|  | /* SCTP kernel reference Implementation | 
|  | * (C) Copyright IBM Corp. 2001, 2004 | 
|  | * Copyright (c) 1999-2000 Cisco, Inc. | 
|  | * Copyright (c) 1999-2001 Motorola, Inc. | 
|  | * Copyright (c) 2001-2003 Intel Corp. | 
|  | * | 
|  | * This file is part of the SCTP kernel reference Implementation | 
|  | * | 
|  | * These functions implement the sctp_outq class.   The outqueue handles | 
|  | * bundling and queueing of outgoing SCTP chunks. | 
|  | * | 
|  | * The SCTP reference implementation is free software; | 
|  | * you can redistribute it and/or modify it under the terms of | 
|  | * the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * The SCTP reference implementation is distributed in the hope that it | 
|  | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | *                 ************************ | 
|  | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * See the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with GNU CC; see the file COPYING.  If not, write to | 
|  | * the Free Software Foundation, 59 Temple Place - Suite 330, | 
|  | * Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Please send any bug reports or fixes you make to the | 
|  | * email address(es): | 
|  | *    lksctp developers <lksctp-developers@lists.sourceforge.net> | 
|  | * | 
|  | * Or submit a bug report through the following website: | 
|  | *    http://www.sf.net/projects/lksctp | 
|  | * | 
|  | * Written or modified by: | 
|  | *    La Monte H.P. Yarroll <piggy@acm.org> | 
|  | *    Karl Knutson          <karl@athena.chicago.il.us> | 
|  | *    Perry Melange         <pmelange@null.cc.uic.edu> | 
|  | *    Xingang Guo           <xingang.guo@intel.com> | 
|  | *    Hui Huang 	    <hui.huang@nokia.com> | 
|  | *    Sridhar Samudrala     <sri@us.ibm.com> | 
|  | *    Jon Grimm             <jgrimm@us.ibm.com> | 
|  | * | 
|  | * Any bugs reported given to us we will try to fix... any fixes shared will | 
|  | * be incorporated into the next SCTP release. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/list.h>   /* For struct list_head */ | 
|  | #include <linux/socket.h> | 
|  | #include <linux/ip.h> | 
|  | #include <net/sock.h>	  /* For skb_set_owner_w */ | 
|  |  | 
|  | #include <net/sctp/sctp.h> | 
|  | #include <net/sctp/sm.h> | 
|  |  | 
|  | /* Declare internal functions here.  */ | 
|  | static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); | 
|  | static void sctp_check_transmitted(struct sctp_outq *q, | 
|  | struct list_head *transmitted_queue, | 
|  | struct sctp_transport *transport, | 
|  | struct sctp_sackhdr *sack, | 
|  | __u32 highest_new_tsn); | 
|  |  | 
|  | static void sctp_mark_missing(struct sctp_outq *q, | 
|  | struct list_head *transmitted_queue, | 
|  | struct sctp_transport *transport, | 
|  | __u32 highest_new_tsn, | 
|  | int count_of_newacks); | 
|  |  | 
|  | static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn); | 
|  |  | 
|  | /* Add data to the front of the queue. */ | 
|  | static inline void sctp_outq_head_data(struct sctp_outq *q, | 
|  | struct sctp_chunk *ch) | 
|  | { | 
|  | list_add(&ch->list, &q->out_chunk_list); | 
|  | q->out_qlen += ch->skb->len; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Take data from the front of the queue. */ | 
|  | static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) | 
|  | { | 
|  | struct sctp_chunk *ch = NULL; | 
|  |  | 
|  | if (!list_empty(&q->out_chunk_list)) { | 
|  | struct list_head *entry = q->out_chunk_list.next; | 
|  |  | 
|  | ch = list_entry(entry, struct sctp_chunk, list); | 
|  | list_del_init(entry); | 
|  | q->out_qlen -= ch->skb->len; | 
|  | } | 
|  | return ch; | 
|  | } | 
|  | /* Add data chunk to the end of the queue. */ | 
|  | static inline void sctp_outq_tail_data(struct sctp_outq *q, | 
|  | struct sctp_chunk *ch) | 
|  | { | 
|  | list_add_tail(&ch->list, &q->out_chunk_list); | 
|  | q->out_qlen += ch->skb->len; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * D) If count_of_newacks is greater than or equal to 2 | 
|  | * and t was not sent to the current primary then the | 
|  | * sender MUST NOT increment missing report count for t. | 
|  | */ | 
|  | static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, | 
|  | struct sctp_transport *transport, | 
|  | int count_of_newacks) | 
|  | { | 
|  | if (count_of_newacks >=2 && transport != primary) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * F) If count_of_newacks is less than 2, let d be the | 
