| /* | 
 |  *  linux/mm/page_alloc.c | 
 |  * | 
 |  *  Manages the free list, the system allocates free pages here. | 
 |  *  Note that kmalloc() lives in slab.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | 
 |  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | 
 |  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | 
 |  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | 
 |  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton) | 
 |  */ | 
 |  | 
 | #include <linux/stddef.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/kmemcheck.h> | 
 | #include <linux/kasan.h> | 
 | #include <linux/module.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/oom.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/topology.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/memory_hotplug.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/vmstat.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/page-isolation.h> | 
 | #include <linux/page_ext.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <linux/compaction.h> | 
 | #include <trace/events/kmem.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/page_ext.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/sched/rt.h> | 
 | #include <linux/page_owner.h> | 
 |  | 
 | #include <asm/sections.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/div64.h> | 
 | #include "internal.h" | 
 |  | 
 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ | 
 | static DEFINE_MUTEX(pcp_batch_high_lock); | 
 | #define MIN_PERCPU_PAGELIST_FRACTION	(8) | 
 |  | 
 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID | 
 | DEFINE_PER_CPU(int, numa_node); | 
 | EXPORT_PER_CPU_SYMBOL(numa_node); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | /* | 
 |  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | 
 |  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | 
 |  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | 
 |  * defined in <linux/topology.h>. | 
 |  */ | 
 | DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */ | 
 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | 
 | int _node_numa_mem_[MAX_NUMNODES]; | 
 | #endif | 
 |  | 
 | /* | 
 |  * Array of node states. | 
 |  */ | 
 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { | 
 | 	[N_POSSIBLE] = NODE_MASK_ALL, | 
 | 	[N_ONLINE] = { { [0] = 1UL } }, | 
 | #ifndef CONFIG_NUMA | 
 | 	[N_NORMAL_MEMORY] = { { [0] = 1UL } }, | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	[N_HIGH_MEMORY] = { { [0] = 1UL } }, | 
 | #endif | 
 | #ifdef CONFIG_MOVABLE_NODE | 
 | 	[N_MEMORY] = { { [0] = 1UL } }, | 
 | #endif | 
 | 	[N_CPU] = { { [0] = 1UL } }, | 
 | #endif	/* NUMA */ | 
 | }; | 
 | EXPORT_SYMBOL(node_states); | 
 |  | 
 | /* Protect totalram_pages and zone->managed_pages */ | 
 | static DEFINE_SPINLOCK(managed_page_count_lock); | 
 |  | 
 | unsigned long totalram_pages __read_mostly; | 
 | unsigned long totalreserve_pages __read_mostly; | 
 | unsigned long totalcma_pages __read_mostly; | 
 | /* | 
 |  * When calculating the number of globally allowed dirty pages, there | 
 |  * is a certain number of per-zone reserves that should not be | 
 |  * considered dirtyable memory.  This is the sum of those reserves | 
 |  * over all existing zones that contribute dirtyable memory. | 
 |  */ | 
 | unsigned long dirty_balance_reserve __read_mostly; | 
 |  | 
 | int percpu_pagelist_fraction; | 
 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | /* | 
 |  * The following functions are used by the suspend/hibernate code to temporarily | 
 |  * change gfp_allowed_mask in order to avoid using I/O during memory allocations | 
 |  * while devices are suspended.  To avoid races with the suspend/hibernate code, | 
 |  * they should always be called with pm_mutex held (gfp_allowed_mask also should | 
 |  * only be modified with pm_mutex held, unless the suspend/hibernate code is | 
 |  * guaranteed not to run in parallel with that modification). | 
 |  */ | 
 |  | 
 | static gfp_t saved_gfp_mask; | 
 |  | 
 | void pm_restore_gfp_mask(void) | 
 | { | 
 | 	WARN_ON(!mutex_is_locked(&pm_mutex)); | 
 | 	if (saved_gfp_mask) { | 
 | 		gfp_allowed_mask = saved_gfp_mask; | 
 | 		saved_gfp_mask = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void pm_restrict_gfp_mask(void) | 
 | { | 
 | 	WARN_ON(!mutex_is_locked(&pm_mutex)); | 
 | 	WARN_ON(saved_gfp_mask); | 
 | 	saved_gfp_mask = gfp_allowed_mask; | 
 | 	gfp_allowed_mask &= ~GFP_IOFS; | 
 | } | 
 |  | 
 | bool pm_suspended_storage(void) | 
 | { | 
 | 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 | #endif /* CONFIG_PM_SLEEP */ | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
 | int pageblock_order __read_mostly; | 
 | #endif | 
 |  | 
 | static void __free_pages_ok(struct page *page, unsigned int order); | 
 |  | 
 | /* | 
 |  * results with 256, 32 in the lowmem_reserve sysctl: | 
 |  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | 
 |  *	1G machine -> (16M dma, 784M normal, 224M high) | 
 |  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | 
 |  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | 
 |  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA | 
 |  * | 
 |  * TBD: should special case ZONE_DMA32 machines here - in those we normally | 
 |  * don't need any ZONE_NORMAL reservation | 
 |  */ | 
 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	 256, | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	 256, | 
 | #endif | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	 32, | 
 | #endif | 
 | 	 32, | 
 | }; | 
 |  | 
 | EXPORT_SYMBOL(totalram_pages); | 
 |  | 
 | static char * const zone_names[MAX_NR_ZONES] = { | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	 "DMA", | 
 | #endif | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	 "DMA32", | 
 | #endif | 
 | 	 "Normal", | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	 "HighMem", | 
 | #endif | 
 | 	 "Movable", | 
 | }; | 
 |  | 
 | int min_free_kbytes = 1024; | 
 | int user_min_free_kbytes = -1; | 
 |  | 
 | static unsigned long __meminitdata nr_kernel_pages; | 
 | static unsigned long __meminitdata nr_all_pages; | 
 | static unsigned long __meminitdata dma_reserve; | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | 
 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | 
 | static unsigned long __initdata required_kernelcore; | 
 | static unsigned long __initdata required_movablecore; | 
 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | 
 |  | 
 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | 
 | int movable_zone; | 
 | EXPORT_SYMBOL(movable_zone); | 
 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 | int nr_node_ids __read_mostly = MAX_NUMNODES; | 
 | int nr_online_nodes __read_mostly = 1; | 
 | EXPORT_SYMBOL(nr_node_ids); | 
 | EXPORT_SYMBOL(nr_online_nodes); | 
 | #endif | 
 |  | 
 | int page_group_by_mobility_disabled __read_mostly; | 
 |  | 
 | void set_pageblock_migratetype(struct page *page, int migratetype) | 
 | { | 
 | 	if (unlikely(page_group_by_mobility_disabled && | 
 | 		     migratetype < MIGRATE_PCPTYPES)) | 
 | 		migratetype = MIGRATE_UNMOVABLE; | 
 |  | 
 | 	set_pageblock_flags_group(page, (unsigned long)migratetype, | 
 | 					PB_migrate, PB_migrate_end); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned seq; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long sp, start_pfn; | 
 |  | 
 | 	do { | 
 | 		seq = zone_span_seqbegin(zone); | 
 | 		start_pfn = zone->zone_start_pfn; | 
 | 		sp = zone->spanned_pages; | 
 | 		if (!zone_spans_pfn(zone, pfn)) | 
 | 			ret = 1; | 
 | 	} while (zone_span_seqretry(zone, seq)); | 
 |  | 
 | 	if (ret) | 
 | 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", | 
 | 			pfn, zone_to_nid(zone), zone->name, | 
 | 			start_pfn, start_pfn + sp); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int page_is_consistent(struct zone *zone, struct page *page) | 
 | { | 
 | 	if (!pfn_valid_within(page_to_pfn(page))) | 
 | 		return 0; | 
 | 	if (zone != page_zone(page)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 | /* | 
 |  * Temporary debugging check for pages not lying within a given zone. | 
 |  */ | 
 | static int bad_range(struct zone *zone, struct page *page) | 
 | { | 
 | 	if (page_outside_zone_boundaries(zone, page)) | 
 | 		return 1; | 
 | 	if (!page_is_consistent(zone, page)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static inline int bad_range(struct zone *zone, struct page *page) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void bad_page(struct page *page, const char *reason, | 
 | 		unsigned long bad_flags) | 
 | { | 
 | 	static unsigned long resume; | 
 | 	static unsigned long nr_shown; | 
 | 	static unsigned long nr_unshown; | 
 |  | 
 | 	/* Don't complain about poisoned pages */ | 
 | 	if (PageHWPoison(page)) { | 
 | 		page_mapcount_reset(page); /* remove PageBuddy */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Allow a burst of 60 reports, then keep quiet for that minute; | 
 | 	 * or allow a steady drip of one report per second. | 
 | 	 */ | 
 | 	if (nr_shown == 60) { | 
 | 		if (time_before(jiffies, resume)) { | 
 | 			nr_unshown++; | 
 | 			goto out; | 
 | 		} | 
 | 		if (nr_unshown) { | 
 | 			printk(KERN_ALERT | 
 | 			      "BUG: Bad page state: %lu messages suppressed\n", | 
 | 				nr_unshown); | 
 | 			nr_unshown = 0; | 
 | 		} | 
 | 		nr_shown = 0; | 
 | 	} | 
 | 	if (nr_shown++ == 0) | 
 | 		resume = jiffies + 60 * HZ; | 
 |  | 
 | 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n", | 
 | 		current->comm, page_to_pfn(page)); | 
 | 	dump_page_badflags(page, reason, bad_flags); | 
 |  | 
 | 	print_modules(); | 
 | 	dump_stack(); | 
 | out: | 
 | 	/* Leave bad fields for debug, except PageBuddy could make trouble */ | 
 | 	page_mapcount_reset(page); /* remove PageBuddy */ | 
 | 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
 | } | 
 |  | 
 | /* | 
 |  * Higher-order pages are called "compound pages".  They are structured thusly: | 
 |  * | 
 |  * The first PAGE_SIZE page is called the "head page". | 
 |  * | 
 |  * The remaining PAGE_SIZE pages are called "tail pages". | 
 |  * | 
 |  * All pages have PG_compound set.  All tail pages have their ->first_page | 
 |  * pointing at the head page. | 
 |  * | 
 |  * The first tail page's ->lru.next holds the address of the compound page's | 
 |  * put_page() function.  Its ->lru.prev holds the order of allocation. | 
 |  * This usage means that zero-order pages may not be compound. | 
 |  */ | 
 |  | 
 | static void free_compound_page(struct page *page) | 
 | { | 
 | 	__free_pages_ok(page, compound_order(page)); | 
 | } | 
 |  | 
 | void prep_compound_page(struct page *page, unsigned long order) | 
 | { | 
 | 	int i; | 
 | 	int nr_pages = 1 << order; | 
 |  | 
 | 	set_compound_page_dtor(page, free_compound_page); | 
 | 	set_compound_order(page, order); | 
 | 	__SetPageHead(page); | 
 | 	for (i = 1; i < nr_pages; i++) { | 
 | 		struct page *p = page + i; | 
 | 		set_page_count(p, 0); | 
 | 		p->first_page = page; | 
 | 		/* Make sure p->first_page is always valid for PageTail() */ | 
 | 		smp_wmb(); | 
 | 		__SetPageTail(p); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void prep_zero_page(struct page *page, unsigned int order, | 
 | 							gfp_t gfp_flags) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO | 
 | 	 * and __GFP_HIGHMEM from hard or soft interrupt context. | 
 | 	 */ | 
 | 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); | 
 | 	for (i = 0; i < (1 << order); i++) | 
 | 		clear_highpage(page + i); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | unsigned int _debug_guardpage_minorder; | 
 | bool _debug_pagealloc_enabled __read_mostly; | 
 | bool _debug_guardpage_enabled __read_mostly; | 
 |  | 
 | static int __init early_debug_pagealloc(char *buf) | 
 | { | 
 | 	if (!buf) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (strcmp(buf, "on") == 0) | 
 | 		_debug_pagealloc_enabled = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("debug_pagealloc", early_debug_pagealloc); | 
 |  | 
 | static bool need_debug_guardpage(void) | 
 | { | 
 | 	/* If we don't use debug_pagealloc, we don't need guard page */ | 
 | 	if (!debug_pagealloc_enabled()) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void init_debug_guardpage(void) | 
 | { | 
 | 	if (!debug_pagealloc_enabled()) | 
 | 		return; | 
 |  | 
 | 	_debug_guardpage_enabled = true; | 
 | } | 
 |  | 
 | struct page_ext_operations debug_guardpage_ops = { | 
 | 	.need = need_debug_guardpage, | 
 | 	.init = init_debug_guardpage, | 
 | }; | 
 |  | 
 | static int __init debug_guardpage_minorder_setup(char *buf) | 
 | { | 
 | 	unsigned long res; | 
 |  | 
 | 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) { | 
 | 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	_debug_guardpage_minorder = res; | 
 | 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | 
 | 	return 0; | 
 | } | 
 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | 
 |  | 
 | static inline void set_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) | 
 | { | 
 | 	struct page_ext *page_ext; | 
 |  | 
 | 	if (!debug_guardpage_enabled()) | 
 | 		return; | 
 |  | 
 | 	page_ext = lookup_page_ext(page); | 
 | 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | 
 |  | 
 | 	INIT_LIST_HEAD(&page->lru); | 
 | 	set_page_private(page, order); | 
 | 	/* Guard pages are not available for any usage */ | 
 | 	__mod_zone_freepage_state(zone, -(1 << order), migratetype); | 
 | } | 
 |  | 
 | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) | 
 | { | 
 | 	struct page_ext *page_ext; | 
 |  | 
 | 	if (!debug_guardpage_enabled()) | 
 | 		return; | 
 |  | 
 | 	page_ext = lookup_page_ext(page); | 
 | 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | 
 |  | 
 | 	set_page_private(page, 0); | 
 | 	if (!is_migrate_isolate(migratetype)) | 
 | 		__mod_zone_freepage_state(zone, (1 << order), migratetype); | 
 | } | 
 | #else | 
 | struct page_ext_operations debug_guardpage_ops = { NULL, }; | 
 | static inline void set_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) {} | 
 | static inline void clear_page_guard(struct zone *zone, struct page *page, | 
 | 				unsigned int order, int migratetype) {} | 
 | #endif | 
 |  | 
 | static inline void set_page_order(struct page *page, unsigned int order) | 
 | { | 
 | 	set_page_private(page, order); | 
 | 	__SetPageBuddy(page); | 
 | } | 
 |  | 
 | static inline void rmv_page_order(struct page *page) | 
 | { | 
 | 	__ClearPageBuddy(page); | 
 | 	set_page_private(page, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * This function checks whether a page is free && is the buddy | 
 |  * we can do coalesce a page and its buddy if | 
 |  * (a) the buddy is not in a hole && | 
 |  * (b) the buddy is in the buddy system && | 
 |  * (c) a page and its buddy have the same order && | 
 |  * (d) a page and its buddy are in the same zone. | 
 |  * | 
 |  * For recording whether a page is in the buddy system, we set ->_mapcount | 
 |  * PAGE_BUDDY_MAPCOUNT_VALUE. | 
 |  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is | 
 |  * serialized by zone->lock. | 
 |  * | 
 |  * For recording page's order, we use page_private(page). | 
 |  */ | 
 | static inline int page_is_buddy(struct page *page, struct page *buddy, | 
 | 							unsigned int order) | 
 | { | 
 | 	if (!pfn_valid_within(page_to_pfn(buddy))) | 
 | 		return 0; | 
 |  | 
 | 	if (page_is_guard(buddy) && page_order(buddy) == order) { | 
 | 		if (page_zone_id(page) != page_zone_id(buddy)) | 
 | 			return 0; | 
 |  | 
 | 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (PageBuddy(buddy) && page_order(buddy) == order) { | 
 | 		/* | 
 | 		 * zone check is done late to avoid uselessly | 
 | 		 * calculating zone/node ids for pages that could | 
 | 		 * never merge. | 
 | 		 */ | 
 | 		if (page_zone_id(page) != page_zone_id(buddy)) | 
 | 			return 0; | 
 |  | 
 | 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); | 
 |  | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Freeing function for a buddy system allocator. | 
 |  * | 
 |  * The concept of a buddy system is to maintain direct-mapped table | 
 |  * (containing bit values) for memory blocks of various "orders". | 
 |  * The bottom level table contains the map for the smallest allocatable | 
 |  * units of memory (here, pages), and each level above it describes | 
 |  * pairs of units from the levels below, hence, "buddies". | 
 |  * At a high level, all that happens here is marking the table entry | 
 |  * at the bottom level available, and propagating the changes upward | 
 |  * as necessary, plus some accounting needed to play nicely with other | 
 |  * parts of the VM system. | 
 |  * At each level, we keep a list of pages, which are heads of continuous | 
 |  * free pages of length of (1 << order) and marked with _mapcount | 
 |  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) | 
 |  * field. | 
 |  * So when we are allocating or freeing one, we can derive the state of the | 
 |  * other.  That is, if we allocate a small block, and both were | 
 |  * free, the remainder of the region must be split into blocks. | 
 |  * If a block is freed, and its buddy is also free, then this | 
 |  * triggers coalescing into a block of larger size. | 
 |  * | 
 |  * -- nyc | 
 |  */ | 
 |  | 
 | static inline void __free_one_page(struct page *page, | 
 | 		unsigned long pfn, | 
 | 		struct zone *zone, unsigned int order, | 
 | 		int migratetype) | 
 | { | 
 | 	unsigned long page_idx; | 
 | 	unsigned long combined_idx; | 
 | 	unsigned long uninitialized_var(buddy_idx); | 
 | 	struct page *buddy; | 
 | 	int max_order = MAX_ORDER; | 
 |  | 
 | 	VM_BUG_ON(!zone_is_initialized(zone)); | 
 | 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); | 
 |  | 
 | 	VM_BUG_ON(migratetype == -1); | 
 | 	if (is_migrate_isolate(migratetype)) { | 
 | 		/* | 
 | 		 * We restrict max order of merging to prevent merge | 
 | 		 * between freepages on isolate pageblock and normal | 
 | 		 * pageblock. Without this, pageblock isolation | 
 | 		 * could cause incorrect freepage accounting. | 
 | 		 */ | 
 | 		max_order = min(MAX_ORDER, pageblock_order + 1); | 
 | 	} else { | 
 | 		__mod_zone_freepage_state(zone, 1 << order, migratetype); | 
 | 	} | 
 |  | 
 | 	page_idx = pfn & ((1 << max_order) - 1); | 
 |  | 
 | 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); | 
 | 	VM_BUG_ON_PAGE(bad_range(zone, page), page); | 
 |  | 
 | 	while (order < max_order - 1) { | 
 | 		buddy_idx = __find_buddy_index(page_idx, order); | 
 | 		buddy = page + (buddy_idx - page_idx); | 
 | 		if (!page_is_buddy(page, buddy, order)) | 
 | 			break; | 
 | 		/* | 
 | 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | 
 | 		 * merge with it and move up one order. | 
 | 		 */ | 
 | 		if (page_is_guard(buddy)) { | 
 | 			clear_page_guard(zone, buddy, order, migratetype); | 
 | 		} else { | 
 | 			list_del(&buddy->lru); | 
 | 			zone->free_area[order].nr_free--; | 
 | 			rmv_page_order(buddy); | 
 | 		} | 
 | 		combined_idx = buddy_idx & page_idx; | 
 | 		page = page + (combined_idx - page_idx); | 
 | 		page_idx = combined_idx; | 
 | 		order++; | 
 | 	} | 
 | 	set_page_order(page, order); | 
 |  | 
 | 	/* | 
 | 	 * If this is not the largest possible page, check if the buddy | 
 | 	 * of the next-highest order is free. If it is, it's possible | 
 | 	 * that pages are being freed that will coalesce soon. In case, | 
 | 	 * that is happening, add the free page to the tail of the list | 
 | 	 * so it's less likely to be used soon and more likely to be merged | 
 | 	 * as a higher order page | 
 | 	 */ | 
 | 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { | 
 | 		struct page *higher_page, *higher_buddy; | 
 | 		combined_idx = buddy_idx & page_idx; | 
 | 		higher_page = page + (combined_idx - page_idx); | 
 | 		buddy_idx = __find_buddy_index(combined_idx, order + 1); | 
 | 		higher_buddy = higher_page + (buddy_idx - combined_idx); | 
 | 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) { | 
 | 			list_add_tail(&page->lru, | 
 | 				&zone->free_area[order].free_list[migratetype]); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | 
 | out: | 
 | 	zone->free_area[order].nr_free++; | 
 | } | 
 |  | 
 | static inline int free_pages_check(struct page *page) | 
 | { | 
 | 	const char *bad_reason = NULL; | 
 | 	unsigned long bad_flags = 0; | 
 |  | 
 | 	if (unlikely(page_mapcount(page))) | 
 | 		bad_reason = "nonzero mapcount"; | 
 | 	if (unlikely(page->mapping != NULL)) | 
 | 		bad_reason = "non-NULL mapping"; | 
 | 	if (unlikely(atomic_read(&page->_count) != 0)) | 
 | 		bad_reason = "nonzero _count"; | 
 | 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { | 
 | 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | 
 | 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | 
 | 	} | 
 | #ifdef CONFIG_MEMCG | 
 | 	if (unlikely(page->mem_cgroup)) | 
 | 		bad_reason = "page still charged to cgroup"; | 
 | #endif | 
 | 	if (unlikely(bad_reason)) { | 
 | 		bad_page(page, bad_reason, bad_flags); | 
 | 		return 1; | 
 | 	} | 
 | 	page_cpupid_reset_last(page); | 
 | 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 
 | 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Frees a number of pages from the PCP lists | 
 |  * Assumes all pages on list are in same zone, and of same order. | 
 |  * count is the number of pages to free. | 
 |  * | 
 |  * If the zone was previously in an "all pages pinned" state then look to | 
 |  * see if this freeing clears that state. | 
 |  * | 
 |  * And clear the zone's pages_scanned counter, to hold off the "all pages are | 
 |  * pinned" detection logic. | 
 |  */ | 
 | static void free_pcppages_bulk(struct zone *zone, int count, | 
 | 					struct per_cpu_pages *pcp) | 
 | { | 
 | 	int migratetype = 0; | 
 | 	int batch_free = 0; | 
 | 	int to_free = count; | 
 | 	unsigned long nr_scanned; | 
 |  | 
 | 	spin_lock(&zone->lock); | 
 | 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); | 
 | 	if (nr_scanned) | 
 | 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | 
 |  | 
 | 	while (to_free) { | 
 | 		struct page *page; | 
 | 		struct list_head *list; | 
 |  | 
 | 		/* | 
 | 		 * Remove pages from lists in a round-robin fashion. A | 
 | 		 * batch_free count is maintained that is incremented when an | 
 | 		 * empty list is encountered.  This is so more pages are freed | 
 | 		 * off fuller lists instead of spinning excessively around empty | 
 | 		 * lists | 
 | 		 */ | 
 | 		do { | 
 | 			batch_free++; | 
 | 			if (++migratetype == MIGRATE_PCPTYPES) | 
 | 				migratetype = 0; | 
 | 			list = &pcp->lists[migratetype]; | 
 | 		} while (list_empty(list)); | 
 |  | 
 | 		/* This is the only non-empty list. Free them all. */ | 
 | 		if (batch_free == MIGRATE_PCPTYPES) | 
 | 			batch_free = to_free; | 
 |  | 
 | 		do { | 
 | 			int mt;	/* migratetype of the to-be-freed page */ | 
 |  | 
 | 			page = list_entry(list->prev, struct page, lru); | 
 | 			/* must delete as __free_one_page list manipulates */ | 
 | 			list_del(&page->lru); | 
 | 			mt = get_freepage_migratetype(page); | 
 | 			if (unlikely(has_isolate_pageblock(zone))) | 
 | 				mt = get_pageblock_migratetype(page); | 
 |  | 
 | 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ | 
 | 			__free_one_page(page, page_to_pfn(page), zone, 0, mt); | 
 | 			trace_mm_page_pcpu_drain(page, 0, mt); | 
 | 		} while (--to_free && --batch_free && !list_empty(list)); | 
 | 	} | 
 | 	spin_unlock(&zone->lock); | 
 | } | 
 |  | 
 | static void free_one_page(struct zone *zone, | 
 | 				struct page *page, unsigned long pfn, | 
 | 				unsigned int order, | 
 | 				int migratetype) | 
 | { | 
 | 	unsigned long nr_scanned; | 
 | 	spin_lock(&zone->lock); | 
 | 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); | 
 | 	if (nr_scanned) | 
 | 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | 
 |  | 
 | 	if (unlikely(has_isolate_pageblock(zone) || | 
 | 		is_migrate_isolate(migratetype))) { | 
 | 		migratetype = get_pfnblock_migratetype(page, pfn); | 
 | 	} | 
 | 	__free_one_page(page, pfn, zone, order, migratetype); | 
 | 	spin_unlock(&zone->lock); | 
 | } | 
 |  | 
 | static int free_tail_pages_check(struct page *head_page, struct page *page) | 
 | { | 
 | 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) | 
 | 		return 0; | 
 | 	if (unlikely(!PageTail(page))) { | 
 | 		bad_page(page, "PageTail not set", 0); | 
 | 		return 1; | 
 | 	} | 
 | 	if (unlikely(page->first_page != head_page)) { | 
 | 		bad_page(page, "first_page not consistent", 0); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool free_pages_prepare(struct page *page, unsigned int order) | 
 | { | 
 | 	bool compound = PageCompound(page); | 
 | 	int i, bad = 0; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); | 
 |  | 
 | 	trace_mm_page_free(page, order); | 
 | 	kmemcheck_free_shadow(page, order); | 
 | 	kasan_free_pages(page, order); | 
 |  | 
 | 	if (PageAnon(page)) | 
 | 		page->mapping = NULL; | 
 | 	bad += free_pages_check(page); | 
 | 	for (i = 1; i < (1 << order); i++) { | 
 | 		if (compound) | 
 | 			bad += free_tail_pages_check(page, page + i); | 
 | 		bad += free_pages_check(page + i); | 
 | 	} | 
 | 	if (bad) | 
 | 		return false; | 
 |  | 
 | 	reset_page_owner(page, order); | 
 |  | 
 | 	if (!PageHighMem(page)) { | 
 | 		debug_check_no_locks_freed(page_address(page), | 
 | 					   PAGE_SIZE << order); | 
 | 		debug_check_no_obj_freed(page_address(page), | 
 | 					   PAGE_SIZE << order); | 
 | 	} | 
 | 	arch_free_page(page, order); | 
 | 	kernel_map_pages(page, 1 << order, 0); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void __free_pages_ok(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int migratetype; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 |  | 
 | 	if (!free_pages_prepare(page, order)) | 
 | 		return; | 
 |  | 
 | 	migratetype = get_pfnblock_migratetype(page, pfn); | 
 | 	local_irq_save(flags); | 
 | 	__count_vm_events(PGFREE, 1 << order); | 
 | 	set_freepage_migratetype(page, migratetype); | 
 | 	free_one_page(page_zone(page), page, pfn, order, migratetype); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | void __init __free_pages_bootmem(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned int nr_pages = 1 << order; | 
 | 	struct page *p = page; | 
 | 	unsigned int loop; | 
 |  | 
 | 	prefetchw(p); | 
 | 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | 
 | 		prefetchw(p + 1); | 
 | 		__ClearPageReserved(p); | 
 | 		set_page_count(p, 0); | 
 | 	} | 
 | 	__ClearPageReserved(p); | 
 | 	set_page_count(p, 0); | 
 |  | 
 | 	page_zone(page)->managed_pages += nr_pages; | 
 | 	set_page_refcounted(page); | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ | 
 | void __init init_cma_reserved_pageblock(struct page *page) | 
 | { | 
 | 	unsigned i = pageblock_nr_pages; | 
 | 	struct page *p = page; | 
 |  | 
 | 	do { | 
 | 		__ClearPageReserved(p); | 
 | 		set_page_count(p, 0); | 
 | 	} while (++p, --i); | 
 |  | 
 | 	set_pageblock_migratetype(page, MIGRATE_CMA); | 
 |  | 
 | 	if (pageblock_order >= MAX_ORDER) { | 
 | 		i = pageblock_nr_pages; | 
 | 		p = page; | 
