LRO)
ret = mtk_hwlro_get_fdir_all(dev, cmd,
rule_locs);
break;
default:
break;
}
return ret;
}
static int mtk_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_SRXCLSRLINS:
if (dev->features & NETIF_F_LRO)
ret = mtk_hwlro_add_ipaddr(dev, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
if (dev->features & NETIF_F_LRO)
ret = mtk_hwlro_del_ipaddr(dev, cmd);
break;
default:
break;
}
return ret;
}
static const struct ethtool_ops mtk_ethtool_ops = {
.get_link_ksettings = mtk_get_link_ksettings,
.set_link_ksettings = mtk_set_link_ksettings,
.get_drvinfo = mtk_get_drvinfo,
.get_msglevel = mtk_get_msglevel,
.set_msglevel = mtk_set_msglevel,
.nway_reset = mtk_nway_reset,
.get_link = mtk_get_link,
.get_strings = mtk_get_strings,
.get_sset_count = mtk_get_sset_count,
.get_ethtool_stats = mtk_get_ethtool_stats,
.get_rxnfc = mtk_get_rxnfc,
.set_rxnfc = mtk_set_rxnfc,
};
static const struct net_device_ops mtk_netdev_ops = {
.ndo_init = mtk_init,
.ndo_uninit = mtk_uninit,
.ndo_open = mtk_open,
.ndo_stop = mtk_stop,
.ndo_start_xmit = mtk_start_xmit,
.ndo_set_mac_address = mtk_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = mtk_do_ioctl,
.ndo_tx_timeout = mtk_tx_timeout,
.ndo_get_stats64 = mtk_get_stats64,
.ndo_fix_features = mtk_fix_features,
.ndo_set_features = mtk_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = mtk_poll_controller,
#endif
};
static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np)
{
struct mtk_mac *mac;
const __be32 *_id = of_get_property(np, "reg", NULL);
int id, err;
if (!_id) {
dev_err(eth->dev, "missing mac id\n");
return -EINVAL;
}
id = be32_to_cpup(_id);
if (id >= MTK_MAC_COUNT) {
dev_err(eth->dev, "%d is not a valid mac id\n", id);
return -EINVAL;
}
if (eth->netdev[id]) {
dev_err(eth->dev, "duplicate mac id found: %d\n", id);
return -EINVAL;
}
eth->netdev[id] = alloc_etherdev(sizeof(*mac));
if (!eth->netdev[id]) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
mac = netdev_priv(eth->netdev[id]);
eth->mac[id] = mac;
mac->id = id;
mac->hw = eth;
mac->of_node = np;
memset(mac->hwlro_ip, 0, sizeof(mac->hwlro_ip));
mac->hwlro_ip_cnt = 0;
mac->hw_stats = devm_kzalloc(eth->dev,
sizeof(*mac->hw_stats),
GFP_KERNEL);
if (!mac->hw_stats) {
dev_err(eth->dev, "failed to allocate counter memory\n");
err = -ENOMEM;
goto free_netdev;
}
spin_lock_init(&mac->hw_stats->stats_lock);
u64_stats_init(&mac->hw_stats->syncp);
mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET;
SET_NETDEV_DEV(eth->netdev[id], eth->dev);
eth->netdev[id]->watchdog_timeo = 5 * HZ;
eth->netdev[id]->netdev_ops = &mtk_netdev_ops;
eth->netdev[id]->base_addr = (unsigned long)eth->base;
eth->netdev[id]->hw_features = MTK_HW_FEATURES;
if (eth->hwlro)
eth->netdev[id]->hw_features |= NETIF_F_LRO;
eth->netdev[id]->vlan_features = MTK_HW_FEATURES &
~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
eth->netdev[id]->features |= MTK_HW_FEATURES;
eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops;
eth->netdev[id]->irq = eth->irq[0];
eth->netdev[id]->dev.of_node = np;
return 0;
free_netdev:
free_netdev(eth->netdev[id]);
return err;
}
static int mtk_get_chip_id(struct mtk_eth *eth, u32 *chip_id)
{
u32 val[2], id[4];
regmap_read(eth->ethsys, ETHSYS_CHIPID0_3, &val[0]);
regmap_read(eth->ethsys, ETHSYS_CHIPID4_7, &val[1]);
id[3] = ((val[0] >> 16) & 0xff) - '0';
id[2] = ((val[0] >> 24) & 0xff) - '0';
id[1] = (val[1] & 0xff) - '0';
id[0] = ((val[1] >> 8) & 0xff) - '0';
*chip_id = (id[3] * 1000) + (id[2] * 100) +
(id[1] * 10) + id[0];
if (!(*chip_id)) {
dev_err(eth->dev, "failed to get chip id\n");
return -ENODEV;
}
dev_info(eth->dev, "chip id = %d\n", *chip_id);
return 0;
}
static bool mtk_is_hwlro_supported(struct mtk_eth *eth)
{
switch (eth->chip_id) {
case MT7622_ETH:
case MT7623_ETH:
return true;
}
return false;
}
static int mtk_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct device_node *mac_np;
const struct of_device_id *match;
struct mtk_eth *eth;
int err;
int i;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
match = of_match_device(of_mtk_match, &pdev->dev);
eth->soc = (struct mtk_soc_data *)match->data;
eth->dev = &pdev->dev;