|  | * destination to which t was sent. If cacc_saw_newack | 
|  | * is 0 for destination d, then the sender MUST NOT | 
|  | * increment missing report count for t. | 
|  | */ | 
|  | static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, | 
|  | int count_of_newacks) | 
|  | { | 
|  | if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD | 
|  | * execute steps C, D, F. | 
|  | * | 
|  | * C has been implemented in sctp_outq_sack | 
|  | */ | 
|  | static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, | 
|  | struct sctp_transport *transport, | 
|  | int count_of_newacks) | 
|  | { | 
|  | if (!primary->cacc.cycling_changeover) { | 
|  | if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) | 
|  | return 1; | 
|  | if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less | 
|  | * than next_tsn_at_change of the current primary, then | 
|  | * the sender MUST NOT increment missing report count | 
|  | * for t. | 
|  | */ | 
|  | static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) | 
|  | { | 
|  | if (primary->cacc.cycling_changeover && | 
|  | TSN_lt(tsn, primary->cacc.next_tsn_at_change)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * 3) If the missing report count for TSN t is to be | 
|  | * incremented according to [RFC2960] and | 
|  | * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, | 
|  | * then the sender MUST futher execute steps 3.1 and | 
|  | * 3.2 to determine if the missing report count for | 
|  | * TSN t SHOULD NOT be incremented. | 
|  | * | 
|  | * 3.3) If 3.1 and 3.2 do not dictate that the missing | 
|  | * report count for t should not be incremented, then | 
|  | * the sender SOULD increment missing report count for | 
|  | * t (according to [RFC2960] and [SCTP_STEWART_2002]). | 
|  | */ | 
|  | static inline int sctp_cacc_skip(struct sctp_transport *primary, | 
|  | struct sctp_transport *transport, | 
|  | int count_of_newacks, | 
|  | __u32 tsn) | 
|  | { | 
|  | if (primary->cacc.changeover_active && | 
|  | (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) | 
|  | || sctp_cacc_skip_3_2(primary, tsn))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialize an existing sctp_outq.  This does the boring stuff. | 
|  | * You still need to define handlers if you really want to DO | 
|  | * something with this structure... | 
|  | */ | 
|  | void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) | 
|  | { | 
|  | q->asoc = asoc; | 
|  | INIT_LIST_HEAD(&q->out_chunk_list); | 
|  | INIT_LIST_HEAD(&q->control_chunk_list); | 
|  | INIT_LIST_HEAD(&q->retransmit); | 
|  | INIT_LIST_HEAD(&q->sacked); | 
|  | INIT_LIST_HEAD(&q->abandoned); | 
|  |  | 
|  | q->outstanding_bytes = 0; | 
|  | q->empty = 1; | 
|  | q->cork  = 0; | 
|  |  | 
|  | q->malloced = 0; | 
|  | q->out_qlen = 0; | 
|  | } | 
|  |  | 
|  | /* Free the outqueue structure and any related pending chunks. | 
|  | */ | 
|  | void sctp_outq_teardown(struct sctp_outq *q) | 
|  | { | 
|  | struct sctp_transport *transport; | 
|  | struct list_head *lchunk, *pos, *temp; | 
|  | struct sctp_chunk *chunk, *tmp; | 
|  |  | 
|  | /* Throw away unacknowledged chunks. */ | 
|  | list_for_each(pos, &q->asoc->peer.transport_addr_list) { | 
|  | transport = list_entry(pos, struct sctp_transport, transports); | 
|  | while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | /* Mark as part of a failed message. */ | 
|  | sctp_chunk_fail(chunk, q->error); | 
|  | sctp_chunk_free(chunk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Throw away chunks that have been gap ACKed.  */ | 
|  | list_for_each_safe(lchunk, temp, &q->sacked) { | 
|  | list_del_init(lchunk); | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | sctp_chunk_fail(chunk, q->error); | 
|  | sctp_chunk_free(chunk); | 
|  | } | 
|  |  | 
|  | /* Throw away any chunks in the retransmit queue. */ | 
|  | list_for_each_safe(lchunk, temp, &q->retransmit) { | 
|  | list_del_init(lchunk); | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | sctp_chunk_fail(chunk, q->error); | 
|  | sctp_chunk_free(chunk); | 
|  | } | 
|  |  | 
|  | /* Throw away any chunks that are in the abandoned queue. */ | 
|  | list_for_each_safe(lchunk, temp, &q->abandoned) { | 
|  | list_del_init(lchunk); | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | sctp_chunk_fail(chunk, q->error); | 
|  | sctp_chunk_free(chunk); | 
|  | } | 
|  |  | 
|  | /* Throw away any leftover data chunks. */ | 
|  | while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { | 