 | 		do { | 
 | 			set_page_refcounted(p); | 
 | 			__free_pages(p, MAX_ORDER - 1); | 
 | 			p += MAX_ORDER_NR_PAGES; | 
 | 		} while (i -= MAX_ORDER_NR_PAGES); | 
 | 	} else { | 
 | 		set_page_refcounted(page); | 
 | 		__free_pages(page, pageblock_order); | 
 | 	} | 
 |  | 
 | 	adjust_managed_page_count(page, pageblock_nr_pages); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * The order of subdivision here is critical for the IO subsystem. | 
 |  * Please do not alter this order without good reasons and regression | 
 |  * testing. Specifically, as large blocks of memory are subdivided, | 
 |  * the order in which smaller blocks are delivered depends on the order | 
 |  * they're subdivided in this function. This is the primary factor | 
 |  * influencing the order in which pages are delivered to the IO | 
 |  * subsystem according to empirical testing, and this is also justified | 
 |  * by considering the behavior of a buddy system containing a single | 
 |  * large block of memory acted on by a series of small allocations. | 
 |  * This behavior is a critical factor in sglist merging's success. | 
 |  * | 
 |  * -- nyc | 
 |  */ | 
 | static inline void expand(struct zone *zone, struct page *page, | 
 | 	int low, int high, struct free_area *area, | 
 | 	int migratetype) | 
 | { | 
 | 	unsigned long size = 1 << high; | 
 |  | 
 | 	while (high > low) { | 
 | 		area--; | 
 | 		high--; | 
 | 		size >>= 1; | 
 | 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && | 
 | 			debug_guardpage_enabled() && | 
 | 			high < debug_guardpage_minorder()) { | 
 | 			/* | 
 | 			 * Mark as guard pages (or page), that will allow to | 
 | 			 * merge back to allocator when buddy will be freed. | 
 | 			 * Corresponding page table entries will not be touched, | 
 | 			 * pages will stay not present in virtual address space | 
 | 			 */ | 
 | 			set_page_guard(zone, &page[size], high, migratetype); | 
 | 			continue; | 
 | 		} | 
 | 		list_add(&page[size].lru, &area->free_list[migratetype]); | 
 | 		area->nr_free++; | 
 | 		set_page_order(&page[size], high); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This page is about to be returned from the page allocator | 
 |  */ | 
 | static inline int check_new_page(struct page *page) | 
 | { | 
 | 	const char *bad_reason = NULL; | 
 | 	unsigned long bad_flags = 0; | 
 |  | 
 | 	if (unlikely(page_mapcount(page))) | 
 | 		bad_reason = "nonzero mapcount"; | 
 | 	if (unlikely(page->mapping != NULL)) | 
 | 		bad_reason = "non-NULL mapping"; | 
 | 	if (unlikely(atomic_read(&page->_count) != 0)) | 
 | 		bad_reason = "nonzero _count"; | 
 | 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { | 
 | 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | 
 | 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | 
 | 	} | 
 | #ifdef CONFIG_MEMCG | 
 | 	if (unlikely(page->mem_cgroup)) | 
 | 		bad_reason = "page still charged to cgroup"; | 
 | #endif | 
 | 	if (unlikely(bad_reason)) { | 
 | 		bad_page(page, bad_reason, bad_flags); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, | 
 | 								int alloc_flags) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < (1 << order); i++) { | 
 | 		struct page *p = page + i; | 
 | 		if (unlikely(check_new_page(p))) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	set_page_private(page, 0); | 
 | 	set_page_refcounted(page); | 
 |  | 
 | 	arch_alloc_page(page, order); | 
 | 	kernel_map_pages(page, 1 << order, 1); | 
 | 	kasan_alloc_pages(page, order); | 
 |  | 
 | 	if (gfp_flags & __GFP_ZERO) | 
 | 		prep_zero_page(page, order, gfp_flags); | 
 |  | 
 | 	if (order && (gfp_flags & __GFP_COMP)) | 
 | 		prep_compound_page(page, order); | 
 |  | 
 | 	set_page_owner(page, order, gfp_flags); | 
 |  | 
 | 	/* | 
 | 	 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to | 
 | 	 * allocate the page. The expectation is that the caller is taking | 
 | 	 * steps that will free more memory. The caller should avoid the page | 
 | 	 * being used for !PFMEMALLOC purposes. | 
 | 	 */ | 
 | 	page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Go through the free lists for the given migratetype and remove | 
 |  * the smallest available page from the freelists | 
 |  */ | 
 | static inline | 
 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | 
 | 						int migratetype) | 
 | { | 
 | 	unsigned int current_order; | 
 | 	struct free_area *area; | 
 | 	struct page *page; | 
 |  | 
 | 	/* Find a page of the appropriate size in the preferred list */ | 
 | 	for (current_order = order; current_order < MAX_ORDER; ++current_order) { | 
 | 		area = &(zone->free_area[current_order]); | 
 | 		if (list_empty(&area->free_list[migratetype])) | 
 | 			continue; | 
 |  | 
 | 		page = list_entry(area->free_list[migratetype].next, | 
 | 							struct page, lru); | 
 | 		list_del(&page->lru); | 
 | 		rmv_page_order(page); | 
 | 		area->nr_free--; | 
 | 		expand(zone, page, order, current_order, area, migratetype); | 
 | 		set_freepage_migratetype(page, migratetype); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This array describes the order lists are fallen back to when | 
 |  * the free lists for the desirable migrate type are depleted | 
 |  */ | 
 | static int fallbacks[MIGRATE_TYPES][4] = { | 
 | 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE }, | 
 | 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE }, | 
 | 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE }, | 
 | #ifdef CONFIG_CMA | 
 | 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */ | 
 | #endif | 
 | 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */ | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */ | 
 | #endif | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | static struct page *__rmqueue_cma_fallback(struct zone *zone, | 
 | 					unsigned int order) | 
 | { | 
 | 	return __rmqueue_smallest(zone, order, MIGRATE_CMA); | 
 | } | 
 | #else | 
 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | 
 | 					unsigned int order) { return NULL; } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Move the free pages in a range to the free lists of the requested type. | 
 |  * Note that start_page and end_pages are not aligned on a pageblock | 
 |  * boundary. If alignment is required, use move_freepages_block() | 
 |  */ | 
 | int move_freepages(struct zone *zone, | 
 | 			  struct page *start_page, struct page *end_page, | 
 | 			  int migratetype) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long order; | 
 | 	int pages_moved = 0; | 
 |  | 
 | #ifndef CONFIG_HOLES_IN_ZONE | 
 | 	/* | 
 | 	 * page_zone is not safe to call in this context when | 
 | 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | 
 | 	 * anyway as we check zone boundaries in move_freepages_block(). | 
 | 	 * Remove at a later date when no bug reports exist related to | 
 | 	 * grouping pages by mobility | 
 | 	 */ | 
 | 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); | 
 | #endif | 
 |  | 
 | 	for (page = start_page; page <= end_page;) { | 
 | 		/* Make sure we are not inadvertently changing nodes */ | 
 | 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); | 
 |  | 
 | 		if (!pfn_valid_within(page_to_pfn(page))) { | 
 | 			page++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!PageBuddy(page)) { | 
 | 			page++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		order = page_order(page); | 
 | 		list_move(&page->lru, | 
 | 			  &zone->free_area[order].free_list[migratetype]); | 
 | 		set_freepage_migratetype(page, migratetype); | 
 | 		page += 1 << order; | 
 | 		pages_moved += 1 << order; | 
 | 	} | 
 |  | 
 | 	return pages_moved; | 
 | } | 
 |  | 
 | int move_freepages_block(struct zone *zone, struct page *page, | 
 | 				int migratetype) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	struct page *start_page, *end_page; | 
 |  | 
 | 	start_pfn = page_to_pfn(page); | 
 | 	start_pfn = start_pfn & ~(pageblock_nr_pages-1); | 
 | 	start_page = pfn_to_page(start_pfn); | 
 | 	end_page = start_page + pageblock_nr_pages - 1; | 
 | 	end_pfn = start_pfn + pageblock_nr_pages - 1; | 
 |  | 
 | 	/* Do not cross zone boundaries */ | 
 | 	if (!zone_spans_pfn(zone, start_pfn)) | 
 | 		start_page = page; | 
 | 	if (!zone_spans_pfn(zone, end_pfn)) | 
 | 		return 0; | 
 |  | 
 | 	return move_freepages(zone, start_page, end_page, migratetype); | 
 | } | 
 |  | 
 | static void change_pageblock_range(struct page *pageblock_page, | 
 | 					int start_order, int migratetype) | 
 | { | 
 | 	int nr_pageblocks = 1 << (start_order - pageblock_order); | 
 |  | 
 | 	while (nr_pageblocks--) { | 
 | 		set_pageblock_migratetype(pageblock_page, migratetype); | 
 | 		pageblock_page += pageblock_nr_pages; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * When we are falling back to another migratetype during allocation, try to | 
 |  * steal extra free pages from the same pageblocks to satisfy further | 
 |  * allocations, instead of polluting multiple pageblocks. | 
 |  * | 
 |  * If we are stealing a relatively large buddy page, it is likely there will | 
 |  * be more free pages in the pageblock, so try to steal them all. For | 
 |  * reclaimable and unmovable allocations, we steal regardless of page size, | 
 |  * as fragmentation caused by those allocations polluting movable pageblocks | 
 |  * is worse than movable allocations stealing from unmovable and reclaimable | 
 |  * pageblocks. | 
 |  */ | 
 | static bool can_steal_fallback(unsigned int order, int start_mt) | 
 | { | 
 | 	/* | 
 | 	 * Leaving this order check is intended, although there is | 
 | 	 * relaxed order check in next check. The reason is that | 
 | 	 * we can actually steal whole pageblock if this condition met, | 
 | 	 * but, below check doesn't guarantee it and that is just heuristic | 
 | 	 * so could be changed anytime. | 
 | 	 */ | 
 | 	if (order >= pageblock_order) | 
 | 		return true; | 
 |  | 
 | 	if (order >= pageblock_order / 2 || | 
 | 		start_mt == MIGRATE_RECLAIMABLE || | 
 | 		start_mt == MIGRATE_UNMOVABLE || | 
 | 		page_group_by_mobility_disabled) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * This function implements actual steal behaviour. If order is large enough, | 
 |  * we can steal whole pageblock. If not, we first move freepages in this | 
 |  * pageblock and check whether half of pages are moved or not. If half of | 
 |  * pages are moved, we can change migratetype of pageblock and permanently | 
 |  * use it's pages as requested migratetype in the future. | 
 |  */ | 
 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | 
 | 							  int start_type) | 
 | { | 
 | 	int current_order = page_order(page); | 
 | 	int pages; | 
 |  | 
 | 	/* Take ownership for orders >= pageblock_order */ | 
 | 	if (current_order >= pageblock_order) { | 
 | 		change_pageblock_range(page, current_order, start_type); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pages = move_freepages_block(zone, page, start_type); | 
 |  | 
 | 	/* Claim the whole block if over half of it is free */ | 
 | 	if (pages >= (1 << (pageblock_order-1)) || | 
 | 			page_group_by_mobility_disabled) | 
 | 		set_pageblock_migratetype(page, start_type); | 
 | } | 
 |  | 
 | /* | 
 |  * Check whether there is a suitable fallback freepage with requested order. | 
 |  * If only_stealable is true, this function returns fallback_mt only if | 
 |  * we can steal other freepages all together. This would help to reduce | 
 |  * fragmentation due to mixed migratetype pages in one pageblock. | 
 |  */ | 
 | int find_suitable_fallback(struct free_area *area, unsigned int order, | 
 | 			int migratetype, bool only_stealable, bool *can_steal) | 
 | { | 
 | 	int i; | 
 | 	int fallback_mt; | 
 |  | 
 | 	if (area->nr_free == 0) | 
 | 		return -1; | 
 |  | 
 | 	*can_steal = false; | 
 | 	for (i = 0;; i++) { | 
 | 		fallback_mt = fallbacks[migratetype][i]; | 
 | 		if (fallback_mt == MIGRATE_RESERVE) | 
 | 			break; | 
 |  | 
 | 		if (list_empty(&area->free_list[fallback_mt])) | 
 | 			continue; | 
 |  | 
 | 		if (can_steal_fallback(order, migratetype)) | 
 | 			*can_steal = true; | 
 |  | 
 | 		if (!only_stealable) | 
 | 			return fallback_mt; | 
 |  | 
 | 		if (*can_steal) | 
 | 			return fallback_mt; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Remove an element from the buddy allocator from the fallback list */ | 
 | static inline struct page * | 
 | __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) | 
 | { | 
 | 	struct free_area *area; | 
 | 	unsigned int current_order; | 
 | 	struct page *page; | 
 | 	int fallback_mt; | 
 | 	bool can_steal; | 
 |  | 
 | 	/* Find the largest possible block of pages in the other list */ | 
 | 	for (current_order = MAX_ORDER-1; | 
 | 				current_order >= order && current_order <= MAX_ORDER-1; | 
 | 				--current_order) { | 
 | 		area = &(zone->free_area[current_order]); | 
 | 		fallback_mt = find_suitable_fallback(area, current_order, | 
 | 				start_migratetype, false, &can_steal); | 
 | 		if (fallback_mt == -1) | 
 | 			continue; | 
 |  | 
 | 		page = list_entry(area->free_list[fallback_mt].next, | 
 | 						struct page, lru); | 
 | 		if (can_steal) | 
 | 			steal_suitable_fallback(zone, page, start_migratetype); | 
 |  | 
 | 		/* Remove the page from the freelists */ | 
 | 		area->nr_free--; | 
 | 		list_del(&page->lru); | 
 | 		rmv_page_order(page); | 
 |  | 
 | 		expand(zone, page, order, current_order, area, | 
 | 					start_migratetype); | 
 | 		/* | 
 | 		 * The freepage_migratetype may differ from pageblock's | 
 | 		 * migratetype depending on the decisions in | 
 | 		 * try_to_steal_freepages(). This is OK as long as it | 
 | 		 * does not differ for MIGRATE_CMA pageblocks. For CMA | 
 | 		 * we need to make sure unallocated pages flushed from | 
 | 		 * pcp lists are returned to the correct freelist. | 
 | 		 */ | 
 | 		set_freepage_migratetype(page, start_migratetype); | 
 |  | 
 | 		trace_mm_page_alloc_extfrag(page, order, current_order, | 
 | 			start_migratetype, fallback_mt); | 
 |  | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Do the hard work of removing an element from the buddy allocator. | 
 |  * Call me with the zone->lock already held. | 
 |  */ | 
 | static struct page *__rmqueue(struct zone *zone, unsigned int order, | 
 | 						int migratetype) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | retry_reserve: | 
 | 	page = __rmqueue_smallest(zone, order, migratetype); | 
 |  | 
 | 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { | 
 | 		if (migratetype == MIGRATE_MOVABLE) | 
 | 			page = __rmqueue_cma_fallback(zone, order); | 
 |  | 
 | 		if (!page) | 
 | 			page = __rmqueue_fallback(zone, order, migratetype); | 
 |  | 
 | 		/* | 
 | 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto | 
 | 		 * is used because __rmqueue_smallest is an inline function | 
 | 		 * and we want just one call site | 
 | 		 */ | 
 | 		if (!page) { | 
 | 			migratetype = MIGRATE_RESERVE; | 
 | 			goto retry_reserve; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	trace_mm_page_alloc_zone_locked(page, order, migratetype); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Obtain a specified number of elements from the buddy allocator, all under | 
 |  * a single hold of the lock, for efficiency.  Add them to the supplied list. | 
 |  * Returns the number of new pages which were placed at *list. | 
 |  */ | 
 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | 
 | 			unsigned long count, struct list_head *list, | 
 | 			int migratetype, bool cold) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	spin_lock(&zone->lock); | 
 | 	for (i = 0; i < count; ++i) { | 
 | 		struct page *page = __rmqueue(zone, order, migratetype); | 
 | 		if (unlikely(page == NULL)) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Split buddy pages returned by expand() are received here | 
 | 		 * in physical page order. The page is added to the callers and | 
 | 		 * list and the list head then moves forward. From the callers | 
 | 		 * perspective, the linked list is ordered by page number in | 
 | 		 * some conditions. This is useful for IO devices that can | 
 | 		 * merge IO requests if the physical pages are ordered | 
 | 		 * properly. | 
 | 		 */ | 
 | 		if (likely(!cold)) | 
 | 			list_add(&page->lru, list); | 
 | 		else | 
 | 			list_add_tail(&page->lru, list); | 
 | 		list = &page->lru; | 
 | 		if (is_migrate_cma(get_freepage_migratetype(page))) | 
 | 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, | 
 | 					      -(1 << order)); | 
 | 	} | 
 | 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); | 
 | 	spin_unlock(&zone->lock); | 
 | 	return i; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * Called from the vmstat counter updater to drain pagesets of this | 
 |  * currently executing processor on remote nodes after they have | 
 |  * expired. | 
 |  * | 
 |  * Note that this function must be called with the thread pinned to | 
 |  * a single processor. | 
 |  */ | 
 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int to_drain, batch; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	batch = READ_ONCE(pcp->batch); | 
 | 	to_drain = min(pcp->count, batch); | 
 | 	if (to_drain > 0) { | 
 | 		free_pcppages_bulk(zone, to_drain, pcp); | 
 | 		pcp->count -= to_drain; | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Drain pcplists of the indicated processor and zone. | 
 |  * | 
 |  * The processor must either be the current processor and the | 
 |  * thread pinned to the current processor or a processor that | 
 |  * is not online. | 
 |  */ | 
 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct per_cpu_pageset *pset; | 
 | 	struct per_cpu_pages *pcp; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	pset = per_cpu_ptr(zone->pageset, cpu); | 
 |  | 
 | 	pcp = &pset->pcp; | 
 | 	if (pcp->count) { | 
 | 		free_pcppages_bulk(zone, pcp->count, pcp); | 
 | 		pcp->count = 0; | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Drain pcplists of all zones on the indicated processor. | 
 |  * | 
 |  * The processor must either be the current processor and the | 
 |  * thread pinned to the current processor or a processor that | 
 |  * is not online. | 
 |  */ | 
 | static void drain_pages(unsigned int cpu) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		drain_pages_zone(cpu, zone); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Spill all of this CPU's per-cpu pages back into the buddy allocator. | 
 |  * | 
 |  * The CPU has to be pinned. When zone parameter is non-NULL, spill just | 
 |  * the single zone's pages. | 
 |  */ | 
 | void drain_local_pages(struct zone *zone) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	if (zone) | 
 | 		drain_pages_zone(cpu, zone); | 
 | 	else | 
 | 		drain_pages(cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Spill all the per-cpu pages from all CPUs back into the buddy allocator. | 
 |  * | 
 |  * When zone parameter is non-NULL, spill just the single zone's pages. | 
 |  * | 
 |  * Note that this code is protected against sending an IPI to an offline | 
 |  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | 
 |  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | 
 |  * nothing keeps CPUs from showing up after we populated the cpumask and | 
 |  * before the call to on_each_cpu_mask(). | 
 |  */ | 
 | void drain_all_pages(struct zone *zone) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* | 
 | 	 * Allocate in the BSS so we wont require allocation in | 
 | 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | 
 | 	 */ | 
 | 	static cpumask_t cpus_with_pcps; | 
 |  | 
 | 	/* | 
 | 	 * We don't care about racing with CPU hotplug event | 
 | 	 * as offline notification will cause the notified | 
 | 	 * cpu to drain that CPU pcps and on_each_cpu_mask | 
 | 	 * disables preemption as part of its processing | 
 | 	 */ | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct per_cpu_pageset *pcp; | 
 | 		struct zone *z; | 
 | 		bool has_pcps = false; | 
 |  | 
 | 		if (zone) { | 
 | 			pcp = per_cpu_ptr(zone->pageset, cpu); | 
 | 			if (pcp->pcp.count) | 
 | 				has_pcps = true; | 
 | 		} else { | 
 | 			for_each_populated_zone(z) { | 
 | 				pcp = per_cpu_ptr(z->pageset, cpu); | 
 | 				if (pcp->pcp.count) { | 
 | 					has_pcps = true; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (has_pcps) | 
 | 			cpumask_set_cpu(cpu, &cpus_with_pcps); | 
 | 		else | 
 | 			cpumask_clear_cpu(cpu, &cpus_with_pcps); | 
 | 	} | 
 | 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, | 
 | 								zone, 1); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 |  | 
 | void mark_free_pages(struct zone *zone) | 
 | { | 
 | 	unsigned long pfn, max_zone_pfn; | 
 | 	unsigned long flags; | 
 | 	unsigned int order, t; | 
 | 	struct list_head *curr; | 
 |  | 
 | 	if (zone_is_empty(zone)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 |  | 
 | 	max_zone_pfn = zone_end_pfn(zone); | 
 | 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) | 
 | 		if (pfn_valid(pfn)) { | 
 | 			struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 			if (!swsusp_page_is_forbidden(page)) | 
 | 				swsusp_unset_page_free(page); | 
 | 		} | 
 |  | 
 | 	for_each_migratetype_order(order, t) { | 
 | 		list_for_each(curr, &zone->free_area[order].free_list[t]) { | 
 | 			unsigned long i; | 
 |  | 
 | 			pfn = page_to_pfn(list_entry(curr, struct page, lru)); | 
 | 			for (i = 0; i < (1UL << order); i++) | 
 | 				swsusp_set_page_free(pfn_to_page(pfn + i)); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 | #endif /* CONFIG_PM */ | 
 |  | 
 | /* | 
 |  * Free a 0-order page | 
 |  * cold == true ? free a cold page : free a hot page | 
 |  */ | 
 | void free_hot_cold_page(struct page *page, bool cold) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct per_cpu_pages *pcp; | 
 | 	unsigned long flags; | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	int migratetype; | 
 |  | 
 | 	if (!free_pages_prepare(page, 0)) | 
 | 		return; | 
 |  | 
 | 	migratetype = get_pfnblock_migratetype(page, pfn); | 
 | 	set_freepage_migratetype(page, migratetype); | 
 | 	local_irq_save(flags); | 
 | 	__count_vm_event(PGFREE); | 
 |  | 
 | 	/* | 
 | 	 * We only track unmovable, reclaimable and movable on pcp lists. | 
 | 	 * Free ISOLATE pages back to the allocator because they are being | 
 | 	 * offlined but treat RESERVE as movable pages so we can get those | 
 | 	 * areas back if necessary. Otherwise, we may have to free | 
 | 	 * excessively into the page allocator | 
 | 	 */ | 
 | 	if (migratetype >= MIGRATE_PCPTYPES) { | 
 | 		if (unlikely(is_migrate_isolate(migratetype))) { | 
 | 			free_one_page(zone, page, pfn, 0, migratetype); | 
 | 			goto out; | 
 | 		} | 
 | 		migratetype = MIGRATE_MOVABLE; | 
 | 	} | 
 |  | 
 | 	pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
 | 	if (!cold) | 
 | 		list_add(&page->lru, &pcp->lists[migratetype]); | 
 | 	else | 
 | 		list_add_tail(&page->lru, &pcp->lists[migratetype]); | 
 | 	pcp->count++; | 
 | 	if (pcp->count >= pcp->high) { | 
 | 		unsigned long batch = READ_ONCE(pcp->batch); | 
 | 		free_pcppages_bulk(zone, batch, pcp); | 
 | 		pcp->count -= batch; | 
 | 	} | 
 |  | 
 | out: | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a list of 0-order pages | 
 |  */ | 
 | void free_hot_cold_page_list(struct list_head *list, bool cold) | 
 | { | 
 | 	struct page *page, *next; | 
 |  | 
 | 	list_for_each_entry_safe(page, next, list, lru) { | 
 | 		trace_mm_page_free_batched(page, cold); | 
 | 		free_hot_cold_page(page, cold); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * split_page takes a non-compound higher-order page, and splits it into | 
 |  * n (1<<order) sub-pages: page[0..n] | 
 |  * Each sub-page must be freed individually. | 
 |  * | 
 |  * Note: this is probably too low level an operation for use in drivers. | 
 |  * Please consult with lkml before using this in your driver. | 
 |  */ | 
 | void split_page(struct page *page, unsigned int order) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	VM_BUG_ON_PAGE(PageCompound(page), page); | 
 | 	VM_BUG_ON_PAGE(!page_count(page), page); | 
 |  | 
 | #ifdef CONFIG_KMEMCHECK | 
 | 	/* | 
 | 	 * Split shadow pages too, because free(page[0]) would | 
 | 	 * otherwise free the whole shadow. | 
 | 	 */ | 
 | 	if (kmemcheck_page_is_tracked(page)) | 
 | 		split_page(virt_to_page(page[0].shadow), order); | 
 | #endif | 
 |  | 
 | 	set_page_owner(page, 0, 0); | 
 | 	for (i = 1; i < (1 << order); i++) { | 
 | 		set_page_refcounted(page + i); | 
 | 		set_page_owner(page + i, 0, 0); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(split_page); | 
 |  | 
 | int __isolate_free_page(struct page *page, unsigned int order) | 
 | { | 
 | 	unsigned long watermark; | 
 | 	struct zone *zone; | 
 | 	int mt; | 
 |  | 
 | 	BUG_ON(!PageBuddy(page)); | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	mt = get_pageblock_migratetype(page); | 
 |  | 
 | 	if (!is_migrate_isolate(mt)) { | 
 | 		/* Obey watermarks as if the page was being allocated */ | 
 | 		watermark = low_wmark_pages(zone) + (1 << order); | 
 | 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | 
 | 			return 0; | 
 |  | 
 | 		__mod_zone_freepage_state(zone, -(1UL << order), mt); | 
 | 	} | 
 |  | 
 | 	/* Remove page from free list */ | 
 | 	list_del(&page->lru); | 
 | 	zone->free_area[order].nr_free--; | 
 | 	rmv_page_order(page); | 
 |  | 
 | 	/* Set the pageblock if the isolated page is at least a pageblock */ | 
 | 	if (order >= pageblock_order - 1) { | 
 | 		struct page *endpage = page + (1 << order) - 1; | 
 | 		for (; page < endpage; page += pageblock_nr_pages) { | 
 | 			int mt = get_pageblock_migratetype(page); | 
 | 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) | 
 | 				set_pageblock_migratetype(page, | 
 | 							  MIGRATE_MOVABLE); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	set_page_owner(page, order, 0); | 
 | 	return 1UL << order; | 
 | } | 
 |  | 
 | /* | 
 |  * Similar to split_page except the page is already free. As this is only | 
 |  * being used for migration, the migratetype of the block also changes. | 
 |  * As this is called with interrupts disabled, the caller is responsible | 
 |  * for calling arch_alloc_page() and kernel_map_page() after interrupts | 
 |  * are enabled. | 
 |  * | 
 |  * Note: this is probably too low level an operation for use in drivers. | 
 |  * Please consult with lkml before using this in your driver. | 
 |  */ | 
 | int split_free_page(struct page *page) | 
 | { | 
 | 	unsigned int order; | 
 | 	int nr_pages; | 
 |  | 
 | 	order = page_order(page); | 
 |  | 
 | 	nr_pages = __isolate_free_page(page, order); | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	/* Split into individual pages */ | 
 | 	set_page_refcounted(page); | 
 | 	split_page(page, order); | 
 | 	return nr_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a page from the given zone. Use pcplists for order-0 allocations. | 
 |  */ | 
 | static inline | 
 | struct page *buffered_rmqueue(struct zone *preferred_zone, | 
 | 			struct zone *zone, unsigned int order, | 