eth->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(eth->base))
return PTR_ERR(eth->base);
spin_lock_init(&eth->page_lock);
spin_lock_init(&eth->tx_irq_lock);
spin_lock_init(&eth->rx_irq_lock);
eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,ethsys");
if (IS_ERR(eth->ethsys)) {
dev_err(&pdev->dev, "no ethsys regmap found\n");
return PTR_ERR(eth->ethsys);
}
if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) {
eth->sgmiisys =
syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,sgmiisys");
if (IS_ERR(eth->sgmiisys)) {
dev_err(&pdev->dev, "no sgmiisys regmap found\n");
return PTR_ERR(eth->sgmiisys);
}
}
eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"mediatek,pctl");
if (IS_ERR(eth->pctl)) {
dev_err(&pdev->dev, "no pctl regmap found\n");
return PTR_ERR(eth->pctl);
}
for (i = 0; i < 3; i++) {
eth->irq[i] = platform_get_irq(pdev, i);
if (eth->irq[i] < 0) {
dev_err(&pdev->dev, "no IRQ%d resource found\n", i);
return -ENXIO;
}
}
for (i = 0; i < ARRAY_SIZE(eth->clks); i++) {
eth->clks[i] = devm_clk_get(eth->dev,
mtk_clks_source_name[i]);
if (IS_ERR(eth->clks[i])) {
if (PTR_ERR(eth->clks[i]) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (eth->soc->required_clks & BIT(i)) {
dev_err(&pdev->dev, "clock %s not found\n",
mtk_clks_source_name[i]);
return -EINVAL;
}
eth->clks[i] = NULL;
}
}
eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE);
INIT_WORK(&eth->pending_work, mtk_pending_work);
err = mtk_hw_init(eth);
if (err)
return err;
err = mtk_get_chip_id(eth, &eth->chip_id);
if (err)
return err;
eth->hwlro = mtk_is_hwlro_supported(eth);
for_each_child_of_node(pdev->dev.of_node, mac_np) {
if (!of_device_is_compatible(mac_np,
"mediatek,eth-mac"))
continue;
if (!of_device_is_available(mac_np))
continue;
err = mtk_add_mac(eth, mac_np);
if (err)
goto err_deinit_hw;
}
err = devm_request_irq(eth->dev, eth->irq[1], mtk_handle_irq_tx, 0,
dev_name(eth->dev), eth);
if (err)
goto err_free_dev;
err = devm_request_irq(eth->dev, eth->irq[2], mtk_handle_irq_rx, 0,
dev_name(eth->dev), eth);
if (err)
goto err_free_dev;
err = mtk_mdio_init(eth);
if (err)
goto err_free_dev;
for (i = 0; i < MTK_MAX_DEVS; i++) {
if (!eth->netdev[i])
continue;
err = register_netdev(eth->netdev[i]);
if (err) {
dev_err(eth->dev, "error bringing up device\n");
goto err_deinit_mdio;
} else
netif_info(eth, probe, eth->netdev[i],
"mediatek frame engine at 0x%08lx, irq %d\n",
eth->netdev[i]->base_addr, eth->irq[0]);
}
/* we run 2 devices on the same DMA ring so we need a dummy device
* for NAPI to work
*/
init_dummy_netdev(&eth->dummy_dev);
netif_napi_add(&eth->dummy_dev, &eth->tx_napi, mtk_napi_tx,
MTK_NAPI_WEIGHT);
netif_napi_add(&eth->dummy_dev, &eth->rx_napi, mtk_napi_rx,
MTK_NAPI_WEIGHT);
platform_set_drvdata(pdev, eth);
return 0;
err_deinit_mdio:
mtk_mdio_cleanup(eth);
err_free_dev:
mtk_free_dev(eth);
err_deinit_hw:
mtk_hw_deinit(eth);
return err;
}
static int mtk_remove(struct platform_device *pdev)
{
struct mtk_eth *eth = platform_get_drvdata(pdev);
int i;
/* stop all devices to make sure that dma is properly shut down */
for (i = 0; i < MTK_MAC_COUNT; i++) {
if (!eth->netdev[i])
continue;
mtk_stop(eth->netdev[i]);
}
mtk_hw_deinit(eth);
netif_napi_del(&eth->tx_napi);
netif_napi_del(&eth->rx_napi);
mtk_cleanup(eth);
mtk_mdio_cleanup(eth);
return 0;
}
static const struct mtk_soc_data mt2701_data = {
.caps = MTK_GMAC1_TRGMII,
.required_clks = MT7623_CLKS_BITMAP
};
static const struct mtk_soc_data mt7622_data = {
.caps = MTK_DUAL_GMAC_SHARED_SGMII | MTK_GMAC1_ESW,
.required_clks = MT7622_CLKS_BITMAP
};
static const struct mtk_soc_data mt7623_data = {
.caps = MTK_GMAC1_TRGMII,
.required_clks = MT7623_CLKS_BITMAP
};
const struct of_device_id of_mtk_match[] = {
{ .compatible = "mediatek,mt2701-eth", .data = &mt2701_data},
{ .compatible = "mediatek,mt7622-eth", .data = &mt7622_data},
{ .compatible = "mediatek,mt7623-eth", .data = &mt7623_data},
{},
};
MODULE_DEVICE_TABLE(of, of_mtk_match);
static struct platform_driver mtk_driver = {
.probe = mtk_probe,
.remove = mtk_remove,
.driver = {
.name = "mtk_soc_eth",
.of_match_table = of_mtk_match,
},
};
module_platform_driver(mtk_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");