|  |  | 
|  | /* Mark as send failure. */ | 
|  | sctp_chunk_fail(chunk, q->error); | 
|  | sctp_chunk_free(chunk); | 
|  | } | 
|  |  | 
|  | q->error = 0; | 
|  |  | 
|  | /* Throw away any leftover control chunks. */ | 
|  | list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { | 
|  | list_del_init(&chunk->list); | 
|  | sctp_chunk_free(chunk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free the outqueue structure and any related pending chunks.  */ | 
|  | void sctp_outq_free(struct sctp_outq *q) | 
|  | { | 
|  | /* Throw away leftover chunks. */ | 
|  | sctp_outq_teardown(q); | 
|  |  | 
|  | /* If we were kmalloc()'d, free the memory.  */ | 
|  | if (q->malloced) | 
|  | kfree(q); | 
|  | } | 
|  |  | 
|  | /* Put a new chunk in an sctp_outq.  */ | 
|  | int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n", | 
|  | q, chunk, chunk && chunk->chunk_hdr ? | 
|  | sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) | 
|  | : "Illegal Chunk"); | 
|  |  | 
|  | /* If it is data, queue it up, otherwise, send it | 
|  | * immediately. | 
|  | */ | 
|  | if (SCTP_CID_DATA == chunk->chunk_hdr->type) { | 
|  | /* Is it OK to queue data chunks?  */ | 
|  | /* From 9. Termination of Association | 
|  | * | 
|  | * When either endpoint performs a shutdown, the | 
|  | * association on each peer will stop accepting new | 
|  | * data from its user and only deliver data in queue | 
|  | * at the time of sending or receiving the SHUTDOWN | 
|  | * chunk. | 
|  | */ | 
|  | switch (q->asoc->state) { | 
|  | case SCTP_STATE_EMPTY: | 
|  | case SCTP_STATE_CLOSED: | 
|  | case SCTP_STATE_SHUTDOWN_PENDING: | 
|  | case SCTP_STATE_SHUTDOWN_SENT: | 
|  | case SCTP_STATE_SHUTDOWN_RECEIVED: | 
|  | case SCTP_STATE_SHUTDOWN_ACK_SENT: | 
|  | /* Cannot send after transport endpoint shutdown */ | 
|  | error = -ESHUTDOWN; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n", | 
|  | q, chunk, chunk && chunk->chunk_hdr ? | 
|  | sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) | 
|  | : "Illegal Chunk"); | 
|  |  | 
|  | sctp_outq_tail_data(q, chunk); | 
|  | if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS); | 
|  | else | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS); | 
|  | q->empty = 0; | 
|  | break; | 
|  | }; | 
|  | } else { | 
|  | list_add_tail(&chunk->list, &q->control_chunk_list); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | } | 
|  |  | 
|  | if (error < 0) | 
|  | return error; | 
|  |  | 
|  | if (!q->cork) | 
|  | error = sctp_outq_flush(q, 0); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list | 
|  | * and the abandoned list are in ascending order. | 
|  | */ | 
|  | static void sctp_insert_list(struct list_head *head, struct list_head *new) | 
|  | { | 
|  | struct list_head *pos; | 
|  | struct sctp_chunk *nchunk, *lchunk; | 
|  | __u32 ntsn, ltsn; | 
|  | int done = 0; | 
|  |  | 
|  | nchunk = list_entry(new, struct sctp_chunk, transmitted_list); | 
|  | ntsn = ntohl(nchunk->subh.data_hdr->tsn); | 
|  |  | 
|  | list_for_each(pos, head) { | 
|  | lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); | 
|  | ltsn = ntohl(lchunk->subh.data_hdr->tsn); | 
|  | if (TSN_lt(ntsn, ltsn)) { | 
|  | list_add(new, pos->prev); | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!done) | 
|  | list_add_tail(new, head); | 
|  | } | 
|  |  | 
|  | /* Mark all the eligible packets on a transport for retransmission.  */ | 
|  | void sctp_retransmit_mark(struct sctp_outq *q, | 
|  | struct sctp_transport *transport, | 
|  | __u8 fast_retransmit) | 
|  | { | 
|  | struct list_head *lchunk, *ltemp; | 
|  | struct sctp_chunk *chunk; | 
|  |  | 
|  | /* Walk through the specified transmitted queue.  */ | 
|  | list_for_each_safe(lchunk, ltemp, &transport->transmitted) { | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  |  | 
|  | /* If the chunk is abandoned, move it to abandoned list. */ | 
|  | if (sctp_chunk_abandoned(chunk)) { | 
|  | list_del_init(lchunk); | 
|  | sctp_insert_list(&q->abandoned, lchunk); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If we are doing retransmission due to a fast retransmit, | 
|  | * only the chunk's that are marked for fast retransmit | 
|  | * should be added to the retransmit queue.  If we are doing | 
|  | * retransmission due to a timeout or pmtu discovery, only the | 
|  | * chunks that are not yet acked should be added to the | 
|  | * retransmit queue. | 
|  | */ | 
|  | if ((fast_retransmit && (chunk->fast_retransmit > 0)) || | 