 | 			gfp_t gfp_flags, int migratetype) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct page *page; | 
 | 	bool cold = ((gfp_flags & __GFP_COLD) != 0); | 
 |  | 
 | 	if (likely(order == 0)) { | 
 | 		struct per_cpu_pages *pcp; | 
 | 		struct list_head *list; | 
 |  | 
 | 		local_irq_save(flags); | 
 | 		pcp = &this_cpu_ptr(zone->pageset)->pcp; | 
 | 		list = &pcp->lists[migratetype]; | 
 | 		if (list_empty(list)) { | 
 | 			pcp->count += rmqueue_bulk(zone, 0, | 
 | 					pcp->batch, list, | 
 | 					migratetype, cold); | 
 | 			if (unlikely(list_empty(list))) | 
 | 				goto failed; | 
 | 		} | 
 |  | 
 | 		if (cold) | 
 | 			page = list_entry(list->prev, struct page, lru); | 
 | 		else | 
 | 			page = list_entry(list->next, struct page, lru); | 
 |  | 
 | 		list_del(&page->lru); | 
 | 		pcp->count--; | 
 | 	} else { | 
 | 		if (unlikely(gfp_flags & __GFP_NOFAIL)) { | 
 | 			/* | 
 | 			 * __GFP_NOFAIL is not to be used in new code. | 
 | 			 * | 
 | 			 * All __GFP_NOFAIL callers should be fixed so that they | 
 | 			 * properly detect and handle allocation failures. | 
 | 			 * | 
 | 			 * We most definitely don't want callers attempting to | 
 | 			 * allocate greater than order-1 page units with | 
 | 			 * __GFP_NOFAIL. | 
 | 			 */ | 
 | 			WARN_ON_ONCE(order > 1); | 
 | 		} | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		page = __rmqueue(zone, order, migratetype); | 
 | 		spin_unlock(&zone->lock); | 
 | 		if (!page) | 
 | 			goto failed; | 
 | 		__mod_zone_freepage_state(zone, -(1 << order), | 
 | 					  get_freepage_migratetype(page)); | 
 | 	} | 
 |  | 
 | 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); | 
 | 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && | 
 | 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) | 
 | 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags); | 
 |  | 
 | 	__count_zone_vm_events(PGALLOC, zone, 1 << order); | 
 | 	zone_statistics(preferred_zone, zone, gfp_flags); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	VM_BUG_ON_PAGE(bad_range(zone, page), page); | 
 | 	return page; | 
 |  | 
 | failed: | 
 | 	local_irq_restore(flags); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIL_PAGE_ALLOC | 
 |  | 
 | static struct { | 
 | 	struct fault_attr attr; | 
 |  | 
 | 	u32 ignore_gfp_highmem; | 
 | 	u32 ignore_gfp_wait; | 
 | 	u32 min_order; | 
 | } fail_page_alloc = { | 
 | 	.attr = FAULT_ATTR_INITIALIZER, | 
 | 	.ignore_gfp_wait = 1, | 
 | 	.ignore_gfp_highmem = 1, | 
 | 	.min_order = 1, | 
 | }; | 
 |  | 
 | static int __init setup_fail_page_alloc(char *str) | 
 | { | 
 | 	return setup_fault_attr(&fail_page_alloc.attr, str); | 
 | } | 
 | __setup("fail_page_alloc=", setup_fail_page_alloc); | 
 |  | 
 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	if (order < fail_page_alloc.min_order) | 
 | 		return false; | 
 | 	if (gfp_mask & __GFP_NOFAIL) | 
 | 		return false; | 
 | 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) | 
 | 		return false; | 
 | 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) | 
 | 		return false; | 
 |  | 
 | 	return should_fail(&fail_page_alloc.attr, 1 << order); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | 
 |  | 
 | static int __init fail_page_alloc_debugfs(void) | 
 | { | 
 | 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; | 
 | 	struct dentry *dir; | 
 |  | 
 | 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL, | 
 | 					&fail_page_alloc.attr); | 
 | 	if (IS_ERR(dir)) | 
 | 		return PTR_ERR(dir); | 
 |  | 
 | 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, | 
 | 				&fail_page_alloc.ignore_gfp_wait)) | 
 | 		goto fail; | 
 | 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | 
 | 				&fail_page_alloc.ignore_gfp_highmem)) | 
 | 		goto fail; | 
 | 	if (!debugfs_create_u32("min-order", mode, dir, | 
 | 				&fail_page_alloc.min_order)) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	debugfs_remove_recursive(dir); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | late_initcall(fail_page_alloc_debugfs); | 
 |  | 
 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | 
 |  | 
 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | 
 |  | 
 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | 
 |  | 
 | /* | 
 |  * Return true if free pages are above 'mark'. This takes into account the order | 
 |  * of the allocation. | 
 |  */ | 
 | static bool __zone_watermark_ok(struct zone *z, unsigned int order, | 
 | 			unsigned long mark, int classzone_idx, int alloc_flags, | 
 | 			long free_pages) | 
 | { | 
 | 	/* free_pages may go negative - that's OK */ | 
 | 	long min = mark; | 
 | 	int o; | 
 | 	long free_cma = 0; | 
 |  | 
 | 	free_pages -= (1 << order) - 1; | 
 | 	if (alloc_flags & ALLOC_HIGH) | 
 | 		min -= min / 2; | 
 | 	if (alloc_flags & ALLOC_HARDER) | 
 | 		min -= min / 4; | 
 | #ifdef CONFIG_CMA | 
 | 	/* If allocation can't use CMA areas don't use free CMA pages */ | 
 | 	if (!(alloc_flags & ALLOC_CMA)) | 
 | 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); | 
 | #endif | 
 |  | 
 | 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) | 
 | 		return false; | 
 | 	for (o = 0; o < order; o++) { | 
 | 		/* At the next order, this order's pages become unavailable */ | 
 | 		free_pages -= z->free_area[o].nr_free << o; | 
 |  | 
 | 		/* Require fewer higher order pages to be free */ | 
 | 		min >>= 1; | 
 |  | 
 | 		if (free_pages <= min) | 
 | 			return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, | 
 | 		      int classzone_idx, int alloc_flags) | 
 | { | 
 | 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | 
 | 					zone_page_state(z, NR_FREE_PAGES)); | 
 | } | 
 |  | 
 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, | 
 | 			unsigned long mark, int classzone_idx, int alloc_flags) | 
 | { | 
 | 	long free_pages = zone_page_state(z, NR_FREE_PAGES); | 
 |  | 
 | 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | 
 | 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | 
 |  | 
 | 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | 
 | 								free_pages); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to | 
 |  * skip over zones that are not allowed by the cpuset, or that have | 
 |  * been recently (in last second) found to be nearly full.  See further | 
 |  * comments in mmzone.h.  Reduces cache footprint of zonelist scans | 
 |  * that have to skip over a lot of full or unallowed zones. | 
 |  * | 
 |  * If the zonelist cache is present in the passed zonelist, then | 
 |  * returns a pointer to the allowed node mask (either the current | 
 |  * tasks mems_allowed, or node_states[N_MEMORY].) | 
 |  * | 
 |  * If the zonelist cache is not available for this zonelist, does | 
 |  * nothing and returns NULL. | 
 |  * | 
 |  * If the fullzones BITMAP in the zonelist cache is stale (more than | 
 |  * a second since last zap'd) then we zap it out (clear its bits.) | 
 |  * | 
 |  * We hold off even calling zlc_setup, until after we've checked the | 
 |  * first zone in the zonelist, on the theory that most allocations will | 
 |  * be satisfied from that first zone, so best to examine that zone as | 
 |  * quickly as we can. | 
 |  */ | 
 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | 
 | { | 
 | 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
 | 	nodemask_t *allowednodes;	/* zonelist_cache approximation */ | 
 |  | 
 | 	zlc = zonelist->zlcache_ptr; | 
 | 	if (!zlc) | 
 | 		return NULL; | 
 |  | 
 | 	if (time_after(jiffies, zlc->last_full_zap + HZ)) { | 
 | 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 
 | 		zlc->last_full_zap = jiffies; | 
 | 	} | 
 |  | 
 | 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? | 
 | 					&cpuset_current_mems_allowed : | 
 | 					&node_states[N_MEMORY]; | 
 | 	return allowednodes; | 
 | } | 
 |  | 
 | /* | 
 |  * Given 'z' scanning a zonelist, run a couple of quick checks to see | 
 |  * if it is worth looking at further for free memory: | 
 |  *  1) Check that the zone isn't thought to be full (doesn't have its | 
 |  *     bit set in the zonelist_cache fullzones BITMAP). | 
 |  *  2) Check that the zones node (obtained from the zonelist_cache | 
 |  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask. | 
 |  * Return true (non-zero) if zone is worth looking at further, or | 
 |  * else return false (zero) if it is not. | 
 |  * | 
 |  * This check -ignores- the distinction between various watermarks, | 
 |  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is | 
 |  * found to be full for any variation of these watermarks, it will | 
 |  * be considered full for up to one second by all requests, unless | 
 |  * we are so low on memory on all allowed nodes that we are forced | 
 |  * into the second scan of the zonelist. | 
 |  * | 
 |  * In the second scan we ignore this zonelist cache and exactly | 
 |  * apply the watermarks to all zones, even it is slower to do so. | 
 |  * We are low on memory in the second scan, and should leave no stone | 
 |  * unturned looking for a free page. | 
 |  */ | 
 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, | 
 | 						nodemask_t *allowednodes) | 
 | { | 
 | 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
 | 	int i;				/* index of *z in zonelist zones */ | 
 | 	int n;				/* node that zone *z is on */ | 
 |  | 
 | 	zlc = zonelist->zlcache_ptr; | 
 | 	if (!zlc) | 
 | 		return 1; | 
 |  | 
 | 	i = z - zonelist->_zonerefs; | 
 | 	n = zlc->z_to_n[i]; | 
 |  | 
 | 	/* This zone is worth trying if it is allowed but not full */ | 
 | 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); | 
 | } | 
 |  | 
 | /* | 
 |  * Given 'z' scanning a zonelist, set the corresponding bit in | 
 |  * zlc->fullzones, so that subsequent attempts to allocate a page | 
 |  * from that zone don't waste time re-examining it. | 
 |  */ | 
 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) | 
 | { | 
 | 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
 | 	int i;				/* index of *z in zonelist zones */ | 
 |  | 
 | 	zlc = zonelist->zlcache_ptr; | 
 | 	if (!zlc) | 
 | 		return; | 
 |  | 
 | 	i = z - zonelist->_zonerefs; | 
 |  | 
 | 	set_bit(i, zlc->fullzones); | 
 | } | 
 |  | 
 | /* | 
 |  * clear all zones full, called after direct reclaim makes progress so that | 
 |  * a zone that was recently full is not skipped over for up to a second | 
 |  */ | 
 | static void zlc_clear_zones_full(struct zonelist *zonelist) | 
 | { | 
 | 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */ | 
 |  | 
 | 	zlc = zonelist->zlcache_ptr; | 
 | 	if (!zlc) | 
 | 		return; | 
 |  | 
 | 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 
 | } | 
 |  | 
 | static bool zone_local(struct zone *local_zone, struct zone *zone) | 
 | { | 
 | 	return local_zone->node == zone->node; | 
 | } | 
 |  | 
 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
 | { | 
 | 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < | 
 | 				RECLAIM_DISTANCE; | 
 | } | 
 |  | 
 | #else	/* CONFIG_NUMA */ | 
 |  | 
 | static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, | 
 | 				nodemask_t *allowednodes) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) | 
 | { | 
 | } | 
 |  | 
 | static void zlc_clear_zones_full(struct zonelist *zonelist) | 
 | { | 
 | } | 
 |  | 
 | static bool zone_local(struct zone *local_zone, struct zone *zone) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | static void reset_alloc_batches(struct zone *preferred_zone) | 
 | { | 
 | 	struct zone *zone = preferred_zone->zone_pgdat->node_zones; | 
 |  | 
 | 	do { | 
 | 		mod_zone_page_state(zone, NR_ALLOC_BATCH, | 
 | 			high_wmark_pages(zone) - low_wmark_pages(zone) - | 
 | 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | 
 | 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); | 
 | 	} while (zone++ != preferred_zone); | 
 | } | 
 |  | 
 | /* | 
 |  * get_page_from_freelist goes through the zonelist trying to allocate | 
 |  * a page. | 
 |  */ | 
 | static struct page * | 
 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, | 
 | 						const struct alloc_context *ac) | 
 | { | 
 | 	struct zonelist *zonelist = ac->zonelist; | 
 | 	struct zoneref *z; | 
 | 	struct page *page = NULL; | 
 | 	struct zone *zone; | 
 | 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ | 
 | 	int zlc_active = 0;		/* set if using zonelist_cache */ | 
 | 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */ | 
 | 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && | 
 | 				(gfp_mask & __GFP_WRITE); | 
 | 	int nr_fair_skipped = 0; | 
 | 	bool zonelist_rescan; | 
 |  | 
 | zonelist_scan: | 
 | 	zonelist_rescan = false; | 
 |  | 
 | 	/* | 
 | 	 * Scan zonelist, looking for a zone with enough free. | 
 | 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. | 
 | 	 */ | 
 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | 
 | 								ac->nodemask) { | 
 | 		unsigned long mark; | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active && | 
 | 			!zlc_zone_worth_trying(zonelist, z, allowednodes)) | 
 | 				continue; | 
 | 		if (cpusets_enabled() && | 
 | 			(alloc_flags & ALLOC_CPUSET) && | 
 | 			!cpuset_zone_allowed(zone, gfp_mask)) | 
 | 				continue; | 
 | 		/* | 
 | 		 * Distribute pages in proportion to the individual | 
 | 		 * zone size to ensure fair page aging.  The zone a | 
 | 		 * page was allocated in should have no effect on the | 
 | 		 * time the page has in memory before being reclaimed. | 
 | 		 */ | 
 | 		if (alloc_flags & ALLOC_FAIR) { | 
 | 			if (!zone_local(ac->preferred_zone, zone)) | 
 | 				break; | 
 | 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { | 
 | 				nr_fair_skipped++; | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * When allocating a page cache page for writing, we | 
 | 		 * want to get it from a zone that is within its dirty | 
 | 		 * limit, such that no single zone holds more than its | 
 | 		 * proportional share of globally allowed dirty pages. | 
 | 		 * The dirty limits take into account the zone's | 
 | 		 * lowmem reserves and high watermark so that kswapd | 
 | 		 * should be able to balance it without having to | 
 | 		 * write pages from its LRU list. | 
 | 		 * | 
 | 		 * This may look like it could increase pressure on | 
 | 		 * lower zones by failing allocations in higher zones | 
 | 		 * before they are full.  But the pages that do spill | 
 | 		 * over are limited as the lower zones are protected | 
 | 		 * by this very same mechanism.  It should not become | 
 | 		 * a practical burden to them. | 
 | 		 * | 
 | 		 * XXX: For now, allow allocations to potentially | 
 | 		 * exceed the per-zone dirty limit in the slowpath | 
 | 		 * (ALLOC_WMARK_LOW unset) before going into reclaim, | 
 | 		 * which is important when on a NUMA setup the allowed | 
 | 		 * zones are together not big enough to reach the | 
 | 		 * global limit.  The proper fix for these situations | 
 | 		 * will require awareness of zones in the | 
 | 		 * dirty-throttling and the flusher threads. | 
 | 		 */ | 
 | 		if (consider_zone_dirty && !zone_dirty_ok(zone)) | 
 | 			continue; | 
 |  | 
 | 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; | 
 | 		if (!zone_watermark_ok(zone, order, mark, | 
 | 				       ac->classzone_idx, alloc_flags)) { | 
 | 			int ret; | 
 |  | 
 | 			/* Checked here to keep the fast path fast */ | 
 | 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | 
 | 			if (alloc_flags & ALLOC_NO_WATERMARKS) | 
 | 				goto try_this_zone; | 
 |  | 
 | 			if (IS_ENABLED(CONFIG_NUMA) && | 
 | 					!did_zlc_setup && nr_online_nodes > 1) { | 
 | 				/* | 
 | 				 * we do zlc_setup if there are multiple nodes | 
 | 				 * and before considering the first zone allowed | 
 | 				 * by the cpuset. | 
 | 				 */ | 
 | 				allowednodes = zlc_setup(zonelist, alloc_flags); | 
 | 				zlc_active = 1; | 
 | 				did_zlc_setup = 1; | 
 | 			} | 
 |  | 
 | 			if (zone_reclaim_mode == 0 || | 
 | 			    !zone_allows_reclaim(ac->preferred_zone, zone)) | 
 | 				goto this_zone_full; | 
 |  | 
 | 			/* | 
 | 			 * As we may have just activated ZLC, check if the first | 
 | 			 * eligible zone has failed zone_reclaim recently. | 
 | 			 */ | 
 | 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active && | 
 | 				!zlc_zone_worth_trying(zonelist, z, allowednodes)) | 
 | 				continue; | 
 |  | 
 | 			ret = zone_reclaim(zone, gfp_mask, order); | 
 | 			switch (ret) { | 
 | 			case ZONE_RECLAIM_NOSCAN: | 
 | 				/* did not scan */ | 
 | 				continue; | 
 | 			case ZONE_RECLAIM_FULL: | 
 | 				/* scanned but unreclaimable */ | 
 | 				continue; | 
 | 			default: | 
 | 				/* did we reclaim enough */ | 
 | 				if (zone_watermark_ok(zone, order, mark, | 
 | 						ac->classzone_idx, alloc_flags)) | 
 | 					goto try_this_zone; | 
 |  | 
 | 				/* | 
 | 				 * Failed to reclaim enough to meet watermark. | 
 | 				 * Only mark the zone full if checking the min | 
 | 				 * watermark or if we failed to reclaim just | 
 | 				 * 1<<order pages or else the page allocator | 
 | 				 * fastpath will prematurely mark zones full | 
 | 				 * when the watermark is between the low and | 
 | 				 * min watermarks. | 
 | 				 */ | 
 | 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || | 
 | 				    ret == ZONE_RECLAIM_SOME) | 
 | 					goto this_zone_full; | 
 |  | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | try_this_zone: | 
 | 		page = buffered_rmqueue(ac->preferred_zone, zone, order, | 
 | 						gfp_mask, ac->migratetype); | 
 | 		if (page) { | 
 | 			if (prep_new_page(page, order, gfp_mask, alloc_flags)) | 
 | 				goto try_this_zone; | 
 | 			return page; | 
 | 		} | 
 | this_zone_full: | 
 | 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active) | 
 | 			zlc_mark_zone_full(zonelist, z); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The first pass makes sure allocations are spread fairly within the | 
 | 	 * local node.  However, the local node might have free pages left | 
 | 	 * after the fairness batches are exhausted, and remote zones haven't | 
 | 	 * even been considered yet.  Try once more without fairness, and | 
 | 	 * include remote zones now, before entering the slowpath and waking | 
 | 	 * kswapd: prefer spilling to a remote zone over swapping locally. | 
 | 	 */ | 
 | 	if (alloc_flags & ALLOC_FAIR) { | 
 | 		alloc_flags &= ~ALLOC_FAIR; | 
 | 		if (nr_fair_skipped) { | 
 | 			zonelist_rescan = true; | 
 | 			reset_alloc_batches(ac->preferred_zone); | 
 | 		} | 
 | 		if (nr_online_nodes > 1) | 
 | 			zonelist_rescan = true; | 
 | 	} | 
 |  | 
 | 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { | 
 | 		/* Disable zlc cache for second zonelist scan */ | 
 | 		zlc_active = 0; | 
 | 		zonelist_rescan = true; | 
 | 	} | 
 |  | 
 | 	if (zonelist_rescan) | 
 | 		goto zonelist_scan; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Large machines with many possible nodes should not always dump per-node | 
 |  * meminfo in irq context. | 
 |  */ | 
 | static inline bool should_suppress_show_mem(void) | 
 | { | 
 | 	bool ret = false; | 
 |  | 
 | #if NODES_SHIFT > 8 | 
 | 	ret = in_interrupt(); | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | static DEFINE_RATELIMIT_STATE(nopage_rs, | 
 | 		DEFAULT_RATELIMIT_INTERVAL, | 
 | 		DEFAULT_RATELIMIT_BURST); | 
 |  | 
 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) | 
 | { | 
 | 	unsigned int filter = SHOW_MEM_FILTER_NODES; | 
 |  | 
 | 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || | 
 | 	    debug_guardpage_minorder() > 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This documents exceptions given to allocations in certain | 
 | 	 * contexts that are allowed to allocate outside current's set | 
 | 	 * of allowed nodes. | 
 | 	 */ | 
 | 	if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
 | 		if (test_thread_flag(TIF_MEMDIE) || | 
 | 		    (current->flags & (PF_MEMALLOC | PF_EXITING))) | 
 | 			filter &= ~SHOW_MEM_FILTER_NODES; | 
 | 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) | 
 | 		filter &= ~SHOW_MEM_FILTER_NODES; | 
 |  | 
 | 	if (fmt) { | 
 | 		struct va_format vaf; | 
 | 		va_list args; | 
 |  | 
 | 		va_start(args, fmt); | 
 |  | 
 | 		vaf.fmt = fmt; | 
 | 		vaf.va = &args; | 
 |  | 
 | 		pr_warn("%pV", &vaf); | 
 |  | 
 | 		va_end(args); | 
 | 	} | 
 |  | 
 | 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", | 
 | 		current->comm, order, gfp_mask); | 
 |  | 
 | 	dump_stack(); | 
 | 	if (!should_suppress_show_mem()) | 
 | 		show_mem(filter); | 
 | } | 
 |  | 
 | static inline int | 
 | should_alloc_retry(gfp_t gfp_mask, unsigned int order, | 
 | 				unsigned long did_some_progress, | 
 | 				unsigned long pages_reclaimed) | 
 | { | 
 | 	/* Do not loop if specifically requested */ | 
 | 	if (gfp_mask & __GFP_NORETRY) | 
 | 		return 0; | 
 |  | 
 | 	/* Always retry if specifically requested */ | 
 | 	if (gfp_mask & __GFP_NOFAIL) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim | 
 | 	 * making forward progress without invoking OOM. Suspend also disables | 
 | 	 * storage devices so kswapd will not help. Bail if we are suspending. | 
 | 	 */ | 
 | 	if (!did_some_progress && pm_suspended_storage()) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER | 
 | 	 * means __GFP_NOFAIL, but that may not be true in other | 
 | 	 * implementations. | 
 | 	 */ | 
 | 	if (order <= PAGE_ALLOC_COSTLY_ORDER) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is | 
 | 	 * specified, then we retry until we no longer reclaim any pages | 
 | 	 * (above), or we've reclaimed an order of pages at least as | 
 | 	 * large as the allocation's order. In both cases, if the | 
 | 	 * allocation still fails, we stop retrying. | 
 | 	 */ | 
 | 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | 
 | 	const struct alloc_context *ac, unsigned long *did_some_progress) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	*did_some_progress = 0; | 
 |  | 
 | 	/* | 
 | 	 * Acquire the per-zone oom lock for each zone.  If that | 
 | 	 * fails, somebody else is making progress for us. | 
 | 	 */ | 
 | 	if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) { | 
 | 		*did_some_progress = 1; | 
 | 		schedule_timeout_uninterruptible(1); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Go through the zonelist yet one more time, keep very high watermark | 
 | 	 * here, this is only to catch a parallel oom killing, we must fail if | 
 | 	 * we're still under heavy pressure. | 
 | 	 */ | 
 | 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, | 
 | 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | 
 | 	if (page) | 
 | 		goto out; | 
 |  | 
 | 	if (!(gfp_mask & __GFP_NOFAIL)) { | 
 | 		/* Coredumps can quickly deplete all memory reserves */ | 
 | 		if (current->flags & PF_DUMPCORE) | 
 | 			goto out; | 
 | 		/* The OOM killer will not help higher order allocs */ | 
 | 		if (order > PAGE_ALLOC_COSTLY_ORDER) | 
 | 			goto out; | 
 | 		/* The OOM killer does not needlessly kill tasks for lowmem */ | 
 | 		if (ac->high_zoneidx < ZONE_NORMAL) | 
 | 			goto out; | 
 | 		/* The OOM killer does not compensate for light reclaim */ | 
 | 		if (!(gfp_mask & __GFP_FS)) { | 
 | 			/* | 
 | 			 * XXX: Page reclaim didn't yield anything, | 
 | 			 * and the OOM killer can't be invoked, but | 
 | 			 * keep looping as per should_alloc_retry(). | 
 | 			 */ | 
 | 			*did_some_progress = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		/* The OOM killer may not free memory on a specific node */ | 
 | 		if (gfp_mask & __GFP_THISNODE) | 
 | 			goto out; | 
 | 	} | 
 | 	/* Exhausted what can be done so it's blamo time */ | 
 | 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false) | 
 | 			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) | 
 | 		*did_some_progress = 1; | 
 | out: | 
 | 	oom_zonelist_unlock(ac->zonelist, gfp_mask); | 
 | 	return page; | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPACTION | 
 | /* Try memory compaction for high-order allocations before reclaim */ | 
 | static struct page * | 
 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
 | 		int alloc_flags, const struct alloc_context *ac, | 
 | 		enum migrate_mode mode, int *contended_compaction, | 
 | 		bool *deferred_compaction) | 
 | { | 
 | 	unsigned long compact_result; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!order) | 
 | 		return NULL; | 
 |  | 
 | 	current->flags |= PF_MEMALLOC; | 
 | 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, | 
 | 						mode, contended_compaction); | 
 | 	current->flags &= ~PF_MEMALLOC; | 
 |  | 
 | 	switch (compact_result) { | 
 | 	case COMPACT_DEFERRED: | 
 | 		*deferred_compaction = true; | 
 | 		/* fall-through */ | 
 | 	case COMPACT_SKIPPED: | 
 | 		return NULL; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At least in one zone compaction wasn't deferred or skipped, so let's | 
 | 	 * count a compaction stall | 
 | 	 */ | 
 | 	count_vm_event(COMPACTSTALL); | 
 |  | 
 | 	page = get_page_from_freelist(gfp_mask, order, | 
 | 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | 
 |  | 
 | 	if (page) { | 
 | 		struct zone *zone = page_zone(page); | 
 |  | 
 | 		zone->compact_blockskip_flush = false; | 
 | 		compaction_defer_reset(zone, order, true); | 
 | 		count_vm_event(COMPACTSUCCESS); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It's bad if compaction run occurs and fails. The most likely reason | 
 | 	 * is that pages exist, but not enough to satisfy watermarks. | 
 | 	 */ | 
 | 	count_vm_event(COMPACTFAIL); | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	return NULL; | 
 | } | 
 | #else | 
 | static inline struct page * | 
 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | 
 | 		int alloc_flags, const struct alloc_context *ac, | 
 | 		enum migrate_mode mode, int *contended_compaction, | 
 | 		bool *deferred_compaction) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif /* CONFIG_COMPACTION */ | 
 |  | 
 | /* Perform direct synchronous page reclaim */ | 
 | static int | 
 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, | 
 | 					const struct alloc_context *ac) | 
 | { | 
 | 	struct reclaim_state reclaim_state; | 
 | 	int progress; | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	/* We now go into synchronous reclaim */ | 
 | 	cpuset_memory_pressure_bump(); | 
 | 	current->flags |= PF_MEMALLOC; | 
 | 	lockdep_set_current_reclaim_state(gfp_mask); | 
 | 	reclaim_state.reclaimed_slab = 0; | 
 | 	current->reclaim_state = &reclaim_state; | 
 |  | 
 | 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask, | 
 | 								ac->nodemask); | 
 |  | 
 | 	current->reclaim_state = NULL; | 
 | 	lockdep_clear_current_reclaim_state(); | 
 | 	current->flags &= ~PF_MEMALLOC; | 
 |  | 
 | 	cond_resched(); | 
 |  | 
 | 	return progress; | 
 | } | 
 |  | 
 | /* The really slow allocator path where we enter direct reclaim */ | 
 | static inline struct page * | 
 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | 
 | 		int alloc_flags, const struct alloc_context *ac, | 
 | 		unsigned long *did_some_progress) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	bool drained = false; | 
 |  | 
 | 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac); | 
 | 	if (unlikely(!(*did_some_progress))) | 
 | 		return NULL; | 
 |  | 