|  | (!fast_retransmit && !chunk->tsn_gap_acked)) { | 
|  | /* RFC 2960 6.2.1 Processing a Received SACK | 
|  | * | 
|  | * C) Any time a DATA chunk is marked for | 
|  | * retransmission (via either T3-rtx timer expiration | 
|  | * (Section 6.3.3) or via fast retransmit | 
|  | * (Section 7.2.4)), add the data size of those | 
|  | * chunks to the rwnd. | 
|  | */ | 
|  | q->asoc->peer.rwnd += (sctp_data_size(chunk) + | 
|  | sizeof(struct sk_buff)); | 
|  | q->outstanding_bytes -= sctp_data_size(chunk); | 
|  | transport->flight_size -= sctp_data_size(chunk); | 
|  |  | 
|  | /* sctpimpguide-05 Section 2.8.2 | 
|  | * M5) If a T3-rtx timer expires, the | 
|  | * 'TSN.Missing.Report' of all affected TSNs is set | 
|  | * to 0. | 
|  | */ | 
|  | chunk->tsn_missing_report = 0; | 
|  |  | 
|  | /* If a chunk that is being used for RTT measurement | 
|  | * has to be retransmitted, we cannot use this chunk | 
|  | * anymore for RTT measurements. Reset rto_pending so | 
|  | * that a new RTT measurement is started when a new | 
|  | * data chunk is sent. | 
|  | */ | 
|  | if (chunk->rtt_in_progress) { | 
|  | chunk->rtt_in_progress = 0; | 
|  | transport->rto_pending = 0; | 
|  | } | 
|  |  | 
|  | /* Move the chunk to the retransmit queue. The chunks | 
|  | * on the retransmit queue are always kept in order. | 
|  | */ | 
|  | list_del_init(lchunk); | 
|  | sctp_insert_list(&q->retransmit, lchunk); | 
|  | } | 
|  | } | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, " | 
|  | "cwnd: %d, ssthresh: %d, flight_size: %d, " | 
|  | "pba: %d\n", __FUNCTION__, | 
|  | transport, fast_retransmit, | 
|  | transport->cwnd, transport->ssthresh, | 
|  | transport->flight_size, | 
|  | transport->partial_bytes_acked); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Mark all the eligible packets on a transport for retransmission and force | 
|  | * one packet out. | 
|  | */ | 
|  | void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, | 
|  | sctp_retransmit_reason_t reason) | 
|  | { | 
|  | int error = 0; | 
|  | __u8 fast_retransmit = 0; | 
|  |  | 
|  | switch(reason) { | 
|  | case SCTP_RTXR_T3_RTX: | 
|  | SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS); | 
|  | sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); | 
|  | /* Update the retran path if the T3-rtx timer has expired for | 
|  | * the current retran path. | 
|  | */ | 
|  | if (transport == transport->asoc->peer.retran_path) | 
|  | sctp_assoc_update_retran_path(transport->asoc); | 
|  | break; | 
|  | case SCTP_RTXR_FAST_RTX: | 
|  | SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS); | 
|  | sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); | 
|  | fast_retransmit = 1; | 
|  | break; | 
|  | case SCTP_RTXR_PMTUD: | 
|  | SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | sctp_retransmit_mark(q, transport, fast_retransmit); | 
|  |  | 
|  | /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, | 
|  | * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by | 
|  | * following the procedures outlined in C1 - C5. | 
|  | */ | 
|  | sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point); | 
|  |  | 
|  | error = sctp_outq_flush(q, /* rtx_timeout */ 1); | 
|  |  | 
|  | if (error) | 
|  | q->asoc->base.sk->sk_err = -error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transmit DATA chunks on the retransmit queue.  Upon return from | 
|  | * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which | 
|  | * need to be transmitted by the caller. | 
|  | * We assume that pkt->transport has already been set. | 
|  | * | 
|  | * The return value is a normal kernel error return value. | 
|  | */ | 
|  | static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, | 
|  | int rtx_timeout, int *start_timer) | 
|  | { | 
|  | struct list_head *lqueue; | 
|  | struct list_head *lchunk, *lchunk1; | 
|  | struct sctp_transport *transport = pkt->transport; | 
|  | sctp_xmit_t status; | 
|  | struct sctp_chunk *chunk, *chunk1; | 
|  | struct sctp_association *asoc; | 
|  | int error = 0; | 
|  |  | 
|  | asoc = q->asoc; | 
|  | lqueue = &q->retransmit; | 
|  |  | 
|  | /* RFC 2960 6.3.3 Handle T3-rtx Expiration | 
|  | * | 
|  | * E3) Determine how many of the earliest (i.e., lowest TSN) | 
|  | * outstanding DATA chunks for the address for which the | 
|  | * T3-rtx has expired will fit into a single packet, subject | 
|  | * to the MTU constraint for the path corresponding to the | 
|  | * destination transport address to which the retransmission | 