 | 	/* After successful reclaim, reconsider all zones for allocation */ | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		zlc_clear_zones_full(ac->zonelist); | 
 |  | 
 | retry: | 
 | 	page = get_page_from_freelist(gfp_mask, order, | 
 | 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | 
 |  | 
 | 	/* | 
 | 	 * If an allocation failed after direct reclaim, it could be because | 
 | 	 * pages are pinned on the per-cpu lists. Drain them and try again | 
 | 	 */ | 
 | 	if (!page && !drained) { | 
 | 		drain_all_pages(NULL); | 
 | 		drained = true; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * This is called in the allocator slow-path if the allocation request is of | 
 |  * sufficient urgency to ignore watermarks and take other desperate measures | 
 |  */ | 
 | static inline struct page * | 
 | __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | 
 | 				const struct alloc_context *ac) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	do { | 
 | 		page = get_page_from_freelist(gfp_mask, order, | 
 | 						ALLOC_NO_WATERMARKS, ac); | 
 |  | 
 | 		if (!page && gfp_mask & __GFP_NOFAIL) | 
 | 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, | 
 | 									HZ/50); | 
 | 	} while (!page && (gfp_mask & __GFP_NOFAIL)); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, | 
 | 						ac->high_zoneidx, ac->nodemask) | 
 | 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); | 
 | } | 
 |  | 
 | static inline int | 
 | gfp_to_alloc_flags(gfp_t gfp_mask) | 
 | { | 
 | 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; | 
 | 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); | 
 |  | 
 | 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ | 
 | 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); | 
 |  | 
 | 	/* | 
 | 	 * The caller may dip into page reserves a bit more if the caller | 
 | 	 * cannot run direct reclaim, or if the caller has realtime scheduling | 
 | 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will | 
 | 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). | 
 | 	 */ | 
 | 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); | 
 |  | 
 | 	if (atomic) { | 
 | 		/* | 
 | 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even | 
 | 		 * if it can't schedule. | 
 | 		 */ | 
 | 		if (!(gfp_mask & __GFP_NOMEMALLOC)) | 
 | 			alloc_flags |= ALLOC_HARDER; | 
 | 		/* | 
 | 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the | 
 | 		 * comment for __cpuset_node_allowed(). | 
 | 		 */ | 
 | 		alloc_flags &= ~ALLOC_CPUSET; | 
 | 	} else if (unlikely(rt_task(current)) && !in_interrupt()) | 
 | 		alloc_flags |= ALLOC_HARDER; | 
 |  | 
 | 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { | 
 | 		if (gfp_mask & __GFP_MEMALLOC) | 
 | 			alloc_flags |= ALLOC_NO_WATERMARKS; | 
 | 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) | 
 | 			alloc_flags |= ALLOC_NO_WATERMARKS; | 
 | 		else if (!in_interrupt() && | 
 | 				((current->flags & PF_MEMALLOC) || | 
 | 				 unlikely(test_thread_flag(TIF_MEMDIE)))) | 
 | 			alloc_flags |= ALLOC_NO_WATERMARKS; | 
 | 	} | 
 | #ifdef CONFIG_CMA | 
 | 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) | 
 | 		alloc_flags |= ALLOC_CMA; | 
 | #endif | 
 | 	return alloc_flags; | 
 | } | 
 |  | 
 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) | 
 | { | 
 | 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); | 
 | } | 
 |  | 
 | static inline struct page * | 
 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | 
 | 						struct alloc_context *ac) | 
 | { | 
 | 	const gfp_t wait = gfp_mask & __GFP_WAIT; | 
 | 	struct page *page = NULL; | 
 | 	int alloc_flags; | 
 | 	unsigned long pages_reclaimed = 0; | 
 | 	unsigned long did_some_progress; | 
 | 	enum migrate_mode migration_mode = MIGRATE_ASYNC; | 
 | 	bool deferred_compaction = false; | 
 | 	int contended_compaction = COMPACT_CONTENDED_NONE; | 
 |  | 
 | 	/* | 
 | 	 * In the slowpath, we sanity check order to avoid ever trying to | 
 | 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may | 
 | 	 * be using allocators in order of preference for an area that is | 
 | 	 * too large. | 
 | 	 */ | 
 | 	if (order >= MAX_ORDER) { | 
 | 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this allocation cannot block and it is for a specific node, then | 
 | 	 * fail early.  There's no need to wakeup kswapd or retry for a | 
 | 	 * speculative node-specific allocation. | 
 | 	 */ | 
 | 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait) | 
 | 		goto nopage; | 
 |  | 
 | retry: | 
 | 	if (!(gfp_mask & __GFP_NO_KSWAPD)) | 
 | 		wake_all_kswapds(order, ac); | 
 |  | 
 | 	/* | 
 | 	 * OK, we're below the kswapd watermark and have kicked background | 
 | 	 * reclaim. Now things get more complex, so set up alloc_flags according | 
 | 	 * to how we want to proceed. | 
 | 	 */ | 
 | 	alloc_flags = gfp_to_alloc_flags(gfp_mask); | 
 |  | 
 | 	/* | 
 | 	 * Find the true preferred zone if the allocation is unconstrained by | 
 | 	 * cpusets. | 
 | 	 */ | 
 | 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { | 
 | 		struct zoneref *preferred_zoneref; | 
 | 		preferred_zoneref = first_zones_zonelist(ac->zonelist, | 
 | 				ac->high_zoneidx, NULL, &ac->preferred_zone); | 
 | 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); | 
 | 	} | 
 |  | 
 | 	/* This is the last chance, in general, before the goto nopage. */ | 
 | 	page = get_page_from_freelist(gfp_mask, order, | 
 | 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Allocate without watermarks if the context allows */ | 
 | 	if (alloc_flags & ALLOC_NO_WATERMARKS) { | 
 | 		/* | 
 | 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds | 
 | 		 * the allocation is high priority and these type of | 
 | 		 * allocations are system rather than user orientated | 
 | 		 */ | 
 | 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); | 
 |  | 
 | 		page = __alloc_pages_high_priority(gfp_mask, order, ac); | 
 |  | 
 | 		if (page) { | 
 | 			goto got_pg; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Atomic allocations - we can't balance anything */ | 
 | 	if (!wait) { | 
 | 		/* | 
 | 		 * All existing users of the deprecated __GFP_NOFAIL are | 
 | 		 * blockable, so warn of any new users that actually allow this | 
 | 		 * type of allocation to fail. | 
 | 		 */ | 
 | 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); | 
 | 		goto nopage; | 
 | 	} | 
 |  | 
 | 	/* Avoid recursion of direct reclaim */ | 
 | 	if (current->flags & PF_MEMALLOC) | 
 | 		goto nopage; | 
 |  | 
 | 	/* Avoid allocations with no watermarks from looping endlessly */ | 
 | 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | 
 | 		goto nopage; | 
 |  | 
 | 	/* | 
 | 	 * Try direct compaction. The first pass is asynchronous. Subsequent | 
 | 	 * attempts after direct reclaim are synchronous | 
 | 	 */ | 
 | 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, | 
 | 					migration_mode, | 
 | 					&contended_compaction, | 
 | 					&deferred_compaction); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Checks for THP-specific high-order allocations */ | 
 | 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { | 
 | 		/* | 
 | 		 * If compaction is deferred for high-order allocations, it is | 
 | 		 * because sync compaction recently failed. If this is the case | 
 | 		 * and the caller requested a THP allocation, we do not want | 
 | 		 * to heavily disrupt the system, so we fail the allocation | 
 | 		 * instead of entering direct reclaim. | 
 | 		 */ | 
 | 		if (deferred_compaction) | 
 | 			goto nopage; | 
 |  | 
 | 		/* | 
 | 		 * In all zones where compaction was attempted (and not | 
 | 		 * deferred or skipped), lock contention has been detected. | 
 | 		 * For THP allocation we do not want to disrupt the others | 
 | 		 * so we fallback to base pages instead. | 
 | 		 */ | 
 | 		if (contended_compaction == COMPACT_CONTENDED_LOCK) | 
 | 			goto nopage; | 
 |  | 
 | 		/* | 
 | 		 * If compaction was aborted due to need_resched(), we do not | 
 | 		 * want to further increase allocation latency, unless it is | 
 | 		 * khugepaged trying to collapse. | 
 | 		 */ | 
 | 		if (contended_compaction == COMPACT_CONTENDED_SCHED | 
 | 			&& !(current->flags & PF_KTHREAD)) | 
 | 			goto nopage; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It can become very expensive to allocate transparent hugepages at | 
 | 	 * fault, so use asynchronous memory compaction for THP unless it is | 
 | 	 * khugepaged trying to collapse. | 
 | 	 */ | 
 | 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || | 
 | 						(current->flags & PF_KTHREAD)) | 
 | 		migration_mode = MIGRATE_SYNC_LIGHT; | 
 |  | 
 | 	/* Try direct reclaim and then allocating */ | 
 | 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, | 
 | 							&did_some_progress); | 
 | 	if (page) | 
 | 		goto got_pg; | 
 |  | 
 | 	/* Check if we should retry the allocation */ | 
 | 	pages_reclaimed += did_some_progress; | 
 | 	if (should_alloc_retry(gfp_mask, order, did_some_progress, | 
 | 						pages_reclaimed)) { | 
 | 		/* | 
 | 		 * If we fail to make progress by freeing individual | 
 | 		 * pages, but the allocation wants us to keep going, | 
 | 		 * start OOM killing tasks. | 
 | 		 */ | 
 | 		if (!did_some_progress) { | 
 | 			page = __alloc_pages_may_oom(gfp_mask, order, ac, | 
 | 							&did_some_progress); | 
 | 			if (page) | 
 | 				goto got_pg; | 
 | 			if (!did_some_progress) | 
 | 				goto nopage; | 
 | 		} | 
 | 		/* Wait for some write requests to complete then retry */ | 
 | 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); | 
 | 		goto retry; | 
 | 	} else { | 
 | 		/* | 
 | 		 * High-order allocations do not necessarily loop after | 
 | 		 * direct reclaim and reclaim/compaction depends on compaction | 
 | 		 * being called after reclaim so call directly if necessary | 
 | 		 */ | 
 | 		page = __alloc_pages_direct_compact(gfp_mask, order, | 
 | 					alloc_flags, ac, migration_mode, | 
 | 					&contended_compaction, | 
 | 					&deferred_compaction); | 
 | 		if (page) | 
 | 			goto got_pg; | 
 | 	} | 
 |  | 
 | nopage: | 
 | 	warn_alloc_failed(gfp_mask, order, NULL); | 
 | got_pg: | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * This is the 'heart' of the zoned buddy allocator. | 
 |  */ | 
 | struct page * | 
 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | 
 | 			struct zonelist *zonelist, nodemask_t *nodemask) | 
 | { | 
 | 	struct zoneref *preferred_zoneref; | 
 | 	struct page *page = NULL; | 
 | 	unsigned int cpuset_mems_cookie; | 
 | 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; | 
 | 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ | 
 | 	struct alloc_context ac = { | 
 | 		.high_zoneidx = gfp_zone(gfp_mask), | 
 | 		.nodemask = nodemask, | 
 | 		.migratetype = gfpflags_to_migratetype(gfp_mask), | 
 | 	}; | 
 |  | 
 | 	gfp_mask &= gfp_allowed_mask; | 
 |  | 
 | 	lockdep_trace_alloc(gfp_mask); | 
 |  | 
 | 	might_sleep_if(gfp_mask & __GFP_WAIT); | 
 |  | 
 | 	if (should_fail_alloc_page(gfp_mask, order)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Check the zones suitable for the gfp_mask contain at least one | 
 | 	 * valid zone. It's possible to have an empty zonelist as a result | 
 | 	 * of __GFP_THISNODE and a memoryless node | 
 | 	 */ | 
 | 	if (unlikely(!zonelist->_zonerefs->zone)) | 
 | 		return NULL; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) | 
 | 		alloc_flags |= ALLOC_CMA; | 
 |  | 
 | retry_cpuset: | 
 | 	cpuset_mems_cookie = read_mems_allowed_begin(); | 
 |  | 
 | 	/* We set it here, as __alloc_pages_slowpath might have changed it */ | 
 | 	ac.zonelist = zonelist; | 
 | 	/* The preferred zone is used for statistics later */ | 
 | 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, | 
 | 				ac.nodemask ? : &cpuset_current_mems_allowed, | 
 | 				&ac.preferred_zone); | 
 | 	if (!ac.preferred_zone) | 
 | 		goto out; | 
 | 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); | 
 |  | 
 | 	/* First allocation attempt */ | 
 | 	alloc_mask = gfp_mask|__GFP_HARDWALL; | 
 | 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); | 
 | 	if (unlikely(!page)) { | 
 | 		/* | 
 | 		 * Runtime PM, block IO and its error handling path | 
 | 		 * can deadlock because I/O on the device might not | 
 | 		 * complete. | 
 | 		 */ | 
 | 		alloc_mask = memalloc_noio_flags(gfp_mask); | 
 |  | 
 | 		page = __alloc_pages_slowpath(alloc_mask, order, &ac); | 
 | 	} | 
 |  | 
 | 	if (kmemcheck_enabled && page) | 
 | 		kmemcheck_pagealloc_alloc(page, order, gfp_mask); | 
 |  | 
 | 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); | 
 |  | 
 | out: | 
 | 	/* | 
 | 	 * When updating a task's mems_allowed, it is possible to race with | 
 | 	 * parallel threads in such a way that an allocation can fail while | 
 | 	 * the mask is being updated. If a page allocation is about to fail, | 
 | 	 * check if the cpuset changed during allocation and if so, retry. | 
 | 	 */ | 
 | 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) | 
 | 		goto retry_cpuset; | 
 |  | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(__alloc_pages_nodemask); | 
 |  | 
 | /* | 
 |  * Common helper functions. | 
 |  */ | 
 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * __get_free_pages() returns a 32-bit address, which cannot represent | 
 | 	 * a highmem page | 
 | 	 */ | 
 | 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | 
 |  | 
 | 	page = alloc_pages(gfp_mask, order); | 
 | 	if (!page) | 
 | 		return 0; | 
 | 	return (unsigned long) page_address(page); | 
 | } | 
 | EXPORT_SYMBOL(__get_free_pages); | 
 |  | 
 | unsigned long get_zeroed_page(gfp_t gfp_mask) | 
 | { | 
 | 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0); | 
 | } | 
 | EXPORT_SYMBOL(get_zeroed_page); | 
 |  | 
 | void __free_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	if (put_page_testzero(page)) { | 
 | 		if (order == 0) | 
 | 			free_hot_cold_page(page, false); | 
 | 		else | 
 | 			__free_pages_ok(page, order); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__free_pages); | 
 |  | 
 | void free_pages(unsigned long addr, unsigned int order) | 
 | { | 
 | 	if (addr != 0) { | 
 | 		VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
 | 		__free_pages(virt_to_page((void *)addr), order); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(free_pages); | 
 |  | 
 | /* | 
 |  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter | 
 |  * of the current memory cgroup. | 
 |  * | 
 |  * It should be used when the caller would like to use kmalloc, but since the | 
 |  * allocation is large, it has to fall back to the page allocator. | 
 |  */ | 
 | struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	struct page *page; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 |  | 
 | 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) | 
 | 		return NULL; | 
 | 	page = alloc_pages(gfp_mask, order); | 
 | 	memcg_kmem_commit_charge(page, memcg, order); | 
 | 	return page; | 
 | } | 
 |  | 
 | struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) | 
 | { | 
 | 	struct page *page; | 
 | 	struct mem_cgroup *memcg = NULL; | 
 |  | 
 | 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) | 
 | 		return NULL; | 
 | 	page = alloc_pages_node(nid, gfp_mask, order); | 
 | 	memcg_kmem_commit_charge(page, memcg, order); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * __free_kmem_pages and free_kmem_pages will free pages allocated with | 
 |  * alloc_kmem_pages. | 
 |  */ | 
 | void __free_kmem_pages(struct page *page, unsigned int order) | 
 | { | 
 | 	memcg_kmem_uncharge_pages(page, order); | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | void free_kmem_pages(unsigned long addr, unsigned int order) | 
 | { | 
 | 	if (addr != 0) { | 
 | 		VM_BUG_ON(!virt_addr_valid((void *)addr)); | 
 | 		__free_kmem_pages(virt_to_page((void *)addr), order); | 
 | 	} | 
 | } | 
 |  | 
 | static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) | 
 | { | 
 | 	if (addr) { | 
 | 		unsigned long alloc_end = addr + (PAGE_SIZE << order); | 
 | 		unsigned long used = addr + PAGE_ALIGN(size); | 
 |  | 
 | 		split_page(virt_to_page((void *)addr), order); | 
 | 		while (used < alloc_end) { | 
 | 			free_page(used); | 
 | 			used += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 | 	return (void *)addr; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_pages_exact - allocate an exact number physically-contiguous pages. | 
 |  * @size: the number of bytes to allocate | 
 |  * @gfp_mask: GFP flags for the allocation | 
 |  * | 
 |  * This function is similar to alloc_pages(), except that it allocates the | 
 |  * minimum number of pages to satisfy the request.  alloc_pages() can only | 
 |  * allocate memory in power-of-two pages. | 
 |  * | 
 |  * This function is also limited by MAX_ORDER. | 
 |  * | 
 |  * Memory allocated by this function must be released by free_pages_exact(). | 
 |  */ | 
 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned int order = get_order(size); | 
 | 	unsigned long addr; | 
 |  | 
 | 	addr = __get_free_pages(gfp_mask, order); | 
 | 	return make_alloc_exact(addr, order, size); | 
 | } | 
 | EXPORT_SYMBOL(alloc_pages_exact); | 
 |  | 
 | /** | 
 |  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | 
 |  *			   pages on a node. | 
 |  * @nid: the preferred node ID where memory should be allocated | 
 |  * @size: the number of bytes to allocate | 
 |  * @gfp_mask: GFP flags for the allocation | 
 |  * | 
 |  * Like alloc_pages_exact(), but try to allocate on node nid first before falling | 
 |  * back. | 
 |  * Note this is not alloc_pages_exact_node() which allocates on a specific node, | 
 |  * but is not exact. | 
 |  */ | 
 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) | 
 | { | 
 | 	unsigned order = get_order(size); | 
 | 	struct page *p = alloc_pages_node(nid, gfp_mask, order); | 
 | 	if (!p) | 
 | 		return NULL; | 
 | 	return make_alloc_exact((unsigned long)page_address(p), order, size); | 
 | } | 
 |  | 
 | /** | 
 |  * free_pages_exact - release memory allocated via alloc_pages_exact() | 
 |  * @virt: the value returned by alloc_pages_exact. | 
 |  * @size: size of allocation, same value as passed to alloc_pages_exact(). | 
 |  * | 
 |  * Release the memory allocated by a previous call to alloc_pages_exact. | 
 |  */ | 
 | void free_pages_exact(void *virt, size_t size) | 
 | { | 
 | 	unsigned long addr = (unsigned long)virt; | 
 | 	unsigned long end = addr + PAGE_ALIGN(size); | 
 |  | 
 | 	while (addr < end) { | 
 | 		free_page(addr); | 
 | 		addr += PAGE_SIZE; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(free_pages_exact); | 
 |  | 
 | /** | 
 |  * nr_free_zone_pages - count number of pages beyond high watermark | 
 |  * @offset: The zone index of the highest zone | 
 |  * | 
 |  * nr_free_zone_pages() counts the number of counts pages which are beyond the | 
 |  * high watermark within all zones at or below a given zone index.  For each | 
 |  * zone, the number of pages is calculated as: | 
 |  *     managed_pages - high_pages | 
 |  */ | 
 | static unsigned long nr_free_zone_pages(int offset) | 
 | { | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 |  | 
 | 	/* Just pick one node, since fallback list is circular */ | 
 | 	unsigned long sum = 0; | 
 |  | 
 | 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); | 
 |  | 
 | 	for_each_zone_zonelist(zone, z, zonelist, offset) { | 
 | 		unsigned long size = zone->managed_pages; | 
 | 		unsigned long high = high_wmark_pages(zone); | 
 | 		if (size > high) | 
 | 			sum += size - high; | 
 | 	} | 
 |  | 
 | 	return sum; | 
 | } | 
 |  | 
 | /** | 
 |  * nr_free_buffer_pages - count number of pages beyond high watermark | 
 |  * | 
 |  * nr_free_buffer_pages() counts the number of pages which are beyond the high | 
 |  * watermark within ZONE_DMA and ZONE_NORMAL. | 
 |  */ | 
 | unsigned long nr_free_buffer_pages(void) | 
 | { | 
 | 	return nr_free_zone_pages(gfp_zone(GFP_USER)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); | 
 |  | 
 | /** | 
 |  * nr_free_pagecache_pages - count number of pages beyond high watermark | 
 |  * | 
 |  * nr_free_pagecache_pages() counts the number of pages which are beyond the | 
 |  * high watermark within all zones. | 
 |  */ | 
 | unsigned long nr_free_pagecache_pages(void) | 
 | { | 
 | 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); | 
 | } | 
 |  | 
 | static inline void show_node(struct zone *zone) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_NUMA)) | 
 | 		printk("Node %d ", zone_to_nid(zone)); | 
 | } | 
 |  | 
 | void si_meminfo(struct sysinfo *val) | 
 | { | 
 | 	val->totalram = totalram_pages; | 
 | 	val->sharedram = global_page_state(NR_SHMEM); | 
 | 	val->freeram = global_page_state(NR_FREE_PAGES); | 
 | 	val->bufferram = nr_blockdev_pages(); | 
 | 	val->totalhigh = totalhigh_pages; | 
 | 	val->freehigh = nr_free_highpages(); | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(si_meminfo); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void si_meminfo_node(struct sysinfo *val, int nid) | 
 | { | 
 | 	int zone_type;		/* needs to be signed */ | 
 | 	unsigned long managed_pages = 0; | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) | 
 | 		managed_pages += pgdat->node_zones[zone_type].managed_pages; | 
 | 	val->totalram = managed_pages; | 
 | 	val->sharedram = node_page_state(nid, NR_SHMEM); | 
 | 	val->freeram = node_page_state(nid, NR_FREE_PAGES); | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; | 
 | 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], | 
 | 			NR_FREE_PAGES); | 
 | #else | 
 | 	val->totalhigh = 0; | 
 | 	val->freehigh = 0; | 
 | #endif | 
 | 	val->mem_unit = PAGE_SIZE; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Determine whether the node should be displayed or not, depending on whether | 
 |  * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | 
 |  */ | 
 | bool skip_free_areas_node(unsigned int flags, int nid) | 
 | { | 
 | 	bool ret = false; | 
 | 	unsigned int cpuset_mems_cookie; | 
 |  | 
 | 	if (!(flags & SHOW_MEM_FILTER_NODES)) | 
 | 		goto out; | 
 |  | 
 | 	do { | 
 | 		cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 		ret = !node_isset(nid, cpuset_current_mems_allowed); | 
 | 	} while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
 |  | 
 | static void show_migration_types(unsigned char type) | 
 | { | 
 | 	static const char types[MIGRATE_TYPES] = { | 
 | 		[MIGRATE_UNMOVABLE]	= 'U', | 
 | 		[MIGRATE_RECLAIMABLE]	= 'E', | 
 | 		[MIGRATE_MOVABLE]	= 'M', | 
 | 		[MIGRATE_RESERVE]	= 'R', | 
 | #ifdef CONFIG_CMA | 
 | 		[MIGRATE_CMA]		= 'C', | 
 | #endif | 
 | #ifdef CONFIG_MEMORY_ISOLATION | 
 | 		[MIGRATE_ISOLATE]	= 'I', | 
 | #endif | 
 | 	}; | 
 | 	char tmp[MIGRATE_TYPES + 1]; | 
 | 	char *p = tmp; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MIGRATE_TYPES; i++) { | 
 | 		if (type & (1 << i)) | 
 | 			*p++ = types[i]; | 
 | 	} | 
 |  | 
 | 	*p = '\0'; | 
 | 	printk("(%s) ", tmp); | 
 | } | 
 |  | 
 | /* | 
 |  * Show free area list (used inside shift_scroll-lock stuff) | 
 |  * We also calculate the percentage fragmentation. We do this by counting the | 
 |  * memory on each free list with the exception of the first item on the list. | 
 |  * | 
 |  * Bits in @filter: | 
 |  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | 
 |  *   cpuset. | 
 |  */ | 
 | void show_free_areas(unsigned int filter) | 
 | { | 
 | 	unsigned long free_pcp = 0; | 
 | 	int cpu; | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		if (skip_free_areas_node(filter, zone_to_nid(zone))) | 
 | 			continue; | 
 |  | 
 | 		for_each_online_cpu(cpu) | 
 | 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | 
 | 	} | 
 |  | 
 | 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" | 
 | 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n" | 
 | 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" | 
 | 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n" | 
 | 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" | 
 | 		" free:%lu free_pcp:%lu free_cma:%lu\n", | 
 | 		global_page_state(NR_ACTIVE_ANON), | 
 | 		global_page_state(NR_INACTIVE_ANON), | 
 | 		global_page_state(NR_ISOLATED_ANON), | 
 | 		global_page_state(NR_ACTIVE_FILE), | 
 | 		global_page_state(NR_INACTIVE_FILE), | 
 | 		global_page_state(NR_ISOLATED_FILE), | 
 | 		global_page_state(NR_UNEVICTABLE), | 
 | 		global_page_state(NR_FILE_DIRTY), | 
 | 		global_page_state(NR_WRITEBACK), | 
 | 		global_page_state(NR_UNSTABLE_NFS), | 
 | 		global_page_state(NR_SLAB_RECLAIMABLE), | 
 | 		global_page_state(NR_SLAB_UNRECLAIMABLE), | 
 | 		global_page_state(NR_FILE_MAPPED), | 
 | 		global_page_state(NR_SHMEM), | 
 | 		global_page_state(NR_PAGETABLE), | 
 | 		global_page_state(NR_BOUNCE), | 
 | 		global_page_state(NR_FREE_PAGES), | 
 | 		free_pcp, | 
 | 		global_page_state(NR_FREE_CMA_PAGES)); | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		int i; | 
 |  | 
 | 		if (skip_free_areas_node(filter, zone_to_nid(zone))) | 
 | 			continue; | 
 |  | 
 | 		free_pcp = 0; | 
 | 		for_each_online_cpu(cpu) | 
 | 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | 
 |  | 
 | 		show_node(zone); | 
 | 		printk("%s" | 
 | 			" free:%lukB" | 
 | 			" min:%lukB" | 
 | 			" low:%lukB" | 
 | 			" high:%lukB" | 
 | 			" active_anon:%lukB" | 
 | 			" inactive_anon:%lukB" | 
 | 			" active_file:%lukB" | 
 | 			" inactive_file:%lukB" | 
 | 			" unevictable:%lukB" | 
 | 			" isolated(anon):%lukB" | 
 | 			" isolated(file):%lukB" | 
 | 			" present:%lukB" | 
 | 			" managed:%lukB" | 
 | 			" mlocked:%lukB" | 
 | 			" dirty:%lukB" | 
 | 			" writeback:%lukB" | 
 | 			" mapped:%lukB" | 
 | 			" shmem:%lukB" | 
 | 			" slab_reclaimable:%lukB" | 
 | 			" slab_unreclaimable:%lukB" | 
 | 			" kernel_stack:%lukB" | 
 | 			" pagetables:%lukB" | 
 | 			" unstable:%lukB" | 
 | 			" bounce:%lukB" | 
 | 			" free_pcp:%lukB" | 
 | 			" local_pcp:%ukB" | 
 | 			" free_cma:%lukB" | 
 | 			" writeback_tmp:%lukB" | 
 | 			" pages_scanned:%lu" | 
 | 			" all_unreclaimable? %s" | 
 | 			"\n", | 
 | 			zone->name, | 
 | 			K(zone_page_state(zone, NR_FREE_PAGES)), | 
 | 			K(min_wmark_pages(zone)), | 
 | 			K(low_wmark_pages(zone)), | 
 | 			K(high_wmark_pages(zone)), | 
 | 			K(zone_page_state(zone, NR_ACTIVE_ANON)), | 
 | 			K(zone_page_state(zone, NR_INACTIVE_ANON)), | 
 | 			K(zone_page_state(zone, NR_ACTIVE_FILE)), | 
 | 			K(zone_page_state(zone, NR_INACTIVE_FILE)), | 
 | 			K(zone_page_state(zone, NR_UNEVICTABLE)), | 
 | 			K(zone_page_state(zone, NR_ISOLATED_ANON)), | 
 | 			K(zone_page_state(zone, NR_ISOLATED_FILE)), | 
 | 			K(zone->present_pages), | 
 | 			K(zone->managed_pages), | 
 | 			K(zone_page_state(zone, NR_MLOCK)), | 
 | 			K(zone_page_state(zone, NR_FILE_DIRTY)), | 
 | 			K(zone_page_state(zone, NR_WRITEBACK)), | 
 | 			K(zone_page_state(zone, NR_FILE_MAPPED)), | 
 | 			K(zone_page_state(zone, NR_SHMEM)), | 
 | 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), | 
 | 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | 
 | 			zone_page_state(zone, NR_KERNEL_STACK) * | 
 | 				THREAD_SIZE / 1024, | 
 | 			K(zone_page_state(zone, NR_PAGETABLE)), | 
 | 			K(zone_page_state(zone, NR_UNSTABLE_NFS)), | 
 | 			K(zone_page_state(zone, NR_BOUNCE)), | 
 | 			K(free_pcp), | 
 | 			K(this_cpu_read(zone->pageset->pcp.count)), | 
 | 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)), | 
 | 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)), | 
 | 			K(zone_page_state(zone, NR_PAGES_SCANNED)), | 
 | 			(!zone_reclaimable(zone) ? "yes" : "no") | 
 | 			); | 
 | 		printk("lowmem_reserve[]:"); | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 			printk(" %ld", zone->lowmem_reserve[i]); | 
 | 		printk("\n"); | 
 | 	} | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		unsigned long nr[MAX_ORDER], flags, order, total = 0; | 
 | 		unsigned char types[MAX_ORDER]; | 
 |  | 
 | 		if (skip_free_areas_node(filter, zone_to_nid(zone))) | 
 | 			continue; | 
 | 		show_node(zone); | 
 | 		printk("%s: ", zone->name); | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 			struct free_area *area = &zone->free_area[order]; | 
 | 			int type; | 
 |  | 
 | 			nr[order] = area->nr_free; | 
 | 			total += nr[order] << order; | 
 |  | 
 | 			types[order] = 0; | 
 | 			for (type = 0; type < MIGRATE_TYPES; type++) { | 
 | 				if (!list_empty(&area->free_list[type])) | 
 | 					types[order] |= 1 << type; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 		for (order = 0; order < MAX_ORDER; order++) { | 
 | 			printk("%lu*%lukB ", nr[order], K(1UL) << order); | 
 | 			if (nr[order]) | 
 | 				show_migration_types(types[order]); | 
 | 		} | 
 | 		printk("= %lukB\n", K(total)); | 
 | 	} | 
 |  | 
 | 	hugetlb_show_meminfo(); | 
 |  | 
 | 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); | 
 |  | 
 | 	show_swap_cache_info(); | 
 | } | 
 |  | 
 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) | 
 | { | 
 | 	zoneref->zone = zone; | 
 | 	zoneref->zone_idx = zone_idx(zone); | 
 | } | 
 |  | 
 | /* | 
 |  * Builds allocation fallback zone lists. | 
 |  * | 
 |  * Add all populated zones of a node to the zonelist. | 
 |  */ | 
 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, | 
 | 				int nr_zones) | 
 | { | 
 | 	struct zone *zone; | 
 | 	enum zone_type zone_type = MAX_NR_ZONES; | 
 |  | 
 | 	do { | 
 | 		zone_type--; | 
 | 		zone = pgdat->node_zones + zone_type; | 
 | 		if (populated_zone(zone)) { | 
 | 			zoneref_set_zone(zone, | 
 | 				&zonelist->_zonerefs[nr_zones++]); | 
 | 			check_highest_zone(zone_type); | 
 | 		} | 
 | 	} while (zone_type); | 
 |  | 
 | 	return nr_zones; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *  zonelist_order: | 
 |  *  0 = automatic detection of better ordering. | 
 |  *  1 = order by ([node] distance, -zonetype) | 
 |  *  2 = order by (-zonetype, [node] distance) | 
 |  * | 
 |  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | 
 |  *  the same zonelist. So only NUMA can configure this param. | 
 |  */ | 
 | #define ZONELIST_ORDER_DEFAULT  0 | 
 | #define ZONELIST_ORDER_NODE     1 | 
 | #define ZONELIST_ORDER_ZONE     2 | 
 |  | 
 | /* zonelist order in the kernel. | 
 |  * set_zonelist_order() will set this to NODE or ZONE. | 
 |  */ | 
 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | 
 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | 
 |  | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* The value user specified ....changed by config */ | 
 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | 
 | /* string for sysctl */ | 
 | #define NUMA_ZONELIST_ORDER_LEN	16 | 
 | char numa_zonelist_order[16] = "default"; | 
 |  | 
 | /* | 
 |  * interface for configure zonelist ordering. | 
 |  * command line option "numa_zonelist_order" | 
 |  *	= "[dD]efault	- default, automatic configuration. | 
 |  *	= "[nN]ode 	- order by node locality, then by zone within node | 
 |  *	= "[zZ]one      - order by zone, then by locality within zone | 
 |  */ | 
 |  | 
 | static int __parse_numa_zonelist_order(char *s) | 
 | { | 
 | 	if (*s == 'd' || *s == 'D') { | 
 | 		user_zonelist_order = ZONELIST_ORDER_DEFAULT; | 
 | 	} else if (*s == 'n' || *s == 'N') { | 
 | 		user_zonelist_order = ZONELIST_ORDER_NODE; | 
 | 	} else if (*s == 'z' || *s == 'Z') { | 
 | 		user_zonelist_order = ZONELIST_ORDER_ZONE; | 
 | 	} else { | 
 | 		printk(KERN_WARNING | 
 | 			"Ignoring invalid numa_zonelist_order value:  " | 
 | 			"%s\n", s); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int setup_numa_zonelist_order(char *s) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!s) | 
 | 		return 0; | 
 |  | 
 | 	ret = __parse_numa_zonelist_order(s); | 
 | 	if (ret == 0) | 
 | 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | 
 |  | 
 | 	return ret; | 
 | } | 
 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | 
 |  | 
 | /* | 
 |  * sysctl handler for numa_zonelist_order | 
 |  */ | 
 | int numa_zonelist_order_handler(struct ctl_table *table, int write, | 
 | 		void __user *buffer, size_t *length, | 
 | 		loff_t *ppos) | 
 | { | 
 | 	char saved_string[NUMA_ZONELIST_ORDER_LEN]; | 
 | 	int ret; | 
 | 	static DEFINE_MUTEX(zl_order_mutex); | 
 |  | 
 | 	mutex_lock(&zl_order_mutex); | 
 | 	if (write) { | 
 | 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 		strcpy(saved_string, (char *)table->data); | 
 | 	} | 
 | 	ret = proc_dostring(table, write, buffer, length, ppos); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	if (write) { | 
 | 		int oldval = user_zonelist_order; | 
 |  | 
 | 		ret = __parse_numa_zonelist_order((char *)table->data); | 
 | 		if (ret) { | 
 | 			/* | 
 | 			 * bogus value.  restore saved string | 
 | 			 */ | 
 | 			strncpy((char *)table->data, saved_string, | 
 | 				NUMA_ZONELIST_ORDER_LEN); | 
 | 			user_zonelist_order = oldval; | 
 | 		} else if (oldval != user_zonelist_order) { | 
 | 			mutex_lock(&zonelists_mutex); | 
 | 			build_all_zonelists(NULL, NULL); | 
 | 			mutex_unlock(&zonelists_mutex); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&zl_order_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | #define MAX_NODE_LOAD (nr_online_nodes) | 
 | static int node_load[MAX_NUMNODES]; | 
 |  | 
 | /** | 
 |  * find_next_best_node - find the next node that should appear in a given node's fallback list | 
 |  * @node: node whose fallback list we're appending | 
 |  * @used_node_mask: nodemask_t of already used nodes | 
 |  * | 
 |  * We use a number of factors to determine which is the next node that should | 
 |  * appear on a given node's fallback list.  The node should not have appeared | 
 |  * already in @node's fallback list, and it should be the next closest node | 
 |  * according to the distance array (which contains arbitrary distance values | 
 |  * from each node to each node in the system), and should also prefer nodes | 
 |  * with no CPUs, since presumably they'll have very little allocation pressure | 
 |  * on them otherwise. | 
 |  * It returns -1 if no node is found. | 
 |  */ | 
 | static int find_next_best_node(int node, nodemask_t *used_node_mask) | 
 | { | 
 | 	int n, val; | 
 | 	int min_val = INT_MAX; | 
 | 	int best_node = NUMA_NO_NODE; | 
 | 	const struct cpumask *tmp = cpumask_of_node(0); | 
 |  | 
 | 	/* Use the local node if we haven't already */ | 
 | 	if (!node_isset(node, *used_node_mask)) { | 
 | 		node_set(node, *used_node_mask); | 
 | 		return node; | 
 | 	} | 
 |  | 
 | 	for_each_node_state(n, N_MEMORY) { | 
 |  | 
 | 		/* Don't want a node to appear more than once */ | 
 | 		if (node_isset(n, *used_node_mask)) | 
 | 			continue; | 
 |  | 
 | 		/* Use the distance array to find the distance */ | 
 | 		val = node_distance(node, n); | 
 |  | 
 | 		/* Penalize nodes under us ("prefer the next node") */ | 
 | 		val += (n < node); | 
 |  | 
 | 		/* Give preference to headless and unused nodes */ | 
 | 		tmp = cpumask_of_node(n); | 
 | 		if (!cpumask_empty(tmp)) | 
 | 			val += PENALTY_FOR_NODE_WITH_CPUS; | 
 |  | 
 | 		/* Slight preference for less loaded node */ | 
 | 		val *= (MAX_NODE_LOAD*MAX_NUMNODES); | 
 | 		val += node_load[n]; | 
 |  | 
 | 		if (val < min_val) { | 
 | 			min_val = val; | 
 | 			best_node = n; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (best_node >= 0) | 
 | 		node_set(best_node, *used_node_mask); | 
 |  | 
 | 	return best_node; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Build zonelists ordered by node and zones within node. | 
 |  * This results in maximum locality--normal zone overflows into local | 
 |  * DMA zone, if any--but risks exhausting DMA zone. | 
 |  */ | 
 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | 
 | { | 
 | 	int j; | 
 | 	struct zonelist *zonelist; | 
 |  | 
 | 	zonelist = &pgdat->node_zonelists[0]; | 
 | 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) | 
 | 		; | 
 | 	j = build_zonelists_node(NODE_DATA(node), zonelist, j); | 
 | 	zonelist->_zonerefs[j].zone = NULL; | 
 | 	zonelist->_zonerefs[j].zone_idx = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Build gfp_thisnode zonelists | 
 |  */ | 
 | static void build_thisnode_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	int j; | 
 | 	struct zonelist *zonelist; | 
 |  | 
 | 	zonelist = &pgdat->node_zonelists[1]; | 
 | 	j = build_zonelists_node(pgdat, zonelist, 0); | 
 | 	zonelist->_zonerefs[j].zone = NULL; | 
 | 	zonelist->_zonerefs[j].zone_idx = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Build zonelists ordered by zone and nodes within zones. | 
 |  * This results in conserving DMA zone[s] until all Normal memory is | 
 |  * exhausted, but results in overflowing to remote node while memory | 
 |  * may still exist in local DMA zone. | 
 |  */ | 
 | static int node_order[MAX_NUMNODES]; | 
 |  | 
 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | 
 | { | 
 | 	int pos, j, node; | 
 | 	int zone_type;		/* needs to be signed */ | 
 | 	struct zone *z; | 
 | 	struct zonelist *zonelist; | 
 |  | 
 | 	zonelist = &pgdat->node_zonelists[0]; | 
 | 	pos = 0; | 
 | 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | 
 | 		for (j = 0; j < nr_nodes; j++) { | 
 | 			node = node_order[j]; | 
 | 			z = &NODE_DATA(node)->node_zones[zone_type]; | 
 | 			if (populated_zone(z)) { | 
 | 				zoneref_set_zone(z, | 
 | 					&zonelist->_zonerefs[pos++]); | 
 | 				check_highest_zone(zone_type); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	zonelist->_zonerefs[pos].zone = NULL; | 
 | 	zonelist->_zonerefs[pos].zone_idx = 0; | 
 | } | 
 |  | 
 | #if defined(CONFIG_64BIT) | 
 | /* | 
 |  * Devices that require DMA32/DMA are relatively rare and do not justify a | 
 |  * penalty to every machine in case the specialised case applies. Default | 
 |  * to Node-ordering on 64-bit NUMA machines | 
 |  */ | 
 | static int default_zonelist_order(void) | 
 | { | 
 | 	return ZONELIST_ORDER_NODE; | 
 | } | 
 | #else | 
 | /* | 
 |  * On 32-bit, the Normal zone needs to be preserved for allocations accessible | 
 |  * by the kernel. If processes running on node 0 deplete the low memory zone | 
 |  * then reclaim will occur more frequency increasing stalls and potentially | 
 |  * be easier to OOM if a large percentage of the zone is under writeback or | 
 |  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. | 
 |  * Hence, default to zone ordering on 32-bit. | 
 |  */ | 
 | static int default_zonelist_order(void) | 
 | { | 
 | 	return ZONELIST_ORDER_ZONE; | 
 | } | 
 | #endif /* CONFIG_64BIT */ | 
 |  | 
 | static void set_zonelist_order(void) | 
 | { | 
 | 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | 
 | 		current_zonelist_order = default_zonelist_order(); | 
 | 	else | 
 | 		current_zonelist_order = user_zonelist_order; | 
 | } | 
 |  | 
 | static void build_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	int j, node, load; | 
 | 	enum zone_type i; | 
 | 	nodemask_t used_mask; | 
 | 	int local_node, prev_node; | 
 | 	struct zonelist *zonelist; | 
 | 	int order = current_zonelist_order; | 
 |  | 
 | 	/* initialize zonelists */ | 
 | 	for (i = 0; i < MAX_ZONELISTS; i++) { | 
 | 		zonelist = pgdat->node_zonelists + i; | 
 | 		zonelist->_zonerefs[0].zone = NULL; | 
 | 		zonelist->_zonerefs[0].zone_idx = 0; | 
 | 	} | 
 |  | 
 | 	/* NUMA-aware ordering of nodes */ | 
 | 	local_node = pgdat->node_id; | 
 | 	load = nr_online_nodes; | 
 | 	prev_node = local_node; | 
 | 	nodes_clear(used_mask); | 
 |  | 
 | 	memset(node_order, 0, sizeof(node_order)); | 
 | 	j = 0; | 
 |  | 
 | 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | 
 | 		/* | 
 | 		 * We don't want to pressure a particular node. | 
 | 		 * So adding penalty to the first node in same | 
 | 		 * distance group to make it round-robin. | 
 | 		 */ | 
 | 		if (node_distance(local_node, node) != | 
 | 		    node_distance(local_node, prev_node)) | 
 | 			node_load[node] = load; | 
 |  | 
 | 		prev_node = node; | 
 | 		load--; | 
 | 		if (order == ZONELIST_ORDER_NODE) | 
 | 			build_zonelists_in_node_order(pgdat, node); | 
 | 		else | 
 | 			node_order[j++] = node;	/* remember order */ | 
 | 	} | 
 |  | 
 | 	if (order == ZONELIST_ORDER_ZONE) { | 
 | 		/* calculate node order -- i.e., DMA last! */ | 
 | 		build_zonelists_in_zone_order(pgdat, j); | 
 | 	} | 
 |  | 
 | 	build_thisnode_zonelists(pgdat); | 
 | } | 
 |  | 
 | /* Construct the zonelist performance cache - see further mmzone.h */ | 
 | static void build_zonelist_cache(pg_data_t *pgdat) | 
 | { | 
 | 	struct zonelist *zonelist; | 
 | 	struct zonelist_cache *zlc; | 
 | 	struct zoneref *z; | 
 |  | 
 | 	zonelist = &pgdat->node_zonelists[0]; | 
 | 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache; | 
 | 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); | 
 | 	for (z = zonelist->_zonerefs; z->zone; z++) | 
 | 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | /* | 
 |  * Return node id of node used for "local" allocations. | 
 |  * I.e., first node id of first zone in arg node's generic zonelist. | 
 |  * Used for initializing percpu 'numa_mem', which is used primarily | 
 |  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | 
 |  */ | 
 | int local_memory_node(int node) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | 
 | 				   gfp_zone(GFP_KERNEL), | 
 | 				   NULL, | 
 | 				   &zone); | 
 | 	return zone->node; | 
 | } | 
 | #endif | 
 |  | 
 | #else	/* CONFIG_NUMA */ | 
 |  | 
 | static void set_zonelist_order(void) | 
 | { | 
 | 	current_zonelist_order = ZONELIST_ORDER_ZONE; | 
 | } | 
 |  | 
 | static void build_zonelists(pg_data_t *pgdat) | 
 | { | 
 | 	int node, local_node; | 
 | 	enum zone_type j; | 
 | 	struct zonelist *zonelist; | 
 |  | 
 | 	local_node = pgdat->node_id; | 
 |  | 
 | 	zonelist = &pgdat->node_zonelists[0]; | 
 | 	j = build_zonelists_node(pgdat, zonelist, 0); | 
 |  | 
 | 	/* | 
 | 	 * Now we build the zonelist so that it contains the zones | 
 | 	 * of all the other nodes. | 
 | 	 * We don't want to pressure a particular node, so when | 
 | 	 * building the zones for node N, we make sure that the | 
 | 	 * zones coming right after the local ones are those from | 
 | 	 * node N+1 (modulo N) | 
 | 	 */ | 
 | 	for (node = local_node + 1; node < MAX_NUMNODES; node++) { | 
 | 		if (!node_online(node)) | 
 | 			continue; | 
 | 		j = build_zonelists_node(NODE_DATA(node), zonelist, j); | 
 | 	} | 
 | 	for (node = 0; node < local_node; node++) { | 
 | 		if (!node_online(node)) | 
 | 			continue; | 
 | 		j = build_zonelists_node(NODE_DATA(node), zonelist, j); | 
 | 	} | 
 |  | 
 | 	zonelist->_zonerefs[j].zone = NULL; | 
 | 	zonelist->_zonerefs[j].zone_idx = 0; | 
 | } | 
 |  | 
 | /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ | 
 | static void build_zonelist_cache(pg_data_t *pgdat) | 
 | { | 
 | 	pgdat->node_zonelists[0].zlcache_ptr = NULL; | 
 | } | 
 |  | 
 | #endif	/* CONFIG_NUMA */ | 
 |  | 
 | /* | 
 |  * Boot pageset table. One per cpu which is going to be used for all | 
 |  * zones and all nodes. The parameters will be set in such a way | 
 |  * that an item put on a list will immediately be handed over to | 
 |  * the buddy list. This is safe since pageset manipulation is done | 
 |  * with interrupts disabled. | 
 |  * | 
 |  * The boot_pagesets must be kept even after bootup is complete for | 
 |  * unused processors and/or zones. They do play a role for bootstrapping | 
 |  * hotplugged processors. | 
 |  * | 
 |  * zoneinfo_show() and maybe other functions do | 
 |  * not check if the processor is online before following the pageset pointer. | 
 |  * Other parts of the kernel may not check if the zone is available. | 
 |  */ | 
 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | 
 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | 
 | static void setup_zone_pageset(struct zone *zone); | 
 |  | 
 | /* | 
 |  * Global mutex to protect against size modification of zonelists | 
 |  * as well as to serialize pageset setup for the new populated zone. | 
 |  */ | 
 | DEFINE_MUTEX(zonelists_mutex); | 
 |  | 
 | /* return values int ....just for stop_machine() */ | 
 | static int __build_all_zonelists(void *data) | 
 | { | 
 | 	int nid; | 
 | 	int cpu; | 
 | 	pg_data_t *self = data; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	memset(node_load, 0, sizeof(node_load)); | 
 | #endif | 
 |  | 
 | 	if (self && !node_online(self->node_id)) { | 
 | 		build_zonelists(self); | 
 | 		build_zonelist_cache(self); | 
 | 	} | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		pg_data_t *pgdat = NODE_DATA(nid); | 
 |  | 
 | 		build_zonelists(pgdat); | 
 | 		build_zonelist_cache(pgdat); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize the boot_pagesets that are going to be used | 
 | 	 * for bootstrapping processors. The real pagesets for | 
 | 	 * each zone will be allocated later when the per cpu | 
 | 	 * allocator is available. | 
 | 	 * | 
 | 	 * boot_pagesets are used also for bootstrapping offline | 
 | 	 * cpus if the system is already booted because the pagesets | 
 | 	 * are needed to initialize allocators on a specific cpu too. | 
 | 	 * F.e. the percpu allocator needs the page allocator which | 
 | 	 * needs the percpu allocator in order to allocate its pagesets | 
 | 	 * (a chicken-egg dilemma). | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		setup_pageset(&per_cpu(boot_pageset, cpu), 0); | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES | 
 | 		/* | 
 | 		 * We now know the "local memory node" for each node-- | 
 | 		 * i.e., the node of the first zone in the generic zonelist. | 
 | 		 * Set up numa_mem percpu variable for on-line cpus.  During | 
 | 		 * boot, only the boot cpu should be on-line;  we'll init the | 
 | 		 * secondary cpus' numa_mem as they come on-line.  During | 
 | 		 * node/memory hotplug, we'll fixup all on-line cpus. | 
 | 		 */ | 
 | 		if (cpu_online(cpu)) | 
 | 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline void __init | 
 | build_all_zonelists_init(void) | 
 | { | 
 | 	__build_all_zonelists(NULL); | 
 | 	mminit_verify_zonelist(); | 
 | 	cpuset_init_current_mems_allowed(); | 
 | } | 
 |  | 
 | /* | 
 |  * Called with zonelists_mutex held always | 
 |  * unless system_state == SYSTEM_BOOTING. | 
 |  * | 
 |  * __ref due to (1) call of __meminit annotated setup_zone_pageset | 
 |  * [we're only called with non-NULL zone through __meminit paths] and | 
 |  * (2) call of __init annotated helper build_all_zonelists_init | 
 |  * [protected by SYSTEM_BOOTING]. | 
 |  */ | 
 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) | 
 | { | 
 | 	set_zonelist_order(); | 
 |  | 
 | 	if (system_state == SYSTEM_BOOTING) { | 
 | 		build_all_zonelists_init(); | 
 | 	} else { | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | 		if (zone) | 
 | 			setup_zone_pageset(zone); | 
 | #endif | 
 | 		/* we have to stop all cpus to guarantee there is no user | 
 | 		   of zonelist */ | 
 | 		stop_machine(__build_all_zonelists, pgdat, NULL); | 
 | 		/* cpuset refresh routine should be here */ | 
 | 	} | 
 | 	vm_total_pages = nr_free_pagecache_pages(); | 
 | 	/* | 
 | 	 * Disable grouping by mobility if the number of pages in the | 
 | 	 * system is too low to allow the mechanism to work. It would be | 
 | 	 * more accurate, but expensive to check per-zone. This check is | 
 | 	 * made on memory-hotadd so a system can start with mobility | 
 | 	 * disabled and enable it later | 
 | 	 */ | 
 | 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) | 
 | 		page_group_by_mobility_disabled = 1; | 
 | 	else | 
 | 		page_group_by_mobility_disabled = 0; | 
 |  | 
 | 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  " | 
 | 		"Total pages: %ld\n", | 
 | 			nr_online_nodes, | 
 | 			zonelist_order_name[current_zonelist_order], | 
 | 			page_group_by_mobility_disabled ? "off" : "on", | 
 | 			vm_total_pages); | 
 | #ifdef CONFIG_NUMA | 
 | 	pr_info("Policy zone: %s\n", zone_names[policy_zone]); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Helper functions to size the waitqueue hash table. | 
 |  * Essentially these want to choose hash table sizes sufficiently | 
 |  * large so that collisions trying to wait on pages are rare. | 
 |  * But in fact, the number of active page waitqueues on typical | 
 |  * systems is ridiculously low, less than 200. So this is even | 
 |  * conservative, even though it seems large. | 
 |  * | 
 |  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | 
 |  * waitqueues, i.e. the size of the waitq table given the number of pages. | 
 |  */ | 
 | #define PAGES_PER_WAITQUEUE	256 | 
 |  | 
 | #ifndef CONFIG_MEMORY_HOTPLUG | 
 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 
 | { | 
 | 	unsigned long size = 1; | 
 |  | 
 | 	pages /= PAGES_PER_WAITQUEUE; | 
 |  | 
 | 	while (size < pages) | 
 | 		size <<= 1; | 
 |  | 
 | 	/* | 
 | 	 * Once we have dozens or even hundreds of threads sleeping | 
 | 	 * on IO we've got bigger problems than wait queue collision. | 
 | 	 * Limit the size of the wait table to a reasonable size. | 
 | 	 */ | 
 | 	size = min(size, 4096UL); | 
 |  | 
 | 	return max(size, 4UL); | 
 | } | 
 | #else | 
 | /* | 
 |  * A zone's size might be changed by hot-add, so it is not possible to determine | 
 |  * a suitable size for its wait_table.  So we use the maximum size now. | 
 |  * | 
 |  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie: | 
 |  * | 
 |  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte. | 
 |  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | 
 |  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte. | 
 |  * | 
 |  * The maximum entries are prepared when a zone's memory is (512K + 256) pages | 
 |  * or more by the traditional way. (See above).  It equals: | 
 |  * | 
 |  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte. | 
 |  *    ia64(16K page size)                 : =  ( 8G + 4M)byte. | 
 |  *    powerpc (64K page size)             : =  (32G +16M)byte. | 
 |  */ | 
 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | 
 | { | 
 | 	return 4096UL; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * This is an integer logarithm so that shifts can be used later | 
 |  * to extract the more random high bits from the multiplicative | 
 |  * hash function before the remainder is taken. | 
 |  */ | 
 | static inline unsigned long wait_table_bits(unsigned long size) | 
 | { | 
 | 	return ffz(~size); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if a pageblock contains reserved pages | 
 |  */ | 
 | static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	unsigned long pfn; | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
 | 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Mark a number of pageblocks as MIGRATE_RESERVE. The number | 
 |  * of blocks reserved is based on min_wmark_pages(zone). The memory within | 
 |  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes | 
 |  * higher will lead to a bigger reserve which will get freed as contiguous | 
 |  * blocks as reclaim kicks in | 
 |  */ | 
 | static void setup_zone_migrate_reserve(struct zone *zone) | 
 | { | 
 | 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn; | 
 | 	struct page *page; | 
 | 	unsigned long block_migratetype; | 
 | 	int reserve; | 
 | 	int old_reserve; | 
 |  | 
 | 	/* | 
 | 	 * Get the start pfn, end pfn and the number of blocks to reserve | 
 | 	 * We have to be careful to be aligned to pageblock_nr_pages to | 
 | 	 * make sure that we always check pfn_valid for the first page in | 
 | 	 * the block. | 
 | 	 */ | 
 | 	start_pfn = zone->zone_start_pfn; | 
 | 	end_pfn = zone_end_pfn(zone); | 
 | 	start_pfn = roundup(start_pfn, pageblock_nr_pages); | 
 | 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> | 
 | 							pageblock_order; | 
 |  | 
 | 	/* | 
 | 	 * Reserve blocks are generally in place to help high-order atomic | 
 | 	 * allocations that are short-lived. A min_free_kbytes value that | 
 | 	 * would result in more than 2 reserve blocks for atomic allocations | 
 | 	 * is assumed to be in place to help anti-fragmentation for the | 
 | 	 * future allocation of hugepages at runtime. | 
 | 	 */ | 
 | 	reserve = min(2, reserve); | 
 | 	old_reserve = zone->nr_migrate_reserve_block; | 
 |  | 
 | 	/* When memory hot-add, we almost always need to do nothing */ | 
 | 	if (reserve == old_reserve) | 
 | 		return; | 
 | 	zone->nr_migrate_reserve_block = reserve; | 
 |  | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { | 
 | 		if (!pfn_valid(pfn)) | 
 | 			continue; | 
 | 		page = pfn_to_page(pfn); | 
 |  | 
 | 		/* Watch out for overlapping nodes */ | 
 | 		if (page_to_nid(page) != zone_to_nid(zone)) | 
 | 			continue; | 
 |  | 
 | 		block_migratetype = get_pageblock_migratetype(page); | 
 |  | 
 | 		/* Only test what is necessary when the reserves are not met */ | 
 | 		if (reserve > 0) { | 
 | 			/* | 
 | 			 * Blocks with reserved pages will never free, skip | 
 | 			 * them. | 
 | 			 */ | 
 | 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); | 
 | 			if (pageblock_is_reserved(pfn, block_end_pfn)) | 
 | 				continue; | 
 |  | 
 | 			/* If this block is reserved, account for it */ | 
 | 			if (block_migratetype == MIGRATE_RESERVE) { | 
 | 				reserve--; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* Suitable for reserving if this block is movable */ | 
 | 			if (block_migratetype == MIGRATE_MOVABLE) { | 
 | 				set_pageblock_migratetype(page, | 
 | 							MIGRATE_RESERVE); | 
 | 				move_freepages_block(zone, page, | 
 | 							MIGRATE_RESERVE); | 
 | 				reserve--; | 
 | 				continue; | 
 | 			} | 
 | 		} else if (!old_reserve) { | 
 | 			/* | 
 | 			 * At boot time we don't need to scan the whole zone | 
 | 			 * for turning off MIGRATE_RESERVE. | 
 | 			 */ | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the reserve is met and this is a previous reserved block, | 
 | 		 * take it back | 
 | 		 */ | 
 | 		if (block_migratetype == MIGRATE_RESERVE) { | 
 | 			set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 | 			move_freepages_block(zone, page, MIGRATE_MOVABLE); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Initially all pages are reserved - free ones are freed | 
 |  * up by free_all_bootmem() once the early boot process is | 
 |  * done. Non-atomic initialization, single-pass. | 
 |  */ | 
 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, | 