|  | * is being sent (this may be different from the address for | 
|  | * which the timer expires [see Section 6.4]). Call this value | 
|  | * K. Bundle and retransmit those K DATA chunks in a single | 
|  | * packet to the destination endpoint. | 
|  | * | 
|  | * [Just to be painfully clear, if we are retransmitting | 
|  | * because a timeout just happened, we should send only ONE | 
|  | * packet of retransmitted data.] | 
|  | */ | 
|  | lchunk = sctp_list_dequeue(lqueue); | 
|  |  | 
|  | while (lchunk) { | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  |  | 
|  | /* Make sure that Gap Acked TSNs are not retransmitted.  A | 
|  | * simple approach is just to move such TSNs out of the | 
|  | * way and into a 'transmitted' queue and skip to the | 
|  | * next chunk. | 
|  | */ | 
|  | if (chunk->tsn_gap_acked) { | 
|  | list_add_tail(lchunk, &transport->transmitted); | 
|  | lchunk = sctp_list_dequeue(lqueue); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Attempt to append this chunk to the packet. */ | 
|  | status = sctp_packet_append_chunk(pkt, chunk); | 
|  |  | 
|  | switch (status) { | 
|  | case SCTP_XMIT_PMTU_FULL: | 
|  | /* Send this packet.  */ | 
|  | if ((error = sctp_packet_transmit(pkt)) == 0) | 
|  | *start_timer = 1; | 
|  |  | 
|  | /* If we are retransmitting, we should only | 
|  | * send a single packet. | 
|  | */ | 
|  | if (rtx_timeout) { | 
|  | list_add(lchunk, lqueue); | 
|  | lchunk = NULL; | 
|  | } | 
|  |  | 
|  | /* Bundle lchunk in the next round.  */ | 
|  | break; | 
|  |  | 
|  | case SCTP_XMIT_RWND_FULL: | 
|  | /* Send this packet. */ | 
|  | if ((error = sctp_packet_transmit(pkt)) == 0) | 
|  | *start_timer = 1; | 
|  |  | 
|  | /* Stop sending DATA as there is no more room | 
|  | * at the receiver. | 
|  | */ | 
|  | list_add(lchunk, lqueue); | 
|  | lchunk = NULL; | 
|  | break; | 
|  |  | 
|  | case SCTP_XMIT_NAGLE_DELAY: | 
|  | /* Send this packet. */ | 
|  | if ((error = sctp_packet_transmit(pkt)) == 0) | 
|  | *start_timer = 1; | 
|  |  | 
|  | /* Stop sending DATA because of nagle delay. */ | 
|  | list_add(lchunk, lqueue); | 
|  | lchunk = NULL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* The append was successful, so add this chunk to | 
|  | * the transmitted list. | 
|  | */ | 
|  | list_add_tail(lchunk, &transport->transmitted); | 
|  |  | 
|  | /* Mark the chunk as ineligible for fast retransmit | 
|  | * after it is retransmitted. | 
|  | */ | 
|  | if (chunk->fast_retransmit > 0) | 
|  | chunk->fast_retransmit = -1; | 
|  |  | 
|  | *start_timer = 1; | 
|  | q->empty = 0; | 
|  |  | 
|  | /* Retrieve a new chunk to bundle. */ | 
|  | lchunk = sctp_list_dequeue(lqueue); | 
|  | break; | 
|  | }; | 
|  |  | 
|  | /* If we are here due to a retransmit timeout or a fast | 
|  | * retransmit and if there are any chunks left in the retransmit | 
|  | * queue that could not fit in the PMTU sized packet, they need			 * to be marked as ineligible for a subsequent fast retransmit. | 
|  | */ | 
|  | if (rtx_timeout && !lchunk) { | 
|  | list_for_each(lchunk1, lqueue) { | 
|  | chunk1 = list_entry(lchunk1, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | if (chunk1->fast_retransmit > 0) | 
|  | chunk1->fast_retransmit = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Cork the outqueue so queued chunks are really queued. */ | 
|  | int sctp_outq_uncork(struct sctp_outq *q) | 
|  | { | 
|  | int error = 0; | 
|  | if (q->cork) { | 
|  | q->cork = 0; | 
|  | error = sctp_outq_flush(q, 0); | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to flush an outqueue. | 
|  | * | 
|  | * Description: Send everything in q which we legally can, subject to | 
|  | * congestion limitations. | 
|  | * * Note: This function can be called from multiple contexts so appropriate | 
|  | * locking concerns must be made.  Today we use the sock lock to protect | 
|  | * this function. | 
|  | */ | 
|  | int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) | 
|  | { | 
|  | struct sctp_packet *packet; | 
|  | struct sctp_packet singleton; | 
|  | struct sctp_association *asoc = q->asoc; | 
|  | __u16 sport = asoc->base.bind_addr.port; | 
|  | __u16 dport = asoc->peer.port; | 
|  | __u32 vtag = asoc->peer.i.init_tag; | 
|  | struct sctp_transport *transport = NULL; | 
|  | struct sctp_transport *new_transport; | 
|  | struct sctp_chunk *chunk, *tmp; | 
|  | sctp_xmit_t status; | 
|  | int error = 0; | 
|  | int start_timer = 0; | 