 | 		unsigned long start_pfn, enum memmap_context context) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long end_pfn = start_pfn + size; | 
 | 	unsigned long pfn; | 
 | 	struct zone *z; | 
 |  | 
 | 	if (highest_memmap_pfn < end_pfn - 1) | 
 | 		highest_memmap_pfn = end_pfn - 1; | 
 |  | 
 | 	z = &NODE_DATA(nid)->node_zones[zone]; | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
 | 		/* | 
 | 		 * There can be holes in boot-time mem_map[]s | 
 | 		 * handed to this function.  They do not | 
 | 		 * exist on hotplugged memory. | 
 | 		 */ | 
 | 		if (context == MEMMAP_EARLY) { | 
 | 			if (!early_pfn_valid(pfn)) | 
 | 				continue; | 
 | 			if (!early_pfn_in_nid(pfn, nid)) | 
 | 				continue; | 
 | 		} | 
 | 		page = pfn_to_page(pfn); | 
 | 		set_page_links(page, zone, nid, pfn); | 
 | 		mminit_verify_page_links(page, zone, nid, pfn); | 
 | 		init_page_count(page); | 
 | 		page_mapcount_reset(page); | 
 | 		page_cpupid_reset_last(page); | 
 | 		SetPageReserved(page); | 
 | 		/* | 
 | 		 * Mark the block movable so that blocks are reserved for | 
 | 		 * movable at startup. This will force kernel allocations | 
 | 		 * to reserve their blocks rather than leaking throughout | 
 | 		 * the address space during boot when many long-lived | 
 | 		 * kernel allocations are made. Later some blocks near | 
 | 		 * the start are marked MIGRATE_RESERVE by | 
 | 		 * setup_zone_migrate_reserve() | 
 | 		 * | 
 | 		 * bitmap is created for zone's valid pfn range. but memmap | 
 | 		 * can be created for invalid pages (for alignment) | 
 | 		 * check here not to call set_pageblock_migratetype() against | 
 | 		 * pfn out of zone. | 
 | 		 */ | 
 | 		if ((z->zone_start_pfn <= pfn) | 
 | 		    && (pfn < zone_end_pfn(z)) | 
 | 		    && !(pfn & (pageblock_nr_pages - 1))) | 
 | 			set_pageblock_migratetype(page, MIGRATE_MOVABLE); | 
 |  | 
 | 		INIT_LIST_HEAD(&page->lru); | 
 | #ifdef WANT_PAGE_VIRTUAL | 
 | 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */ | 
 | 		if (!is_highmem_idx(zone)) | 
 | 			set_page_address(page, __va(pfn << PAGE_SHIFT)); | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | static void __meminit zone_init_free_lists(struct zone *zone) | 
 | { | 
 | 	unsigned int order, t; | 
 | 	for_each_migratetype_order(order, t) { | 
 | 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | 
 | 		zone->free_area[order].nr_free = 0; | 
 | 	} | 
 | } | 
 |  | 
 | #ifndef __HAVE_ARCH_MEMMAP_INIT | 
 | #define memmap_init(size, nid, zone, start_pfn) \ | 
 | 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) | 
 | #endif | 
 |  | 
 | static int zone_batchsize(struct zone *zone) | 
 | { | 
 | #ifdef CONFIG_MMU | 
 | 	int batch; | 
 |  | 
 | 	/* | 
 | 	 * The per-cpu-pages pools are set to around 1000th of the | 
 | 	 * size of the zone.  But no more than 1/2 of a meg. | 
 | 	 * | 
 | 	 * OK, so we don't know how big the cache is.  So guess. | 
 | 	 */ | 
 | 	batch = zone->managed_pages / 1024; | 
 | 	if (batch * PAGE_SIZE > 512 * 1024) | 
 | 		batch = (512 * 1024) / PAGE_SIZE; | 
 | 	batch /= 4;		/* We effectively *= 4 below */ | 
 | 	if (batch < 1) | 
 | 		batch = 1; | 
 |  | 
 | 	/* | 
 | 	 * Clamp the batch to a 2^n - 1 value. Having a power | 
 | 	 * of 2 value was found to be more likely to have | 
 | 	 * suboptimal cache aliasing properties in some cases. | 
 | 	 * | 
 | 	 * For example if 2 tasks are alternately allocating | 
 | 	 * batches of pages, one task can end up with a lot | 
 | 	 * of pages of one half of the possible page colors | 
 | 	 * and the other with pages of the other colors. | 
 | 	 */ | 
 | 	batch = rounddown_pow_of_two(batch + batch/2) - 1; | 
 |  | 
 | 	return batch; | 
 |  | 
 | #else | 
 | 	/* The deferral and batching of frees should be suppressed under NOMMU | 
 | 	 * conditions. | 
 | 	 * | 
 | 	 * The problem is that NOMMU needs to be able to allocate large chunks | 
 | 	 * of contiguous memory as there's no hardware page translation to | 
 | 	 * assemble apparent contiguous memory from discontiguous pages. | 
 | 	 * | 
 | 	 * Queueing large contiguous runs of pages for batching, however, | 
 | 	 * causes the pages to actually be freed in smaller chunks.  As there | 
 | 	 * can be a significant delay between the individual batches being | 
 | 	 * recycled, this leads to the once large chunks of space being | 
 | 	 * fragmented and becoming unavailable for high-order allocations. | 
 | 	 */ | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * pcp->high and pcp->batch values are related and dependent on one another: | 
 |  * ->batch must never be higher then ->high. | 
 |  * The following function updates them in a safe manner without read side | 
 |  * locking. | 
 |  * | 
 |  * Any new users of pcp->batch and pcp->high should ensure they can cope with | 
 |  * those fields changing asynchronously (acording the the above rule). | 
 |  * | 
 |  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | 
 |  * outside of boot time (or some other assurance that no concurrent updaters | 
 |  * exist). | 
 |  */ | 
 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | 
 | 		unsigned long batch) | 
 | { | 
 |        /* start with a fail safe value for batch */ | 
 | 	pcp->batch = 1; | 
 | 	smp_wmb(); | 
 |  | 
 |        /* Update high, then batch, in order */ | 
 | 	pcp->high = high; | 
 | 	smp_wmb(); | 
 |  | 
 | 	pcp->batch = batch; | 
 | } | 
 |  | 
 | /* a companion to pageset_set_high() */ | 
 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) | 
 | { | 
 | 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); | 
 | } | 
 |  | 
 | static void pageset_init(struct per_cpu_pageset *p) | 
 | { | 
 | 	struct per_cpu_pages *pcp; | 
 | 	int migratetype; | 
 |  | 
 | 	memset(p, 0, sizeof(*p)); | 
 |  | 
 | 	pcp = &p->pcp; | 
 | 	pcp->count = 0; | 
 | 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) | 
 | 		INIT_LIST_HEAD(&pcp->lists[migratetype]); | 
 | } | 
 |  | 
 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) | 
 | { | 
 | 	pageset_init(p); | 
 | 	pageset_set_batch(p, batch); | 
 | } | 
 |  | 
 | /* | 
 |  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist | 
 |  * to the value high for the pageset p. | 
 |  */ | 
 | static void pageset_set_high(struct per_cpu_pageset *p, | 
 | 				unsigned long high) | 
 | { | 
 | 	unsigned long batch = max(1UL, high / 4); | 
 | 	if ((high / 4) > (PAGE_SHIFT * 8)) | 
 | 		batch = PAGE_SHIFT * 8; | 
 |  | 
 | 	pageset_update(&p->pcp, high, batch); | 
 | } | 
 |  | 
 | static void pageset_set_high_and_batch(struct zone *zone, | 
 | 				       struct per_cpu_pageset *pcp) | 
 | { | 
 | 	if (percpu_pagelist_fraction) | 
 | 		pageset_set_high(pcp, | 
 | 			(zone->managed_pages / | 
 | 				percpu_pagelist_fraction)); | 
 | 	else | 
 | 		pageset_set_batch(pcp, zone_batchsize(zone)); | 
 | } | 
 |  | 
 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) | 
 | { | 
 | 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | 
 |  | 
 | 	pageset_init(pcp); | 
 | 	pageset_set_high_and_batch(zone, pcp); | 
 | } | 
 |  | 
 | static void __meminit setup_zone_pageset(struct zone *zone) | 
 | { | 
 | 	int cpu; | 
 | 	zone->pageset = alloc_percpu(struct per_cpu_pageset); | 
 | 	for_each_possible_cpu(cpu) | 
 | 		zone_pageset_init(zone, cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate per cpu pagesets and initialize them. | 
 |  * Before this call only boot pagesets were available. | 
 |  */ | 
 | void __init setup_per_cpu_pageset(void) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_populated_zone(zone) | 
 | 		setup_zone_pageset(zone); | 
 | } | 
 |  | 
 | static noinline __init_refok | 
 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) | 
 | { | 
 | 	int i; | 
 | 	size_t alloc_size; | 
 |  | 
 | 	/* | 
 | 	 * The per-page waitqueue mechanism uses hashed waitqueues | 
 | 	 * per zone. | 
 | 	 */ | 
 | 	zone->wait_table_hash_nr_entries = | 
 | 		 wait_table_hash_nr_entries(zone_size_pages); | 
 | 	zone->wait_table_bits = | 
 | 		wait_table_bits(zone->wait_table_hash_nr_entries); | 
 | 	alloc_size = zone->wait_table_hash_nr_entries | 
 | 					* sizeof(wait_queue_head_t); | 
 |  | 
 | 	if (!slab_is_available()) { | 
 | 		zone->wait_table = (wait_queue_head_t *) | 
 | 			memblock_virt_alloc_node_nopanic( | 
 | 				alloc_size, zone->zone_pgdat->node_id); | 
 | 	} else { | 
 | 		/* | 
 | 		 * This case means that a zone whose size was 0 gets new memory | 
 | 		 * via memory hot-add. | 
 | 		 * But it may be the case that a new node was hot-added.  In | 
 | 		 * this case vmalloc() will not be able to use this new node's | 
 | 		 * memory - this wait_table must be initialized to use this new | 
 | 		 * node itself as well. | 
 | 		 * To use this new node's memory, further consideration will be | 
 | 		 * necessary. | 
 | 		 */ | 
 | 		zone->wait_table = vmalloc(alloc_size); | 
 | 	} | 
 | 	if (!zone->wait_table) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) | 
 | 		init_waitqueue_head(zone->wait_table + i); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __meminit void zone_pcp_init(struct zone *zone) | 
 | { | 
 | 	/* | 
 | 	 * per cpu subsystem is not up at this point. The following code | 
 | 	 * relies on the ability of the linker to provide the | 
 | 	 * offset of a (static) per cpu variable into the per cpu area. | 
 | 	 */ | 
 | 	zone->pageset = &boot_pageset; | 
 |  | 
 | 	if (populated_zone(zone)) | 
 | 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n", | 
 | 			zone->name, zone->present_pages, | 
 | 					 zone_batchsize(zone)); | 
 | } | 
 |  | 
 | int __meminit init_currently_empty_zone(struct zone *zone, | 
 | 					unsigned long zone_start_pfn, | 
 | 					unsigned long size, | 
 | 					enum memmap_context context) | 
 | { | 
 | 	struct pglist_data *pgdat = zone->zone_pgdat; | 
 | 	int ret; | 
 | 	ret = zone_wait_table_init(zone, size); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	pgdat->nr_zones = zone_idx(zone) + 1; | 
 |  | 
 | 	zone->zone_start_pfn = zone_start_pfn; | 
 |  | 
 | 	mminit_dprintk(MMINIT_TRACE, "memmap_init", | 
 | 			"Initialising map node %d zone %lu pfns %lu -> %lu\n", | 
 | 			pgdat->node_id, | 
 | 			(unsigned long)zone_idx(zone), | 
 | 			zone_start_pfn, (zone_start_pfn + size)); | 
 |  | 
 | 	zone_init_free_lists(zone); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
 | /* | 
 |  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | 
 |  */ | 
 | int __meminit __early_pfn_to_nid(unsigned long pfn) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int nid; | 
 | 	/* | 
 | 	 * NOTE: The following SMP-unsafe globals are only used early in boot | 
 | 	 * when the kernel is running single-threaded. | 
 | 	 */ | 
 | 	static unsigned long __meminitdata last_start_pfn, last_end_pfn; | 
 | 	static int __meminitdata last_nid; | 
 |  | 
 | 	if (last_start_pfn <= pfn && pfn < last_end_pfn) | 
 | 		return last_nid; | 
 |  | 
 | 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); | 
 | 	if (nid != -1) { | 
 | 		last_start_pfn = start_pfn; | 
 | 		last_end_pfn = end_pfn; | 
 | 		last_nid = nid; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
 |  | 
 | int __meminit early_pfn_to_nid(unsigned long pfn) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	nid = __early_pfn_to_nid(pfn); | 
 | 	if (nid >= 0) | 
 | 		return nid; | 
 | 	/* just returns 0 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | 
 | bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | 
 | { | 
 | 	int nid; | 
 |  | 
 | 	nid = __early_pfn_to_nid(pfn); | 
 | 	if (nid >= 0 && nid != node) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range | 
 |  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. | 
 |  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid | 
 |  * | 
 |  * If an architecture guarantees that all ranges registered contain no holes | 
 |  * and may be freed, this this function may be used instead of calling | 
 |  * memblock_free_early_nid() manually. | 
 |  */ | 
 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, this_nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { | 
 | 		start_pfn = min(start_pfn, max_low_pfn); | 
 | 		end_pfn = min(end_pfn, max_low_pfn); | 
 |  | 
 | 		if (start_pfn < end_pfn) | 
 | 			memblock_free_early_nid(PFN_PHYS(start_pfn), | 
 | 					(end_pfn - start_pfn) << PAGE_SHIFT, | 
 | 					this_nid); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * sparse_memory_present_with_active_regions - Call memory_present for each active range | 
 |  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. | 
 |  * | 
 |  * If an architecture guarantees that all ranges registered contain no holes and may | 
 |  * be freed, this function may be used instead of calling memory_present() manually. | 
 |  */ | 
 | void __init sparse_memory_present_with_active_regions(int nid) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, this_nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) | 
 | 		memory_present(this_nid, start_pfn, end_pfn); | 
 | } | 
 |  | 
 | /** | 
 |  * get_pfn_range_for_nid - Return the start and end page frames for a node | 
 |  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. | 
 |  * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | 
 |  * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | 
 |  * | 
 |  * It returns the start and end page frame of a node based on information | 
 |  * provided by memblock_set_node(). If called for a node | 
 |  * with no available memory, a warning is printed and the start and end | 
 |  * PFNs will be 0. | 
 |  */ | 
 | void __meminit get_pfn_range_for_nid(unsigned int nid, | 
 | 			unsigned long *start_pfn, unsigned long *end_pfn) | 
 | { | 
 | 	unsigned long this_start_pfn, this_end_pfn; | 
 | 	int i; | 
 |  | 
 | 	*start_pfn = -1UL; | 
 | 	*end_pfn = 0; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { | 
 | 		*start_pfn = min(*start_pfn, this_start_pfn); | 
 | 		*end_pfn = max(*end_pfn, this_end_pfn); | 
 | 	} | 
 |  | 
 | 	if (*start_pfn == -1UL) | 
 | 		*start_pfn = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This finds a zone that can be used for ZONE_MOVABLE pages. The | 
 |  * assumption is made that zones within a node are ordered in monotonic | 
 |  * increasing memory addresses so that the "highest" populated zone is used | 
 |  */ | 
 | static void __init find_usable_zone_for_movable(void) | 
 | { | 
 | 	int zone_index; | 
 | 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | 
 | 		if (zone_index == ZONE_MOVABLE) | 
 | 			continue; | 
 |  | 
 | 		if (arch_zone_highest_possible_pfn[zone_index] > | 
 | 				arch_zone_lowest_possible_pfn[zone_index]) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(zone_index == -1); | 
 | 	movable_zone = zone_index; | 
 | } | 
 |  | 
 | /* | 
 |  * The zone ranges provided by the architecture do not include ZONE_MOVABLE | 
 |  * because it is sized independent of architecture. Unlike the other zones, | 
 |  * the starting point for ZONE_MOVABLE is not fixed. It may be different | 
 |  * in each node depending on the size of each node and how evenly kernelcore | 
 |  * is distributed. This helper function adjusts the zone ranges | 
 |  * provided by the architecture for a given node by using the end of the | 
 |  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | 
 |  * zones within a node are in order of monotonic increases memory addresses | 
 |  */ | 
 | static void __meminit adjust_zone_range_for_zone_movable(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *zone_start_pfn, | 
 | 					unsigned long *zone_end_pfn) | 
 | { | 
 | 	/* Only adjust if ZONE_MOVABLE is on this node */ | 
 | 	if (zone_movable_pfn[nid]) { | 
 | 		/* Size ZONE_MOVABLE */ | 
 | 		if (zone_type == ZONE_MOVABLE) { | 
 | 			*zone_start_pfn = zone_movable_pfn[nid]; | 
 | 			*zone_end_pfn = min(node_end_pfn, | 
 | 				arch_zone_highest_possible_pfn[movable_zone]); | 
 |  | 
 | 		/* Adjust for ZONE_MOVABLE starting within this range */ | 
 | 		} else if (*zone_start_pfn < zone_movable_pfn[nid] && | 
 | 				*zone_end_pfn > zone_movable_pfn[nid]) { | 
 | 			*zone_end_pfn = zone_movable_pfn[nid]; | 
 |  | 
 | 		/* Check if this whole range is within ZONE_MOVABLE */ | 
 | 		} else if (*zone_start_pfn >= zone_movable_pfn[nid]) | 
 | 			*zone_start_pfn = *zone_end_pfn; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of pages a zone spans in a node, including holes | 
 |  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | 
 |  */ | 
 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *ignored) | 
 | { | 
 | 	unsigned long zone_start_pfn, zone_end_pfn; | 
 |  | 
 | 	/* Get the start and end of the zone */ | 
 | 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; | 
 | 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | 
 | 	adjust_zone_range_for_zone_movable(nid, zone_type, | 
 | 				node_start_pfn, node_end_pfn, | 
 | 				&zone_start_pfn, &zone_end_pfn); | 
 |  | 
 | 	/* Check that this node has pages within the zone's required range */ | 
 | 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | 
 | 		return 0; | 
 |  | 
 | 	/* Move the zone boundaries inside the node if necessary */ | 
 | 	zone_end_pfn = min(zone_end_pfn, node_end_pfn); | 
 | 	zone_start_pfn = max(zone_start_pfn, node_start_pfn); | 
 |  | 
 | 	/* Return the spanned pages */ | 
 | 	return zone_end_pfn - zone_start_pfn; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | 
 |  * then all holes in the requested range will be accounted for. | 
 |  */ | 
 | unsigned long __meminit __absent_pages_in_range(int nid, | 
 | 				unsigned long range_start_pfn, | 
 | 				unsigned long range_end_pfn) | 
 | { | 
 | 	unsigned long nr_absent = range_end_pfn - range_start_pfn; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | 
 | 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | 
 | 		nr_absent -= end_pfn - start_pfn; | 
 | 	} | 
 | 	return nr_absent; | 
 | } | 
 |  | 
 | /** | 
 |  * absent_pages_in_range - Return number of page frames in holes within a range | 
 |  * @start_pfn: The start PFN to start searching for holes | 
 |  * @end_pfn: The end PFN to stop searching for holes | 
 |  * | 
 |  * It returns the number of pages frames in memory holes within a range. | 
 |  */ | 
 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | 
 | 							unsigned long end_pfn) | 
 | { | 
 | 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | 
 | } | 
 |  | 
 | /* Return the number of page frames in holes in a zone on a node */ | 
 | static unsigned long __meminit zone_absent_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *ignored) | 
 | { | 
 | 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; | 
 | 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | 
 | 	unsigned long zone_start_pfn, zone_end_pfn; | 
 |  | 
 | 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); | 
 | 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | 
 |  | 
 | 	adjust_zone_range_for_zone_movable(nid, zone_type, | 
 | 			node_start_pfn, node_end_pfn, | 
 | 			&zone_start_pfn, &zone_end_pfn); | 
 | 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); | 
 | } | 
 |  | 
 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, | 
 | 					unsigned long zone_type, | 
 | 					unsigned long node_start_pfn, | 
 | 					unsigned long node_end_pfn, | 
 | 					unsigned long *zones_size) | 
 | { | 
 | 	return zones_size[zone_type]; | 
 | } | 
 |  | 
 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, | 
 | 						unsigned long zone_type, | 
 | 						unsigned long node_start_pfn, | 
 | 						unsigned long node_end_pfn, | 
 | 						unsigned long *zholes_size) | 
 | { | 
 | 	if (!zholes_size) | 
 | 		return 0; | 
 |  | 
 | 	return zholes_size[zone_type]; | 
 | } | 
 |  | 
 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
 |  | 
 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, | 
 | 						unsigned long node_start_pfn, | 
 | 						unsigned long node_end_pfn, | 
 | 						unsigned long *zones_size, | 
 | 						unsigned long *zholes_size) | 
 | { | 
 | 	unsigned long realtotalpages, totalpages = 0; | 
 | 	enum zone_type i; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, | 
 | 							 node_start_pfn, | 
 | 							 node_end_pfn, | 
 | 							 zones_size); | 
 | 	pgdat->node_spanned_pages = totalpages; | 
 |  | 
 | 	realtotalpages = totalpages; | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		realtotalpages -= | 
 | 			zone_absent_pages_in_node(pgdat->node_id, i, | 
 | 						  node_start_pfn, node_end_pfn, | 
 | 						  zholes_size); | 
 | 	pgdat->node_present_pages = realtotalpages; | 
 | 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | 
 | 							realtotalpages); | 
 | } | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM | 
 | /* | 
 |  * Calculate the size of the zone->blockflags rounded to an unsigned long | 
 |  * Start by making sure zonesize is a multiple of pageblock_order by rounding | 
 |  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | 
 |  * round what is now in bits to nearest long in bits, then return it in | 
 |  * bytes. | 
 |  */ | 
 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) | 
 | { | 
 | 	unsigned long usemapsize; | 
 |  | 
 | 	zonesize += zone_start_pfn & (pageblock_nr_pages-1); | 
 | 	usemapsize = roundup(zonesize, pageblock_nr_pages); | 
 | 	usemapsize = usemapsize >> pageblock_order; | 
 | 	usemapsize *= NR_PAGEBLOCK_BITS; | 
 | 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | 
 |  | 
 | 	return usemapsize / 8; | 
 | } | 
 |  | 
 | static void __init setup_usemap(struct pglist_data *pgdat, | 
 | 				struct zone *zone, | 
 | 				unsigned long zone_start_pfn, | 
 | 				unsigned long zonesize) | 
 | { | 
 | 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); | 
 | 	zone->pageblock_flags = NULL; | 
 | 	if (usemapsize) | 
 | 		zone->pageblock_flags = | 
 | 			memblock_virt_alloc_node_nopanic(usemapsize, | 
 | 							 pgdat->node_id); | 
 | } | 
 | #else | 
 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, | 
 | 				unsigned long zone_start_pfn, unsigned long zonesize) {} | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE | 
 |  | 
 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ | 
 | void __paginginit set_pageblock_order(void) | 
 | { | 
 | 	unsigned int order; | 
 |  | 
 | 	/* Check that pageblock_nr_pages has not already been setup */ | 
 | 	if (pageblock_order) | 
 | 		return; | 
 |  | 
 | 	if (HPAGE_SHIFT > PAGE_SHIFT) | 
 | 		order = HUGETLB_PAGE_ORDER; | 
 | 	else | 
 | 		order = MAX_ORDER - 1; | 
 |  | 
 | 	/* | 
 | 	 * Assume the largest contiguous order of interest is a huge page. | 
 | 	 * This value may be variable depending on boot parameters on IA64 and | 
 | 	 * powerpc. | 
 | 	 */ | 
 | 	pageblock_order = order; | 
 | } | 
 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
 |  | 
 | /* | 
 |  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | 
 |  * is unused as pageblock_order is set at compile-time. See | 
 |  * include/linux/pageblock-flags.h for the values of pageblock_order based on | 
 |  * the kernel config | 
 |  */ | 
 | void __paginginit set_pageblock_order(void) | 
 | { | 
 | } | 
 |  | 
 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | 
 |  | 
 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, | 
 | 						   unsigned long present_pages) | 
 | { | 
 | 	unsigned long pages = spanned_pages; | 
 |  | 
 | 	/* | 
 | 	 * Provide a more accurate estimation if there are holes within | 
 | 	 * the zone and SPARSEMEM is in use. If there are holes within the | 
 | 	 * zone, each populated memory region may cost us one or two extra | 
 | 	 * memmap pages due to alignment because memmap pages for each | 
 | 	 * populated regions may not naturally algined on page boundary. | 
 | 	 * So the (present_pages >> 4) heuristic is a tradeoff for that. | 
 | 	 */ | 
 | 	if (spanned_pages > present_pages + (present_pages >> 4) && | 
 | 	    IS_ENABLED(CONFIG_SPARSEMEM)) | 
 | 		pages = present_pages; | 
 |  | 
 | 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the zone data structures: | 
 |  *   - mark all pages reserved | 
 |  *   - mark all memory queues empty | 
 |  *   - clear the memory bitmaps | 
 |  * | 
 |  * NOTE: pgdat should get zeroed by caller. | 
 |  */ | 
 | static void __paginginit free_area_init_core(struct pglist_data *pgdat, | 
 | 		unsigned long node_start_pfn, unsigned long node_end_pfn, | 
 | 		unsigned long *zones_size, unsigned long *zholes_size) | 
 | { | 
 | 	enum zone_type j; | 
 | 	int nid = pgdat->node_id; | 
 | 	unsigned long zone_start_pfn = pgdat->node_start_pfn; | 
 | 	int ret; | 
 |  | 
 | 	pgdat_resize_init(pgdat); | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | 	spin_lock_init(&pgdat->numabalancing_migrate_lock); | 
 | 	pgdat->numabalancing_migrate_nr_pages = 0; | 
 | 	pgdat->numabalancing_migrate_next_window = jiffies; | 
 | #endif | 
 | 	init_waitqueue_head(&pgdat->kswapd_wait); | 
 | 	init_waitqueue_head(&pgdat->pfmemalloc_wait); | 
 | 	pgdat_page_ext_init(pgdat); | 
 |  | 
 | 	for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 		struct zone *zone = pgdat->node_zones + j; | 
 | 		unsigned long size, realsize, freesize, memmap_pages; | 
 |  | 
 | 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn, | 
 | 						  node_end_pfn, zones_size); | 
 | 		realsize = freesize = size - zone_absent_pages_in_node(nid, j, | 
 | 								node_start_pfn, | 
 | 								node_end_pfn, | 
 | 								zholes_size); | 
 |  | 
 | 		/* | 
 | 		 * Adjust freesize so that it accounts for how much memory | 
 | 		 * is used by this zone for memmap. This affects the watermark | 
 | 		 * and per-cpu initialisations | 
 | 		 */ | 
 | 		memmap_pages = calc_memmap_size(size, realsize); | 
 | 		if (!is_highmem_idx(j)) { | 
 | 			if (freesize >= memmap_pages) { | 
 | 				freesize -= memmap_pages; | 
 | 				if (memmap_pages) | 
 | 					printk(KERN_DEBUG | 
 | 					       "  %s zone: %lu pages used for memmap\n", | 
 | 					       zone_names[j], memmap_pages); | 
 | 			} else | 
 | 				printk(KERN_WARNING | 
 | 					"  %s zone: %lu pages exceeds freesize %lu\n", | 
 | 					zone_names[j], memmap_pages, freesize); | 
 | 		} | 
 |  | 
 | 		/* Account for reserved pages */ | 
 | 		if (j == 0 && freesize > dma_reserve) { | 
 | 			freesize -= dma_reserve; | 
 | 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n", | 
 | 					zone_names[0], dma_reserve); | 
 | 		} | 
 |  | 
 | 		if (!is_highmem_idx(j)) | 
 | 			nr_kernel_pages += freesize; | 
 | 		/* Charge for highmem memmap if there are enough kernel pages */ | 
 | 		else if (nr_kernel_pages > memmap_pages * 2) | 
 | 			nr_kernel_pages -= memmap_pages; | 
 | 		nr_all_pages += freesize; | 
 |  | 
 | 		zone->spanned_pages = size; | 
 | 		zone->present_pages = realsize; | 
 | 		/* | 
 | 		 * Set an approximate value for lowmem here, it will be adjusted | 
 | 		 * when the bootmem allocator frees pages into the buddy system. | 
 | 		 * And all highmem pages will be managed by the buddy system. | 
 | 		 */ | 
 | 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | 
 | #ifdef CONFIG_NUMA | 
 | 		zone->node = nid; | 
 | 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) | 
 | 						/ 100; | 