|  |  | 
|  | /* These transports have chunks to send. */ | 
|  | struct list_head transport_list; | 
|  | struct list_head *ltransport; | 
|  |  | 
|  | INIT_LIST_HEAD(&transport_list); | 
|  | packet = NULL; | 
|  |  | 
|  | /* | 
|  | * 6.10 Bundling | 
|  | *   ... | 
|  | *   When bundling control chunks with DATA chunks, an | 
|  | *   endpoint MUST place control chunks first in the outbound | 
|  | *   SCTP packet.  The transmitter MUST transmit DATA chunks | 
|  | *   within a SCTP packet in increasing order of TSN. | 
|  | *   ... | 
|  | */ | 
|  |  | 
|  | list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { | 
|  | list_del_init(&chunk->list); | 
|  |  | 
|  | /* Pick the right transport to use. */ | 
|  | new_transport = chunk->transport; | 
|  |  | 
|  | if (!new_transport) { | 
|  | new_transport = asoc->peer.active_path; | 
|  | } else if ((new_transport->state == SCTP_INACTIVE) || | 
|  | (new_transport->state == SCTP_UNCONFIRMED)) { | 
|  | /* If the chunk is Heartbeat or Heartbeat Ack, | 
|  | * send it to chunk->transport, even if it's | 
|  | * inactive. | 
|  | * | 
|  | * 3.3.6 Heartbeat Acknowledgement: | 
|  | * ... | 
|  | * A HEARTBEAT ACK is always sent to the source IP | 
|  | * address of the IP datagram containing the | 
|  | * HEARTBEAT chunk to which this ack is responding. | 
|  | * ... | 
|  | */ | 
|  | if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT && | 
|  | chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK) | 
|  | new_transport = asoc->peer.active_path; | 
|  | } | 
|  |  | 
|  | /* Are we switching transports? | 
|  | * Take care of transport locks. | 
|  | */ | 
|  | if (new_transport != transport) { | 
|  | transport = new_transport; | 
|  | if (list_empty(&transport->send_ready)) { | 
|  | list_add_tail(&transport->send_ready, | 
|  | &transport_list); | 
|  | } | 
|  | packet = &transport->packet; | 
|  | sctp_packet_config(packet, vtag, | 
|  | asoc->peer.ecn_capable); | 
|  | } | 
|  |  | 
|  | switch (chunk->chunk_hdr->type) { | 
|  | /* | 
|  | * 6.10 Bundling | 
|  | *   ... | 
|  | *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN | 
|  | *   COMPLETE with any other chunks.  [Send them immediately.] | 
|  | */ | 
|  | case SCTP_CID_INIT: | 
|  | case SCTP_CID_INIT_ACK: | 
|  | case SCTP_CID_SHUTDOWN_COMPLETE: | 
|  | sctp_packet_init(&singleton, transport, sport, dport); | 
|  | sctp_packet_config(&singleton, vtag, 0); | 
|  | sctp_packet_append_chunk(&singleton, chunk); | 
|  | error = sctp_packet_transmit(&singleton); | 
|  | if (error < 0) | 
|  | return error; | 
|  | break; | 
|  |  | 
|  | case SCTP_CID_ABORT: | 
|  | case SCTP_CID_SACK: | 
|  | case SCTP_CID_HEARTBEAT: | 
|  | case SCTP_CID_HEARTBEAT_ACK: | 
|  | case SCTP_CID_SHUTDOWN: | 
|  | case SCTP_CID_SHUTDOWN_ACK: | 
|  | case SCTP_CID_ERROR: | 
|  | case SCTP_CID_COOKIE_ECHO: | 
|  | case SCTP_CID_COOKIE_ACK: | 
|  | case SCTP_CID_ECN_ECNE: | 
|  | case SCTP_CID_ECN_CWR: | 
|  | case SCTP_CID_ASCONF: | 
|  | case SCTP_CID_ASCONF_ACK: | 
|  | case SCTP_CID_FWD_TSN: | 
|  | sctp_packet_transmit_chunk(packet, chunk); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* We built a chunk with an illegal type! */ | 
|  | BUG(); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /* Is it OK to send data chunks?  */ | 
|  | switch (asoc->state) { | 
|  | case SCTP_STATE_COOKIE_ECHOED: | 
|  | /* Only allow bundling when this packet has a COOKIE-ECHO | 
|  | * chunk. | 
|  | */ | 
|  | if (!packet || !packet->has_cookie_echo) | 
|  | break; | 
|  |  | 
|  | /* fallthru */ | 
|  | case SCTP_STATE_ESTABLISHED: | 
|  | case SCTP_STATE_SHUTDOWN_PENDING: | 
|  | case SCTP_STATE_SHUTDOWN_RECEIVED: | 
|  | /* | 
|  | * RFC 2960 6.1  Transmission of DATA Chunks | 
|  | * | 
|  | * C) When the time comes for the sender to transmit, | 
|  | * before sending new DATA chunks, the sender MUST | 
|  | * first transmit any outstanding DATA chunks which | 
|  | * are marked for retransmission (limited by the | 
|  | * current cwnd). | 
|  | */ | 
|  | if (!list_empty(&q->retransmit)) { | 
|  | if (transport == asoc->peer.retran_path) | 
|  | goto retran; | 
|  |  | 
|  | /* Switch transports & prepare the packet.  */ | 
|  |  | 
|  | transport = asoc->peer.retran_path; | 
|  |  | 
|  | if (list_empty(&transport->send_ready)) { | 
|  | list_add_tail(&transport->send_ready, | 
|  | &transport_list); | 
|  | } | 
|  |  | 
|  | packet = &transport->packet; | 
|  | sctp_packet_config(packet, vtag, | 
|  | asoc->peer.ecn_capable); | 
|  | retran: | 
|  | error = sctp_outq_flush_rtx(q, packet, | 
|  | rtx_timeout, &start_timer); | 
|  |  | 
|  | if (start_timer) | 
|  | sctp_transport_reset_timers(transport); | 
|  |  | 
|  | /* This can happen on COOKIE-ECHO resend.  Only | 
|  | * one chunk can get bundled with a COOKIE-ECHO. | 
|  | */ | 
|  | if (packet->has_cookie_echo) | 
|  | goto sctp_flush_out; | 
|  |  | 
|  | /* Don't send new data if there is still data | 
|  | * waiting to retransmit. | 
|  | */ | 
|  | if (!list_empty(&q->retransmit)) | 
|  | goto sctp_flush_out; | 
|  | } | 
|  |  | 
|  | /* Finally, transmit new packets.  */ | 
|  | start_timer = 0; | 
|  | while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { | 
|  | /* RFC 2960 6.5 Every DATA chunk MUST carry a valid | 
|  | * stream identifier. | 
|  | */ | 
|  | if (chunk->sinfo.sinfo_stream >= | 
|  | asoc->c.sinit_num_ostreams) { | 
|  |  | 
|  | /* Mark as failed send. */ | 
|  | sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM); | 
|  | sctp_chunk_free(chunk); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Has this chunk expired? */ | 
|  | if (sctp_chunk_abandoned(chunk)) { | 
|  | sctp_chunk_fail(chunk, 0); | 
|  | sctp_chunk_free(chunk); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If there is a specified transport, use it. | 
|  | * Otherwise, we want to use the active path. | 
|  | */ | 
|  | new_transport = chunk->transport; | 
|  | if (!new_transport || | 
|  | ((new_transport->state == SCTP_INACTIVE) || | 
|  | (new_transport->state == SCTP_UNCONFIRMED))) | 
|  | new_transport = asoc->peer.active_path; | 
|  |  | 
|  | /* Change packets if necessary.  */ | 
|  | if (new_transport != transport) { | 
|  | transport = new_transport; | 
|  |  | 
|  | /* Schedule to have this transport's | 
|  | * packet flushed. | 
|  | */ | 
|  | if (list_empty(&transport->send_ready)) { | 
|  | list_add_tail(&transport->send_ready, | 
|  | &transport_list); | 
|  | } | 
|  |  | 
|  | packet = &transport->packet; | 
|  | sctp_packet_config(packet, vtag, | 
|  | asoc->peer.ecn_capable); | 
|  | } | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ", | 
|  | q, chunk, | 
|  | chunk && chunk->chunk_hdr ? | 
|  | sctp_cname(SCTP_ST_CHUNK( | 
|  | chunk->chunk_hdr->type)) | 
|  | : "Illegal Chunk"); | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head " | 
|  | "%p skb->users %d.\n", | 
|  | ntohl(chunk->subh.data_hdr->tsn), | 
|  | chunk->skb ?chunk->skb->head : NULL, | 
|  | chunk->skb ? | 
|  | atomic_read(&chunk->skb->users) : -1); | 
|  |  | 
|  | /* Add the chunk to the packet.  */ | 
|  | status = sctp_packet_transmit_chunk(packet, chunk); | 
|  |  | 
|  | switch (status) { | 
|  | case SCTP_XMIT_PMTU_FULL: | 
|  | case SCTP_XMIT_RWND_FULL: | 
|  | case SCTP_XMIT_NAGLE_DELAY: | 
|  | /* We could not append this chunk, so put | 
|  | * the chunk back on the output queue. | 
|  | */ | 
|  | SCTP_DEBUG_PRINTK("sctp_outq_flush: could " | 
|  | "not transmit TSN: 0x%x, status: %d\n", | 
|  | ntohl(chunk->subh.data_hdr->tsn), | 
|  | status); | 
|  | sctp_outq_head_data(q, chunk); | 
|  | goto sctp_flush_out; | 
|  | break; | 
|  |  | 
|  | case SCTP_XMIT_OK: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* BUG: We assume that the sctp_packet_transmit() | 
|  | * call below will succeed all the time and add the | 
|  | * chunk to the transmitted list and restart the | 
|  | * timers. | 
|  | * It is possible that the call can fail under OOM | 
|  | * conditions. | 
|  | * | 
|  | * Is this really a problem?  Won't this behave | 
|  | * like a lost TSN? | 
|  | */ | 
|  | list_add_tail(&chunk->transmitted_list, | 
|  | &transport->transmitted); | 
|  |  | 
|  | sctp_transport_reset_timers(transport); | 
|  |  | 
|  | q->empty = 0; | 
|  |  | 
|  | /* Only let one DATA chunk get bundled with a | 
|  | * COOKIE-ECHO chunk. | 
|  | */ | 
|  | if (packet->has_cookie_echo) | 
|  | goto sctp_flush_out; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Do nothing.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | sctp_flush_out: | 
|  |  | 
|  | /* Before returning, examine all the transports touched in | 
|  | * this call.  Right now, we bluntly force clear all the | 
|  | * transports.  Things might change after we implement Nagle. | 
|  | * But such an examination is still required. | 
|  | * | 
|  | * --xguo | 
|  | */ | 
|  | while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) { | 
|  | struct sctp_transport *t = list_entry(ltransport, | 