 | 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; | 
 | #endif | 
 | 		zone->name = zone_names[j]; | 
 | 		spin_lock_init(&zone->lock); | 
 | 		spin_lock_init(&zone->lru_lock); | 
 | 		zone_seqlock_init(zone); | 
 | 		zone->zone_pgdat = pgdat; | 
 | 		zone_pcp_init(zone); | 
 |  | 
 | 		/* For bootup, initialized properly in watermark setup */ | 
 | 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); | 
 |  | 
 | 		lruvec_init(&zone->lruvec); | 
 | 		if (!size) | 
 | 			continue; | 
 |  | 
 | 		set_pageblock_order(); | 
 | 		setup_usemap(pgdat, zone, zone_start_pfn, size); | 
 | 		ret = init_currently_empty_zone(zone, zone_start_pfn, | 
 | 						size, MEMMAP_EARLY); | 
 | 		BUG_ON(ret); | 
 | 		memmap_init(size, nid, j, zone_start_pfn); | 
 | 		zone_start_pfn += size; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) | 
 | { | 
 | 	/* Skip empty nodes */ | 
 | 	if (!pgdat->node_spanned_pages) | 
 | 		return; | 
 |  | 
 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
 | 	/* ia64 gets its own node_mem_map, before this, without bootmem */ | 
 | 	if (!pgdat->node_mem_map) { | 
 | 		unsigned long size, start, end; | 
 | 		struct page *map; | 
 |  | 
 | 		/* | 
 | 		 * The zone's endpoints aren't required to be MAX_ORDER | 
 | 		 * aligned but the node_mem_map endpoints must be in order | 
 | 		 * for the buddy allocator to function correctly. | 
 | 		 */ | 
 | 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); | 
 | 		end = pgdat_end_pfn(pgdat); | 
 | 		end = ALIGN(end, MAX_ORDER_NR_PAGES); | 
 | 		size =  (end - start) * sizeof(struct page); | 
 | 		map = alloc_remap(pgdat->node_id, size); | 
 | 		if (!map) | 
 | 			map = memblock_virt_alloc_node_nopanic(size, | 
 | 							       pgdat->node_id); | 
 | 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); | 
 | 	} | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
 | 	/* | 
 | 	 * With no DISCONTIG, the global mem_map is just set as node 0's | 
 | 	 */ | 
 | 	if (pgdat == NODE_DATA(0)) { | 
 | 		mem_map = NODE_DATA(0)->node_mem_map; | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
 | 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn) | 
 | 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); | 
 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
 | 	} | 
 | #endif | 
 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ | 
 | } | 
 |  | 
 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, | 
 | 		unsigned long node_start_pfn, unsigned long *zholes_size) | 
 | { | 
 | 	pg_data_t *pgdat = NODE_DATA(nid); | 
 | 	unsigned long start_pfn = 0; | 
 | 	unsigned long end_pfn = 0; | 
 |  | 
 | 	/* pg_data_t should be reset to zero when it's allocated */ | 
 | 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); | 
 |  | 
 | 	pgdat->node_id = nid; | 
 | 	pgdat->node_start_pfn = node_start_pfn; | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
 | 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 | 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, | 
 | 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); | 
 | #endif | 
 | 	calculate_node_totalpages(pgdat, start_pfn, end_pfn, | 
 | 				  zones_size, zholes_size); | 
 |  | 
 | 	alloc_node_mem_map(pgdat); | 
 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 
 | 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | 
 | 		nid, (unsigned long)pgdat, | 
 | 		(unsigned long)pgdat->node_mem_map); | 
 | #endif | 
 |  | 
 | 	free_area_init_core(pgdat, start_pfn, end_pfn, | 
 | 			    zones_size, zholes_size); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 | /* | 
 |  * Figure out the number of possible node ids. | 
 |  */ | 
 | void __init setup_nr_node_ids(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int highest = 0; | 
 |  | 
 | 	for_each_node_mask(node, node_possible_map) | 
 | 		highest = node; | 
 | 	nr_node_ids = highest + 1; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * node_map_pfn_alignment - determine the maximum internode alignment | 
 |  * | 
 |  * This function should be called after node map is populated and sorted. | 
 |  * It calculates the maximum power of two alignment which can distinguish | 
 |  * all the nodes. | 
 |  * | 
 |  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | 
 |  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the | 
 |  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is | 
 |  * shifted, 1GiB is enough and this function will indicate so. | 
 |  * | 
 |  * This is used to test whether pfn -> nid mapping of the chosen memory | 
 |  * model has fine enough granularity to avoid incorrect mapping for the | 
 |  * populated node map. | 
 |  * | 
 |  * Returns the determined alignment in pfn's.  0 if there is no alignment | 
 |  * requirement (single node). | 
 |  */ | 
 | unsigned long __init node_map_pfn_alignment(void) | 
 | { | 
 | 	unsigned long accl_mask = 0, last_end = 0; | 
 | 	unsigned long start, end, mask; | 
 | 	int last_nid = -1; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { | 
 | 		if (!start || last_nid < 0 || last_nid == nid) { | 
 | 			last_nid = nid; | 
 | 			last_end = end; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Start with a mask granular enough to pin-point to the | 
 | 		 * start pfn and tick off bits one-by-one until it becomes | 
 | 		 * too coarse to separate the current node from the last. | 
 | 		 */ | 
 | 		mask = ~((1 << __ffs(start)) - 1); | 
 | 		while (mask && last_end <= (start & (mask << 1))) | 
 | 			mask <<= 1; | 
 |  | 
 | 		/* accumulate all internode masks */ | 
 | 		accl_mask |= mask; | 
 | 	} | 
 |  | 
 | 	/* convert mask to number of pages */ | 
 | 	return ~accl_mask + 1; | 
 | } | 
 |  | 
 | /* Find the lowest pfn for a node */ | 
 | static unsigned long __init find_min_pfn_for_node(int nid) | 
 | { | 
 | 	unsigned long min_pfn = ULONG_MAX; | 
 | 	unsigned long start_pfn; | 
 | 	int i; | 
 |  | 
 | 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) | 
 | 		min_pfn = min(min_pfn, start_pfn); | 
 |  | 
 | 	if (min_pfn == ULONG_MAX) { | 
 | 		printk(KERN_WARNING | 
 | 			"Could not find start_pfn for node %d\n", nid); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return min_pfn; | 
 | } | 
 |  | 
 | /** | 
 |  * find_min_pfn_with_active_regions - Find the minimum PFN registered | 
 |  * | 
 |  * It returns the minimum PFN based on information provided via | 
 |  * memblock_set_node(). | 
 |  */ | 
 | unsigned long __init find_min_pfn_with_active_regions(void) | 
 | { | 
 | 	return find_min_pfn_for_node(MAX_NUMNODES); | 
 | } | 
 |  | 
 | /* | 
 |  * early_calculate_totalpages() | 
 |  * Sum pages in active regions for movable zone. | 
 |  * Populate N_MEMORY for calculating usable_nodes. | 
 |  */ | 
 | static unsigned long __init early_calculate_totalpages(void) | 
 | { | 
 | 	unsigned long totalpages = 0; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid; | 
 |  | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | 
 | 		unsigned long pages = end_pfn - start_pfn; | 
 |  | 
 | 		totalpages += pages; | 
 | 		if (pages) | 
 | 			node_set_state(nid, N_MEMORY); | 
 | 	} | 
 | 	return totalpages; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the PFN the Movable zone begins in each node. Kernel memory | 
 |  * is spread evenly between nodes as long as the nodes have enough | 
 |  * memory. When they don't, some nodes will have more kernelcore than | 
 |  * others | 
 |  */ | 
 | static void __init find_zone_movable_pfns_for_nodes(void) | 
 | { | 
 | 	int i, nid; | 
 | 	unsigned long usable_startpfn; | 
 | 	unsigned long kernelcore_node, kernelcore_remaining; | 
 | 	/* save the state before borrow the nodemask */ | 
 | 	nodemask_t saved_node_state = node_states[N_MEMORY]; | 
 | 	unsigned long totalpages = early_calculate_totalpages(); | 
 | 	int usable_nodes = nodes_weight(node_states[N_MEMORY]); | 
 | 	struct memblock_region *r; | 
 |  | 
 | 	/* Need to find movable_zone earlier when movable_node is specified. */ | 
 | 	find_usable_zone_for_movable(); | 
 |  | 
 | 	/* | 
 | 	 * If movable_node is specified, ignore kernelcore and movablecore | 
 | 	 * options. | 
 | 	 */ | 
 | 	if (movable_node_is_enabled()) { | 
 | 		for_each_memblock(memory, r) { | 
 | 			if (!memblock_is_hotpluggable(r)) | 
 | 				continue; | 
 |  | 
 | 			nid = r->nid; | 
 |  | 
 | 			usable_startpfn = PFN_DOWN(r->base); | 
 | 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ? | 
 | 				min(usable_startpfn, zone_movable_pfn[nid]) : | 
 | 				usable_startpfn; | 
 | 		} | 
 |  | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If movablecore=nn[KMG] was specified, calculate what size of | 
 | 	 * kernelcore that corresponds so that memory usable for | 
 | 	 * any allocation type is evenly spread. If both kernelcore | 
 | 	 * and movablecore are specified, then the value of kernelcore | 
 | 	 * will be used for required_kernelcore if it's greater than | 
 | 	 * what movablecore would have allowed. | 
 | 	 */ | 
 | 	if (required_movablecore) { | 
 | 		unsigned long corepages; | 
 |  | 
 | 		/* | 
 | 		 * Round-up so that ZONE_MOVABLE is at least as large as what | 
 | 		 * was requested by the user | 
 | 		 */ | 
 | 		required_movablecore = | 
 | 			roundup(required_movablecore, MAX_ORDER_NR_PAGES); | 
 | 		corepages = totalpages - required_movablecore; | 
 |  | 
 | 		required_kernelcore = max(required_kernelcore, corepages); | 
 | 	} | 
 |  | 
 | 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */ | 
 | 	if (!required_kernelcore) | 
 | 		goto out; | 
 |  | 
 | 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | 
 | 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; | 
 |  | 
 | restart: | 
 | 	/* Spread kernelcore memory as evenly as possible throughout nodes */ | 
 | 	kernelcore_node = required_kernelcore / usable_nodes; | 
 | 	for_each_node_state(nid, N_MEMORY) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 |  | 
 | 		/* | 
 | 		 * Recalculate kernelcore_node if the division per node | 
 | 		 * now exceeds what is necessary to satisfy the requested | 
 | 		 * amount of memory for the kernel | 
 | 		 */ | 
 | 		if (required_kernelcore < kernelcore_node) | 
 | 			kernelcore_node = required_kernelcore / usable_nodes; | 
 |  | 
 | 		/* | 
 | 		 * As the map is walked, we track how much memory is usable | 
 | 		 * by the kernel using kernelcore_remaining. When it is | 
 | 		 * 0, the rest of the node is usable by ZONE_MOVABLE | 
 | 		 */ | 
 | 		kernelcore_remaining = kernelcore_node; | 
 |  | 
 | 		/* Go through each range of PFNs within this node */ | 
 | 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { | 
 | 			unsigned long size_pages; | 
 |  | 
 | 			start_pfn = max(start_pfn, zone_movable_pfn[nid]); | 
 | 			if (start_pfn >= end_pfn) | 
 | 				continue; | 
 |  | 
 | 			/* Account for what is only usable for kernelcore */ | 
 | 			if (start_pfn < usable_startpfn) { | 
 | 				unsigned long kernel_pages; | 
 | 				kernel_pages = min(end_pfn, usable_startpfn) | 
 | 								- start_pfn; | 
 |  | 
 | 				kernelcore_remaining -= min(kernel_pages, | 
 | 							kernelcore_remaining); | 
 | 				required_kernelcore -= min(kernel_pages, | 
 | 							required_kernelcore); | 
 |  | 
 | 				/* Continue if range is now fully accounted */ | 
 | 				if (end_pfn <= usable_startpfn) { | 
 |  | 
 | 					/* | 
 | 					 * Push zone_movable_pfn to the end so | 
 | 					 * that if we have to rebalance | 
 | 					 * kernelcore across nodes, we will | 
 | 					 * not double account here | 
 | 					 */ | 
 | 					zone_movable_pfn[nid] = end_pfn; | 
 | 					continue; | 
 | 				} | 
 | 				start_pfn = usable_startpfn; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * The usable PFN range for ZONE_MOVABLE is from | 
 | 			 * start_pfn->end_pfn. Calculate size_pages as the | 
 | 			 * number of pages used as kernelcore | 
 | 			 */ | 
 | 			size_pages = end_pfn - start_pfn; | 
 | 			if (size_pages > kernelcore_remaining) | 
 | 				size_pages = kernelcore_remaining; | 
 | 			zone_movable_pfn[nid] = start_pfn + size_pages; | 
 |  | 
 | 			/* | 
 | 			 * Some kernelcore has been met, update counts and | 
 | 			 * break if the kernelcore for this node has been | 
 | 			 * satisfied | 
 | 			 */ | 
 | 			required_kernelcore -= min(required_kernelcore, | 
 | 								size_pages); | 
 | 			kernelcore_remaining -= size_pages; | 
 | 			if (!kernelcore_remaining) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there is still required_kernelcore, we do another pass with one | 
 | 	 * less node in the count. This will push zone_movable_pfn[nid] further | 
 | 	 * along on the nodes that still have memory until kernelcore is | 
 | 	 * satisfied | 
 | 	 */ | 
 | 	usable_nodes--; | 
 | 	if (usable_nodes && required_kernelcore > usable_nodes) | 
 | 		goto restart; | 
 |  | 
 | out2: | 
 | 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ | 
 | 	for (nid = 0; nid < MAX_NUMNODES; nid++) | 
 | 		zone_movable_pfn[nid] = | 
 | 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | 
 |  | 
 | out: | 
 | 	/* restore the node_state */ | 
 | 	node_states[N_MEMORY] = saved_node_state; | 
 | } | 
 |  | 
 | /* Any regular or high memory on that node ? */ | 
 | static void check_for_memory(pg_data_t *pgdat, int nid) | 
 | { | 
 | 	enum zone_type zone_type; | 
 |  | 
 | 	if (N_MEMORY == N_NORMAL_MEMORY) | 
 | 		return; | 
 |  | 
 | 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | 
 | 		struct zone *zone = &pgdat->node_zones[zone_type]; | 
 | 		if (populated_zone(zone)) { | 
 | 			node_set_state(nid, N_HIGH_MEMORY); | 
 | 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | 
 | 			    zone_type <= ZONE_NORMAL) | 
 | 				node_set_state(nid, N_NORMAL_MEMORY); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * free_area_init_nodes - Initialise all pg_data_t and zone data | 
 |  * @max_zone_pfn: an array of max PFNs for each zone | 
 |  * | 
 |  * This will call free_area_init_node() for each active node in the system. | 
 |  * Using the page ranges provided by memblock_set_node(), the size of each | 
 |  * zone in each node and their holes is calculated. If the maximum PFN | 
 |  * between two adjacent zones match, it is assumed that the zone is empty. | 
 |  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | 
 |  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | 
 |  * starts where the previous one ended. For example, ZONE_DMA32 starts | 
 |  * at arch_max_dma_pfn. | 
 |  */ | 
 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	int i, nid; | 
 |  | 
 | 	/* Record where the zone boundaries are */ | 
 | 	memset(arch_zone_lowest_possible_pfn, 0, | 
 | 				sizeof(arch_zone_lowest_possible_pfn)); | 
 | 	memset(arch_zone_highest_possible_pfn, 0, | 
 | 				sizeof(arch_zone_highest_possible_pfn)); | 
 | 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | 
 | 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | 
 | 	for (i = 1; i < MAX_NR_ZONES; i++) { | 
 | 		if (i == ZONE_MOVABLE) | 
 | 			continue; | 
 | 		arch_zone_lowest_possible_pfn[i] = | 
 | 			arch_zone_highest_possible_pfn[i-1]; | 
 | 		arch_zone_highest_possible_pfn[i] = | 
 | 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | 
 | 	} | 
 | 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; | 
 | 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | 
 |  | 
 | 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */ | 
 | 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | 
 | 	find_zone_movable_pfns_for_nodes(); | 
 |  | 
 | 	/* Print out the zone ranges */ | 
 | 	pr_info("Zone ranges:\n"); | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 		if (i == ZONE_MOVABLE) | 
 | 			continue; | 
 | 		pr_info("  %-8s ", zone_names[i]); | 
 | 		if (arch_zone_lowest_possible_pfn[i] == | 
 | 				arch_zone_highest_possible_pfn[i]) | 
 | 			pr_cont("empty\n"); | 
 | 		else | 
 | 			pr_cont("[mem %#018Lx-%#018Lx]\n", | 
 | 				(u64)arch_zone_lowest_possible_pfn[i] | 
 | 					<< PAGE_SHIFT, | 
 | 				((u64)arch_zone_highest_possible_pfn[i] | 
 | 					<< PAGE_SHIFT) - 1); | 
 | 	} | 
 |  | 
 | 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */ | 
 | 	pr_info("Movable zone start for each node\n"); | 
 | 	for (i = 0; i < MAX_NUMNODES; i++) { | 
 | 		if (zone_movable_pfn[i]) | 
 | 			pr_info("  Node %d: %#018Lx\n", i, | 
 | 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT); | 
 | 	} | 
 |  | 
 | 	/* Print out the early node map */ | 
 | 	pr_info("Early memory node ranges\n"); | 
 | 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) | 
 | 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid, | 
 | 			(u64)start_pfn << PAGE_SHIFT, | 
 | 			((u64)end_pfn << PAGE_SHIFT) - 1); | 
 |  | 
 | 	/* Initialise every node */ | 
 | 	mminit_verify_pageflags_layout(); | 
 | 	setup_nr_node_ids(); | 
 | 	for_each_online_node(nid) { | 
 | 		pg_data_t *pgdat = NODE_DATA(nid); | 
 | 		free_area_init_node(nid, NULL, | 
 | 				find_min_pfn_for_node(nid), NULL); | 
 |  | 
 | 		/* Any memory on that node */ | 
 | 		if (pgdat->node_present_pages) | 
 | 			node_set_state(nid, N_MEMORY); | 
 | 		check_for_memory(pgdat, nid); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init cmdline_parse_core(char *p, unsigned long *core) | 
 | { | 
 | 	unsigned long long coremem; | 
 | 	if (!p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	coremem = memparse(p, &p); | 
 | 	*core = coremem >> PAGE_SHIFT; | 
 |  | 
 | 	/* Paranoid check that UL is enough for the coremem value */ | 
 | 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * kernelcore=size sets the amount of memory for use for allocations that | 
 |  * cannot be reclaimed or migrated. | 
 |  */ | 
 | static int __init cmdline_parse_kernelcore(char *p) | 
 | { | 
 | 	return cmdline_parse_core(p, &required_kernelcore); | 
 | } | 
 |  | 
 | /* | 
 |  * movablecore=size sets the amount of memory for use for allocations that | 
 |  * can be reclaimed or migrated. | 
 |  */ | 
 | static int __init cmdline_parse_movablecore(char *p) | 
 | { | 
 | 	return cmdline_parse_core(p, &required_movablecore); | 
 | } | 
 |  | 
 | early_param("kernelcore", cmdline_parse_kernelcore); | 
 | early_param("movablecore", cmdline_parse_movablecore); | 
 |  | 
 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
 |  | 
 | void adjust_managed_page_count(struct page *page, long count) | 
 | { | 
 | 	spin_lock(&managed_page_count_lock); | 
 | 	page_zone(page)->managed_pages += count; | 
 | 	totalram_pages += count; | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	if (PageHighMem(page)) | 
 | 		totalhigh_pages += count; | 
 | #endif | 
 | 	spin_unlock(&managed_page_count_lock); | 
 | } | 
 | EXPORT_SYMBOL(adjust_managed_page_count); | 
 |  | 
 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) | 
 | { | 
 | 	void *pos; | 
 | 	unsigned long pages = 0; | 
 |  | 
 | 	start = (void *)PAGE_ALIGN((unsigned long)start); | 
 | 	end = (void *)((unsigned long)end & PAGE_MASK); | 
 | 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | 
 | 		if ((unsigned int)poison <= 0xFF) | 
 | 			memset(pos, poison, PAGE_SIZE); | 
 | 		free_reserved_page(virt_to_page(pos)); | 
 | 	} | 
 |  | 
 | 	if (pages && s) | 
 | 		pr_info("Freeing %s memory: %ldK (%p - %p)\n", | 
 | 			s, pages << (PAGE_SHIFT - 10), start, end); | 
 |  | 
 | 	return pages; | 
 | } | 
 | EXPORT_SYMBOL(free_reserved_area); | 
 |  | 
 | #ifdef	CONFIG_HIGHMEM | 
 | void free_highmem_page(struct page *page) | 
 | { | 
 | 	__free_reserved_page(page); | 
 | 	totalram_pages++; | 
 | 	page_zone(page)->managed_pages++; | 
 | 	totalhigh_pages++; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void __init mem_init_print_info(const char *str) | 
 | { | 
 | 	unsigned long physpages, codesize, datasize, rosize, bss_size; | 
 | 	unsigned long init_code_size, init_data_size; | 
 |  | 
 | 	physpages = get_num_physpages(); | 
 | 	codesize = _etext - _stext; | 
 | 	datasize = _edata - _sdata; | 
 | 	rosize = __end_rodata - __start_rodata; | 
 | 	bss_size = __bss_stop - __bss_start; | 
 | 	init_data_size = __init_end - __init_begin; | 
 | 	init_code_size = _einittext - _sinittext; | 
 |  | 
 | 	/* | 
 | 	 * Detect special cases and adjust section sizes accordingly: | 
 | 	 * 1) .init.* may be embedded into .data sections | 
 | 	 * 2) .init.text.* may be out of [__init_begin, __init_end], | 
 | 	 *    please refer to arch/tile/kernel/vmlinux.lds.S. | 
 | 	 * 3) .rodata.* may be embedded into .text or .data sections. | 
 | 	 */ | 
 | #define adj_init_size(start, end, size, pos, adj) \ | 
 | 	do { \ | 
 | 		if (start <= pos && pos < end && size > adj) \ | 
 | 			size -= adj; \ | 
 | 	} while (0) | 
 |  | 
 | 	adj_init_size(__init_begin, __init_end, init_data_size, | 
 | 		     _sinittext, init_code_size); | 
 | 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | 
 | 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | 
 | 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | 
 | 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | 
 |  | 
 | #undef	adj_init_size | 
 |  | 
 | 	pr_info("Memory: %luK/%luK available " | 
 | 	       "(%luK kernel code, %luK rwdata, %luK rodata, " | 
 | 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved" | 
 | #ifdef	CONFIG_HIGHMEM | 
 | 	       ", %luK highmem" | 
 | #endif | 
 | 	       "%s%s)\n", | 
 | 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), | 
 | 	       codesize >> 10, datasize >> 10, rosize >> 10, | 
 | 	       (init_data_size + init_code_size) >> 10, bss_size >> 10, | 
 | 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), | 
 | 	       totalcma_pages << (PAGE_SHIFT-10), | 
 | #ifdef	CONFIG_HIGHMEM | 
 | 	       totalhigh_pages << (PAGE_SHIFT-10), | 
 | #endif | 
 | 	       str ? ", " : "", str ? str : ""); | 
 | } | 
 |  | 
 | /** | 
 |  * set_dma_reserve - set the specified number of pages reserved in the first zone | 
 |  * @new_dma_reserve: The number of pages to mark reserved | 
 |  * | 
 |  * The per-cpu batchsize and zone watermarks are determined by present_pages. | 
 |  * In the DMA zone, a significant percentage may be consumed by kernel image | 
 |  * and other unfreeable allocations which can skew the watermarks badly. This | 
 |  * function may optionally be used to account for unfreeable pages in the | 
 |  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | 
 |  * smaller per-cpu batchsize. | 
 |  */ | 
 | void __init set_dma_reserve(unsigned long new_dma_reserve) | 
 | { | 
 | 	dma_reserve = new_dma_reserve; | 
 | } | 
 |  | 
 | void __init free_area_init(unsigned long *zones_size) | 
 | { | 
 | 	free_area_init_node(0, zones_size, | 
 | 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | 
 | } | 
 |  | 
 | static int page_alloc_cpu_notify(struct notifier_block *self, | 
 | 				 unsigned long action, void *hcpu) | 
 | { | 
 | 	int cpu = (unsigned long)hcpu; | 
 |  | 
 | 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { | 
 | 		lru_add_drain_cpu(cpu); | 
 | 		drain_pages(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Spill the event counters of the dead processor | 
 | 		 * into the current processors event counters. | 
 | 		 * This artificially elevates the count of the current | 
 | 		 * processor. | 
 | 		 */ | 
 | 		vm_events_fold_cpu(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Zero the differential counters of the dead processor | 
 | 		 * so that the vm statistics are consistent. | 
 | 		 * | 
 | 		 * This is only okay since the processor is dead and cannot | 
 | 		 * race with what we are doing. | 
 | 		 */ | 
 | 		cpu_vm_stats_fold(cpu); | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | void __init page_alloc_init(void) | 
 | { | 
 | 	hotcpu_notifier(page_alloc_cpu_notify, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio | 
 |  *	or min_free_kbytes changes. | 
 |  */ | 
 | static void calculate_totalreserve_pages(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	unsigned long reserve_pages = 0; | 
 | 	enum zone_type i, j; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		for (i = 0; i < MAX_NR_ZONES; i++) { | 
 | 			struct zone *zone = pgdat->node_zones + i; | 
 | 			long max = 0; | 
 |  | 
 | 			/* Find valid and maximum lowmem_reserve in the zone */ | 
 | 			for (j = i; j < MAX_NR_ZONES; j++) { | 
 | 				if (zone->lowmem_reserve[j] > max) | 
 | 					max = zone->lowmem_reserve[j]; | 
 | 			} | 
 |  | 
 | 			/* we treat the high watermark as reserved pages. */ | 
 | 			max += high_wmark_pages(zone); | 
 |  | 
 | 			if (max > zone->managed_pages) | 
 | 				max = zone->managed_pages; | 
 | 			reserve_pages += max; | 
 | 			/* | 
 | 			 * Lowmem reserves are not available to | 
 | 			 * GFP_HIGHUSER page cache allocations and | 
 | 			 * kswapd tries to balance zones to their high | 
 | 			 * watermark.  As a result, neither should be | 
 | 			 * regarded as dirtyable memory, to prevent a | 
 | 			 * situation where reclaim has to clean pages | 
 | 			 * in order to balance the zones. | 
 | 			 */ | 
 | 			zone->dirty_balance_reserve = max; | 
 | 		} | 
 | 	} | 
 | 	dirty_balance_reserve = reserve_pages; | 
 | 	totalreserve_pages = reserve_pages; | 
 | } | 
 |  | 
 | /* | 
 |  * setup_per_zone_lowmem_reserve - called whenever | 
 |  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone | 
 |  *	has a correct pages reserved value, so an adequate number of | 
 |  *	pages are left in the zone after a successful __alloc_pages(). | 
 |  */ | 
 | static void setup_per_zone_lowmem_reserve(void) | 
 | { | 
 | 	struct pglist_data *pgdat; | 
 | 	enum zone_type j, idx; | 
 |  | 
 | 	for_each_online_pgdat(pgdat) { | 
 | 		for (j = 0; j < MAX_NR_ZONES; j++) { | 
 | 			struct zone *zone = pgdat->node_zones + j; | 
 | 			unsigned long managed_pages = zone->managed_pages; | 
 |  | 
 | 			zone->lowmem_reserve[j] = 0; | 
 |  | 
 | 			idx = j; | 
 | 			while (idx) { | 
 | 				struct zone *lower_zone; | 
 |  | 
 | 				idx--; | 
 |  | 
 | 				if (sysctl_lowmem_reserve_ratio[idx] < 1) | 
 | 					sysctl_lowmem_reserve_ratio[idx] = 1; | 
 |  | 
 | 				lower_zone = pgdat->node_zones + idx; | 
 | 				lower_zone->lowmem_reserve[j] = managed_pages / | 
 | 					sysctl_lowmem_reserve_ratio[idx]; | 
 | 				managed_pages += lower_zone->managed_pages; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* update totalreserve_pages */ | 
 | 	calculate_totalreserve_pages(); | 
 | } | 
 |  | 
 | static void __setup_per_zone_wmarks(void) | 
 | { | 
 | 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | 
 | 	unsigned long lowmem_pages = 0; | 
 | 	struct zone *zone; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* Calculate total number of !ZONE_HIGHMEM pages */ | 
 | 	for_each_zone(zone) { | 
 | 		if (!is_highmem(zone)) | 
 | 			lowmem_pages += zone->managed_pages; | 
 | 	} | 
 |  | 
 | 	for_each_zone(zone) { | 
 | 		u64 tmp; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lock, flags); | 
 | 		tmp = (u64)pages_min * zone->managed_pages; | 
 | 		do_div(tmp, lowmem_pages); | 
 | 		if (is_highmem(zone)) { | 
 | 			/* | 
 | 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't | 
 | 			 * need highmem pages, so cap pages_min to a small | 
 | 			 * value here. | 
 | 			 * | 
 | 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) | 
 | 			 * deltas control asynch page reclaim, and so should | 
 | 			 * not be capped for highmem. | 
 | 			 */ | 
 | 			unsigned long min_pages; | 
 |  | 
 | 			min_pages = zone->managed_pages / 1024; | 
 | 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); | 
 | 			zone->watermark[WMARK_MIN] = min_pages; | 
 | 		} else { | 
 | 			/* | 
 | 			 * If it's a lowmem zone, reserve a number of pages | 
 | 			 * proportionate to the zone's size. | 
 | 			 */ | 
 | 			zone->watermark[WMARK_MIN] = tmp; | 
 | 		} | 
 |  | 
 | 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2); | 
 | 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | 
 |  | 
 | 		__mod_zone_page_state(zone, NR_ALLOC_BATCH, | 
 | 			high_wmark_pages(zone) - low_wmark_pages(zone) - | 
 | 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | 
 |  | 
 | 		setup_zone_migrate_reserve(zone); | 
 | 		spin_unlock_irqrestore(&zone->lock, flags); | 
 | 	} | 
 |  | 
 | 	/* update totalreserve_pages */ | 
 | 	calculate_totalreserve_pages(); | 
 | } | 
 |  | 
 | /** | 
 |  * setup_per_zone_wmarks - called when min_free_kbytes changes | 
 |  * or when memory is hot-{added|removed} | 
 |  * | 
 |  * Ensures that the watermark[min,low,high] values for each zone are set | 
 |  * correctly with respect to min_free_kbytes. | 
 |  */ | 
 | void setup_per_zone_wmarks(void) | 
 | { | 
 | 	mutex_lock(&zonelists_mutex); | 
 | 	__setup_per_zone_wmarks(); | 
 | 	mutex_unlock(&zonelists_mutex); | 
 | } | 
 |  | 
 | /* | 
 |  * The inactive anon list should be small enough that the VM never has to | 
 |  * do too much work, but large enough that each inactive page has a chance | 
 |  * to be referenced again before it is swapped out. | 
 |  * | 
 |  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | 
 |  * INACTIVE_ANON pages on this zone's LRU, maintained by the | 
 |  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | 
 |  * the anonymous pages are kept on the inactive list. | 
 |  * | 
 |  * total     target    max | 
 |  * memory    ratio     inactive anon | 
 |  * ------------------------------------- | 
 |  *   10MB       1         5MB | 
 |  *  100MB       1        50MB | 
 |  *    1GB       3       250MB | 
 |  *   10GB      10       0.9GB | 
 |  *  100GB      31         3GB | 
 |  *    1TB     101        10GB | 
 |  *   10TB     320        32GB | 
 |  */ | 
 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) | 
 | { | 
 | 	unsigned int gb, ratio; | 
 |  | 
 | 	/* Zone size in gigabytes */ | 
 | 	gb = zone->managed_pages >> (30 - PAGE_SHIFT); | 
 | 	if (gb) | 
 | 		ratio = int_sqrt(10 * gb); | 
 | 	else | 
 | 		ratio = 1; | 
 |  | 
 | 	zone->inactive_ratio = ratio; | 
 | } | 
 |  | 
 | static void __meminit setup_per_zone_inactive_ratio(void) | 
 | { | 
 | 	struct zone *zone; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		calculate_zone_inactive_ratio(zone); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialise min_free_kbytes. | 
 |  * | 
 |  * For small machines we want it small (128k min).  For large machines | 
 |  * we want it large (64MB max).  But it is not linear, because network | 
 |  * bandwidth does not increase linearly with machine size.  We use | 
 |  * | 
 |  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | 
 |  *	min_free_kbytes = sqrt(lowmem_kbytes * 16) | 
 |  * | 
 |  * which yields | 
 |  * | 
 |  * 16MB:	512k | 
 |  * 32MB:	724k | 
 |  * 64MB:	1024k | 
 |  * 128MB:	1448k | 
 |  * 256MB:	2048k | 
 |  * 512MB:	2896k | 
 |  * 1024MB:	4096k | 
 |  * 2048MB:	5792k | 
 |  * 4096MB:	8192k | 
 |  * 8192MB:	11584k | 
 |  * 16384MB:	16384k | 
 |  */ | 
 | int __meminit init_per_zone_wmark_min(void) | 
 | { | 
 | 	unsigned long lowmem_kbytes; | 
 | 	int new_min_free_kbytes; | 
 |  | 
 | 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | 
 | 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | 
 |  | 
 | 	if (new_min_free_kbytes > user_min_free_kbytes) { | 
 | 		min_free_kbytes = new_min_free_kbytes; | 
 | 		if (min_free_kbytes < 128) | 
 | 			min_free_kbytes = 128; | 
 | 		if (min_free_kbytes > 65536) | 
 | 			min_free_kbytes = 65536; | 
 | 	} else { | 
 | 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | 
 | 				new_min_free_kbytes, user_min_free_kbytes); | 
 | 	} | 
 | 	setup_per_zone_wmarks(); | 
 | 	refresh_zone_stat_thresholds(); | 
 | 	setup_per_zone_lowmem_reserve(); | 
 | 	setup_per_zone_inactive_ratio(); | 
 | 	return 0; | 
 | } | 
 | module_init(init_per_zone_wmark_min) | 
 |  | 
 | /* | 
 |  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | 
 |  *	that we can call two helper functions whenever min_free_kbytes | 
 |  *	changes. | 
 |  */ | 
 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, | 
 | 	void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	if (write) { | 
 | 		user_min_free_kbytes = min_free_kbytes; | 
 | 		setup_per_zone_wmarks(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, | 
 | 	void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		zone->min_unmapped_pages = (zone->managed_pages * | 
 | 				sysctl_min_unmapped_ratio) / 100; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, | 
 | 	void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int rc; | 
 |  | 
 | 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	for_each_zone(zone) | 
 | 		zone->min_slab_pages = (zone->managed_pages * | 
 | 				sysctl_min_slab_ratio) / 100; | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | 
 |  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | 
 |  *	whenever sysctl_lowmem_reserve_ratio changes. | 
 |  * | 
 |  * The reserve ratio obviously has absolutely no relation with the | 
 |  * minimum watermarks. The lowmem reserve ratio can only make sense | 
 |  * if in function of the boot time zone sizes. | 
 |  */ | 
 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, | 
 | 	void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	setup_per_zone_lowmem_reserve(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * percpu_pagelist_fraction - changes the pcp->high for each zone on each | 
 |  * cpu.  It is the fraction of total pages in each zone that a hot per cpu | 
 |  * pagelist can have before it gets flushed back to buddy allocator. | 
 |  */ | 
 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, | 
 | 	void __user *buffer, size_t *length, loff_t *ppos) | 
 | { | 
 | 	struct zone *zone; | 
 | 	int old_percpu_pagelist_fraction; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&pcp_batch_high_lock); | 
 | 	old_percpu_pagelist_fraction = percpu_pagelist_fraction; | 
 |  | 
 | 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos); | 
 | 	if (!write || ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Sanity checking to avoid pcp imbalance */ | 
 | 	if (percpu_pagelist_fraction && | 
 | 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | 
 | 		percpu_pagelist_fraction = old_percpu_pagelist_fraction; | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* No change? */ | 
 | 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | 
 | 		goto out; | 
 |  | 
 | 	for_each_populated_zone(zone) { | 
 | 		unsigned int cpu; | 
 |  | 
 | 		for_each_possible_cpu(cpu) | 
 | 			pageset_set_high_and_batch(zone, | 
 | 					per_cpu_ptr(zone->pageset, cpu)); | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&pcp_batch_high_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int hashdist = HASHDIST_DEFAULT; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int __init set_hashdist(char *str) | 
 | { | 
 | 	if (!str) | 
 | 		return 0; | 
 | 	hashdist = simple_strtoul(str, &str, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("hashdist=", set_hashdist); | 
 | #endif | 
 |  | 
 | /* | 
 |  * allocate a large system hash table from bootmem | 
 |  * - it is assumed that the hash table must contain an exact power-of-2 | 
 |  *   quantity of entries | 
 |  * - limit is the number of hash buckets, not the total allocation size | 
 |  */ | 
 | void *__init alloc_large_system_hash(const char *tablename, | 
 | 				     unsigned long bucketsize, | 
 | 				     unsigned long numentries, | 
 | 				     int scale, | 
 | 				     int flags, | 
 | 				     unsigned int *_hash_shift, | 
 | 				     unsigned int *_hash_mask, | 
 | 				     unsigned long low_limit, | 
 | 				     unsigned long high_limit) | 
 | { | 
 | 	unsigned long long max = high_limit; | 
 | 	unsigned long log2qty, size; | 
 | 	void *table = NULL; | 
 |  | 
 | 	/* allow the kernel cmdline to have a say */ | 
 | 	if (!numentries) { | 
 | 		/* round applicable memory size up to nearest megabyte */ | 
 | 		numentries = nr_kernel_pages; | 
 |  | 
 | 		/* It isn't necessary when PAGE_SIZE >= 1MB */ | 
 | 		if (PAGE_SHIFT < 20) | 
 | 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | 
 |  | 
 | 		/* limit to 1 bucket per 2^scale bytes of low memory */ | 
 | 		if (scale > PAGE_SHIFT) | 
 | 			numentries >>= (scale - PAGE_SHIFT); | 
 | 		else | 
 | 			numentries <<= (PAGE_SHIFT - scale); | 
 |  | 
 | 		/* Make sure we've got at least a 0-order allocation.. */ | 
 | 		if (unlikely(flags & HASH_SMALL)) { | 
 | 			/* Makes no sense without HASH_EARLY */ | 
 | 			WARN_ON(!(flags & HASH_EARLY)); | 
 | 			if (!(numentries >> *_hash_shift)) { | 
 | 				numentries = 1UL << *_hash_shift; | 
 | 				BUG_ON(!numentries); | 
 | 			} | 
 | 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | 
 | 			numentries = PAGE_SIZE / bucketsize; | 
 | 	} | 
 | 	numentries = roundup_pow_of_two(numentries); | 
 |  | 
 | 	/* limit allocation size to 1/16 total memory by default */ | 
 | 	if (max == 0) { | 
 | 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | 
 | 		do_div(max, bucketsize); | 
 | 	} | 
 | 	max = min(max, 0x80000000ULL); | 
 |  | 
 | 	if (numentries < low_limit) | 
 | 		numentries = low_limit; | 
 | 	if (numentries > max) | 
 | 		numentries = max; | 
 |  | 
 | 	log2qty = ilog2(numentries); | 
 |  | 
 | 	do { | 
 | 		size = bucketsize << log2qty; | 
 | 		if (flags & HASH_EARLY) | 
 | 			table = memblock_virt_alloc_nopanic(size, 0); | 
 | 		else if (hashdist) | 
 | 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | 
 | 		else { | 
 | 			/* | 
 | 			 * If bucketsize is not a power-of-two, we may free | 
 | 			 * some pages at the end of hash table which | 
 | 			 * alloc_pages_exact() automatically does | 
 | 			 */ | 
 | 			if (get_order(size) < MAX_ORDER) { | 
 | 				table = alloc_pages_exact(size, GFP_ATOMIC); | 
 | 				kmemleak_alloc(table, size, 1, GFP_ATOMIC); | 
 | 			} | 
 | 		} | 
 | 	} while (!table && size > PAGE_SIZE && --log2qty); | 
 |  | 
 | 	if (!table) | 
 | 		panic("Failed to allocate %s hash table\n", tablename); | 
 |  | 
 | 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", | 
 | 	       tablename, | 
 | 	       (1UL << log2qty), | 
 | 	       ilog2(size) - PAGE_SHIFT, | 
 | 	       size); | 
 |  | 
 | 	if (_hash_shift) | 
 | 		*_hash_shift = log2qty; | 
 | 	if (_hash_mask) | 
 | 		*_hash_mask = (1 << log2qty) - 1; | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ | 
 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | 
 | 							unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	return __pfn_to_section(pfn)->pageblock_flags; | 
 | #else | 
 | 	return zone->pageblock_flags; | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 | } | 
 |  | 
 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	pfn &= (PAGES_PER_SECTION-1); | 
 | 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
 | #else | 
 | 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); | 
 | 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; | 
 | #endif /* CONFIG_SPARSEMEM */ | 
 | } | 
 |  | 
 | /** | 
 |  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages | 
 |  * @page: The page within the block of interest | 
 |  * @pfn: The target page frame number | 
 |  * @end_bitidx: The last bit of interest to retrieve | 
 |  * @mask: mask of bits that the caller is interested in | 
 |  * | 
 |  * Return: pageblock_bits flags | 
 |  */ | 
 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, | 
 | 					unsigned long end_bitidx, | 
 | 					unsigned long mask) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long *bitmap; | 
 | 	unsigned long bitidx, word_bitidx; | 
 | 	unsigned long word; | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	bitmap = get_pageblock_bitmap(zone, pfn); | 
 | 	bitidx = pfn_to_bitidx(zone, pfn); | 
 | 	word_bitidx = bitidx / BITS_PER_LONG; | 
 | 	bitidx &= (BITS_PER_LONG-1); | 
 |  | 
 | 	word = bitmap[word_bitidx]; | 
 | 	bitidx += end_bitidx; | 
 | 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | 
 | } | 
 |  | 
 | /** | 
 |  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages | 
 |  * @page: The page within the block of interest | 
 |  * @flags: The flags to set | 
 |  * @pfn: The target page frame number | 
 |  * @end_bitidx: The last bit of interest | 
 |  * @mask: mask of bits that the caller is interested in | 
 |  */ | 
 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, | 
 | 					unsigned long pfn, | 
 | 					unsigned long end_bitidx, | 
 | 					unsigned long mask) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long *bitmap; | 
 | 	unsigned long bitidx, word_bitidx; | 
 | 	unsigned long old_word, word; | 
 |  | 
 | 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	bitmap = get_pageblock_bitmap(zone, pfn); | 
 | 	bitidx = pfn_to_bitidx(zone, pfn); | 
 | 	word_bitidx = bitidx / BITS_PER_LONG; | 
 | 	bitidx &= (BITS_PER_LONG-1); | 
 |  | 
 | 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); | 
 |  | 
 | 	bitidx += end_bitidx; | 
 | 	mask <<= (BITS_PER_LONG - bitidx - 1); | 
 | 	flags <<= (BITS_PER_LONG - bitidx - 1); | 
 |  | 
 | 	word = READ_ONCE(bitmap[word_bitidx]); | 
 | 	for (;;) { | 
 | 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | 
 | 		if (word == old_word) | 
 | 			break; | 
 | 		word = old_word; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function checks whether pageblock includes unmovable pages or not. | 
 |  * If @count is not zero, it is okay to include less @count unmovable pages | 
 |  * | 
 |  * PageLRU check without isolation or lru_lock could race so that | 
 |  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't | 
 |  * expect this function should be exact. | 
 |  */ | 
 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, | 
 | 			 bool skip_hwpoisoned_pages) | 
 | { | 
 | 	unsigned long pfn, iter, found; | 
 | 	int mt; | 
 |  | 
 | 	/* | 
 | 	 * For avoiding noise data, lru_add_drain_all() should be called | 
 | 	 * If ZONE_MOVABLE, the zone never contains unmovable pages | 
 | 	 */ | 
 | 	if (zone_idx(zone) == ZONE_MOVABLE) | 
 | 		return false; | 
 | 	mt = get_pageblock_migratetype(page); | 
 | 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | 
 | 		return false; | 
 |  | 
 | 	pfn = page_to_pfn(page); | 
 | 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | 
 | 		unsigned long check = pfn + iter; | 
 |  | 
 | 		if (!pfn_valid_within(check)) | 
 | 			continue; | 
 |  | 
 | 		page = pfn_to_page(check); | 
 |  | 
 | 		/* | 
 | 		 * Hugepages are not in LRU lists, but they're movable. | 
 | 		 * We need not scan over tail pages bacause we don't | 
 | 		 * handle each tail page individually in migration. | 
 | 		 */ | 
 | 		if (PageHuge(page)) { | 
 | 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We can't use page_count without pin a page | 
 | 		 * because another CPU can free compound page. | 
 | 		 * This check already skips compound tails of THP | 
 | 		 * because their page->_count is zero at all time. | 
 | 		 */ | 
 | 		if (!atomic_read(&page->_count)) { | 
 | 			if (PageBuddy(page)) | 
 | 				iter += (1 << page_order(page)) - 1; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The HWPoisoned page may be not in buddy system, and | 
 | 		 * page_count() is not 0. | 
 | 		 */ | 
 | 		if (skip_hwpoisoned_pages && PageHWPoison(page)) | 
 | 			continue; | 
 |  | 
 | 		if (!PageLRU(page)) | 
 | 			found++; | 
 | 		/* | 
 | 		 * If there are RECLAIMABLE pages, we need to check | 
 | 		 * it.  But now, memory offline itself doesn't call | 
 | 		 * shrink_node_slabs() and it still to be fixed. | 
 | 		 */ | 
 | 		/* | 
 | 		 * If the page is not RAM, page_count()should be 0. | 
 | 		 * we don't need more check. This is an _used_ not-movable page. | 
 | 		 * | 
 | 		 * The problematic thing here is PG_reserved pages. PG_reserved | 
 | 		 * is set to both of a memory hole page and a _used_ kernel | 
 | 		 * page at boot. | 
 | 		 */ | 
 | 		if (found > count) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | bool is_pageblock_removable_nolock(struct page *page) | 
 | { | 
 | 	struct zone *zone; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	/* | 
 | 	 * We have to be careful here because we are iterating over memory | 
 | 	 * sections which are not zone aware so we might end up outside of | 
 | 	 * the zone but still within the section. | 
 | 	 * We have to take care about the node as well. If the node is offline | 
 | 	 * its NODE_DATA will be NULL - see page_zone. | 
 | 	 */ | 
 | 	if (!node_online(page_to_nid(page))) | 
 | 		return false; | 
 |  | 
 | 	zone = page_zone(page); | 
 | 	pfn = page_to_pfn(page); | 
 | 	if (!zone_spans_pfn(zone, pfn)) | 
 | 		return false; | 
 |  | 
 | 	return !has_unmovable_pages(zone, page, 0, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CMA | 
 |  | 
 | static unsigned long pfn_max_align_down(unsigned long pfn) | 
 | { | 
 | 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
 | 			     pageblock_nr_pages) - 1); | 
 | } | 
 |  | 
 | static unsigned long pfn_max_align_up(unsigned long pfn) | 
 | { | 
 | 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | 
 | 				pageblock_nr_pages)); | 
 | } | 
 |  | 
 | /* [start, end) must belong to a single zone. */ | 
 | static int __alloc_contig_migrate_range(struct compact_control *cc, | 
 | 					unsigned long start, unsigned long end) | 
 | { | 
 | 	/* This function is based on compact_zone() from compaction.c. */ | 
 | 	unsigned long nr_reclaimed; | 
 | 	unsigned long pfn = start; | 
 | 	unsigned int tries = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	migrate_prep(); | 
 |  | 
 | 	while (pfn < end || !list_empty(&cc->migratepages)) { | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (list_empty(&cc->migratepages)) { | 
 | 			cc->nr_migratepages = 0; | 
 | 			pfn = isolate_migratepages_range(cc, pfn, end); | 
 | 			if (!pfn) { | 
 | 				ret = -EINTR; | 
 | 				break; | 
 | 			} | 
 | 			tries = 0; | 
 | 		} else if (++tries == 5) { | 
 | 			ret = ret < 0 ? ret : -EBUSY; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, | 
 | 							&cc->migratepages); | 
 | 		cc->nr_migratepages -= nr_reclaimed; | 
 |  | 
 | 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target, | 
 | 				    NULL, 0, cc->mode, MR_CMA); | 
 | 	} | 
 | 	if (ret < 0) { | 
 | 		putback_movable_pages(&cc->migratepages); | 
 | 		return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * alloc_contig_range() -- tries to allocate given range of pages | 
 |  * @start:	start PFN to allocate | 
 |  * @end:	one-past-the-last PFN to allocate | 
 |  * @migratetype:	migratetype of the underlaying pageblocks (either | 
 |  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks | 
 |  *			in range must have the same migratetype and it must | 
 |  *			be either of the two. | 
 |  * | 
 |  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | 
 |  * aligned, however it's the caller's responsibility to guarantee that | 
 |  * we are the only thread that changes migrate type of pageblocks the | 
 |  * pages fall in. | 
 |  * | 
 |  * The PFN range must belong to a single zone. | 
 |  * | 
 |  * Returns zero on success or negative error code.  On success all | 
 |  * pages which PFN is in [start, end) are allocated for the caller and | 
 |  * need to be freed with free_contig_range(). | 
 |  */ | 
 | int alloc_contig_range(unsigned long start, unsigned long end, | 
 | 		       unsigned migratetype) | 
 | { | 
 | 	unsigned long outer_start, outer_end; | 
 | 	int ret = 0, order; | 
 |  | 
 | 	struct compact_control cc = { | 
 | 		.nr_migratepages = 0, | 
 | 		.order = -1, | 
 | 		.zone = page_zone(pfn_to_page(start)), | 
 | 		.mode = MIGRATE_SYNC, | 
 | 		.ignore_skip_hint = true, | 
 | 	}; | 
 | 	INIT_LIST_HEAD(&cc.migratepages); | 
 |  | 
 | 	/* | 
 | 	 * What we do here is we mark all pageblocks in range as | 
 | 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may | 
 | 	 * have different sizes, and due to the way page allocator | 
 | 	 * work, we align the range to biggest of the two pages so | 
 | 	 * that page allocator won't try to merge buddies from | 
 | 	 * different pageblocks and change MIGRATE_ISOLATE to some | 
 | 	 * other migration type. | 
 | 	 * | 
 | 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we | 
 | 	 * migrate the pages from an unaligned range (ie. pages that | 
 | 	 * we are interested in).  This will put all the pages in | 
 | 	 * range back to page allocator as MIGRATE_ISOLATE. | 
 | 	 * | 
 | 	 * When this is done, we take the pages in range from page | 
 | 	 * allocator removing them from the buddy system.  This way | 
 | 	 * page allocator will never consider using them. | 
 | 	 * | 
 | 	 * This lets us mark the pageblocks back as | 
 | 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | 
 | 	 * aligned range but not in the unaligned, original range are | 
 | 	 * put back to page allocator so that buddy can use them. | 
 | 	 */ | 
 |  | 
 | 	ret = start_isolate_page_range(pfn_max_align_down(start), | 
 | 				       pfn_max_align_up(end), migratetype, | 
 | 				       false); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = __alloc_contig_migrate_range(&cc, start, end); | 
 | 	if (ret) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | 
 | 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's | 
 | 	 * more, all pages in [start, end) are free in page allocator. | 
 | 	 * What we are going to do is to allocate all pages from | 
 | 	 * [start, end) (that is remove them from page allocator). | 
 | 	 * | 
 | 	 * The only problem is that pages at the beginning and at the | 
 | 	 * end of interesting range may be not aligned with pages that | 
 | 	 * page allocator holds, ie. they can be part of higher order | 
 | 	 * pages.  Because of this, we reserve the bigger range and | 
 | 	 * once this is done free the pages we are not interested in. | 
 | 	 * | 
 | 	 * We don't have to hold zone->lock here because the pages are | 
 | 	 * isolated thus they won't get removed from buddy. | 
 | 	 */ | 
 |  | 
 | 	lru_add_drain_all(); | 
 | 	drain_all_pages(cc.zone); | 
 |  | 
 | 	order = 0; | 
 | 	outer_start = start; | 
 | 	while (!PageBuddy(pfn_to_page(outer_start))) { | 
 | 		if (++order >= MAX_ORDER) { | 
 | 			ret = -EBUSY; | 
 | 			goto done; | 
 | 		} | 
 | 		outer_start &= ~0UL << order; | 
 | 	} | 
 |  | 
 | 	/* Make sure the range is really isolated. */ | 
 | 	if (test_pages_isolated(outer_start, end, false)) { | 
 | 		pr_info("%s: [%lx, %lx) PFNs busy\n", | 
 | 			__func__, outer_start, end); | 
 | 		ret = -EBUSY; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Grab isolated pages from freelists. */ | 
 | 	outer_end = isolate_freepages_range(&cc, outer_start, end); | 
 | 	if (!outer_end) { | 
 | 		ret = -EBUSY; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* Free head and tail (if any) */ | 
 | 	if (start != outer_start) | 
 | 		free_contig_range(outer_start, start - outer_start); | 
 | 	if (end != outer_end) | 
 | 		free_contig_range(end, outer_end - end); | 
 |  | 
 | done: | 
 | 	undo_isolate_page_range(pfn_max_align_down(start), | 
 | 				pfn_max_align_up(end), migratetype); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | 
 | { | 
 | 	unsigned int count = 0; | 
 |  | 
 | 	for (; nr_pages--; pfn++) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		count += page_count(page) != 1; | 
 | 		__free_page(page); | 
 | 	} | 
 | 	WARN(count != 0, "%d pages are still in use!\n", count); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * The zone indicated has a new number of managed_pages; batch sizes and percpu | 
 |  * page high values need to be recalulated. | 
 |  */ | 
 | void __meminit zone_pcp_update(struct zone *zone) | 
 | { | 
 | 	unsigned cpu; | 
 | 	mutex_lock(&pcp_batch_high_lock); | 
 | 	for_each_possible_cpu(cpu) | 
 | 		pageset_set_high_and_batch(zone, | 
 | 				per_cpu_ptr(zone->pageset, cpu)); | 
 | 	mutex_unlock(&pcp_batch_high_lock); | 
 | } | 
 | #endif | 
 |  | 
 | void zone_pcp_reset(struct zone *zone) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int cpu; | 
 | 	struct per_cpu_pageset *pset; | 
 |  | 
 | 	/* avoid races with drain_pages()  */ | 
 | 	local_irq_save(flags); | 
 | 	if (zone->pageset != &boot_pageset) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			pset = per_cpu_ptr(zone->pageset, cpu); | 
 | 			drain_zonestat(zone, pset); | 
 | 		} | 
 | 		free_percpu(zone->pageset); | 
 | 		zone->pageset = &boot_pageset; | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
 | /* | 
 |  * All pages in the range must be isolated before calling this. | 
 |  */ | 
 | void | 
 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	struct page *page; | 
 | 	struct zone *zone; | 
 | 	unsigned int order, i; | 
 | 	unsigned long pfn; | 
 | 	unsigned long flags; | 
 | 	/* find the first valid pfn */ | 
 | 	for (pfn = start_pfn; pfn < end_pfn; pfn++) | 
 | 		if (pfn_valid(pfn)) | 
 | 			break; | 
 | 	if (pfn == end_pfn) | 
 | 		return; | 
 | 	zone = page_zone(pfn_to_page(pfn)); | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	pfn = start_pfn; | 
 | 	while (pfn < end_pfn) { | 
 | 		if (!pfn_valid(pfn)) { | 
 | 			pfn++; | 
 | 			continue; | 
 | 		} | 
 | 		page = pfn_to_page(pfn); | 
 | 		/* | 
 | 		 * The HWPoisoned page may be not in buddy system, and | 
 | 		 * page_count() is not 0. | 
 | 		 */ | 
 | 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | 
 | 			pfn++; | 
 | 			SetPageReserved(page); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		BUG_ON(page_count(page)); | 
 | 		BUG_ON(!PageBuddy(page)); | 
 | 		order = page_order(page); | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 		printk(KERN_INFO "remove from free list %lx %d %lx\n", | 
 | 		       pfn, 1 << order, end_pfn); | 
 | #endif | 
 | 		list_del(&page->lru); | 
 | 		rmv_page_order(page); | 
 | 		zone->free_area[order].nr_free--; | 
 | 		for (i = 0; i < (1 << order); i++) | 
 | 			SetPageReserved((page+i)); | 
 | 		pfn += (1 << order); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MEMORY_FAILURE | 
 | bool is_free_buddy_page(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	unsigned long pfn = page_to_pfn(page); | 
 | 	unsigned long flags; | 
 | 	unsigned int order; | 
 |  | 
 | 	spin_lock_irqsave(&zone->lock, flags); | 
 | 	for (order = 0; order < MAX_ORDER; order++) { | 
 | 		struct page *page_head = page - (pfn & ((1 << order) - 1)); | 
 |  | 
 | 		if (PageBuddy(page_head) && page_order(page_head) >= order) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&zone->lock, flags); | 
 |  | 
 | 	return order < MAX_ORDER; | 
 | } | 
 | #endif |