|  | struct sctp_transport, | 
|  | send_ready); | 
|  | packet = &t->packet; | 
|  | if (!sctp_packet_empty(packet)) | 
|  | error = sctp_packet_transmit(packet); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Update unack_data based on the incoming SACK chunk */ | 
|  | static void sctp_sack_update_unack_data(struct sctp_association *assoc, | 
|  | struct sctp_sackhdr *sack) | 
|  | { | 
|  | sctp_sack_variable_t *frags; | 
|  | __u16 unack_data; | 
|  | int i; | 
|  |  | 
|  | unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; | 
|  |  | 
|  | frags = sack->variable; | 
|  | for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { | 
|  | unack_data -= ((ntohs(frags[i].gab.end) - | 
|  | ntohs(frags[i].gab.start) + 1)); | 
|  | } | 
|  |  | 
|  | assoc->unack_data = unack_data; | 
|  | } | 
|  |  | 
|  | /* Return the highest new tsn that is acknowledged by the given SACK chunk. */ | 
|  | static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack, | 
|  | struct sctp_association *asoc) | 
|  | { | 
|  | struct list_head *ltransport, *lchunk; | 
|  | struct sctp_transport *transport; | 
|  | struct sctp_chunk *chunk; | 
|  | __u32 highest_new_tsn, tsn; | 
|  | struct list_head *transport_list = &asoc->peer.transport_addr_list; | 
|  |  | 
|  | highest_new_tsn = ntohl(sack->cum_tsn_ack); | 
|  |  | 
|  | list_for_each(ltransport, transport_list) { | 
|  | transport = list_entry(ltransport, struct sctp_transport, | 
|  | transports); | 
|  | list_for_each(lchunk, &transport->transmitted) { | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | tsn = ntohl(chunk->subh.data_hdr->tsn); | 
|  |  | 
|  | if (!chunk->tsn_gap_acked && | 
|  | TSN_lt(highest_new_tsn, tsn) && | 
|  | sctp_acked(sack, tsn)) | 
|  | highest_new_tsn = tsn; | 
|  | } | 
|  | } | 
|  |  | 
|  | return highest_new_tsn; | 
|  | } | 
|  |  | 
|  | /* This is where we REALLY process a SACK. | 
|  | * | 
|  | * Process the SACK against the outqueue.  Mostly, this just frees | 
|  | * things off the transmitted queue. | 
|  | */ | 
|  | int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack) | 
|  | { | 
|  | struct sctp_association *asoc = q->asoc; | 
|  | struct sctp_transport *transport; | 
|  | struct sctp_chunk *tchunk = NULL; | 
|  | struct list_head *lchunk, *transport_list, *pos, *temp; | 
|  | sctp_sack_variable_t *frags = sack->variable; | 
|  | __u32 sack_ctsn, ctsn, tsn; | 
|  | __u32 highest_tsn, highest_new_tsn; | 
|  | __u32 sack_a_rwnd; | 
|  | unsigned outstanding; | 
|  | struct sctp_transport *primary = asoc->peer.primary_path; | 
|  | int count_of_newacks = 0; | 
|  |  | 
|  | /* Grab the association's destination address list. */ | 
|  | transport_list = &asoc->peer.transport_addr_list; | 
|  |  | 
|  | sack_ctsn = ntohl(sack->cum_tsn_ack); | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * On receipt of a SACK the sender SHOULD execute the | 
|  | * following statements. | 
|  | * | 
|  | * 1) If the cumulative ack in the SACK passes next tsn_at_change | 
|  | * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be | 
|  | * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for | 
|  | * all destinations. | 
|  | */ | 
|  | if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { | 
|  | primary->cacc.changeover_active = 0; | 
|  | list_for_each(pos, transport_list) { | 
|  | transport = list_entry(pos, struct sctp_transport, | 
|  | transports); | 
|  | transport->cacc.cycling_changeover = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE | 
|  | * is set the receiver of the SACK MUST take the following actions: | 
|  | * | 
|  | * A) Initialize the cacc_saw_newack to 0 for all destination | 
|  | * addresses. | 
|  | */ | 
|  | if (sack->num_gap_ack_blocks > 0 && | 
|  | primary->cacc.changeover_active) { | 
|  | list_for_each(pos, transport_list) { | 
|  | transport = list_entry(pos, struct sctp_transport, | 
|  | transports); | 
|  | transport->cacc.cacc_saw_newack = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the highest TSN in the sack. */ | 
|  | highest_tsn = sack_ctsn; | 
|  | if (sack->num_gap_ack_blocks) | 
|  | highest_tsn += | 
|  | ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end); | 
|  |  | 
|  | if (TSN_lt(asoc->highest_sacked, highest_tsn)) { | 
|  | highest_new_tsn = highest_tsn; | 
|  | asoc->highest_sacked = highest_tsn; | 
|  | } else { | 
|  | highest_new_tsn = sctp_highest_new_tsn(sack, asoc); | 
|  | } | 
|  |  | 
|  | /* Run through the retransmit queue.  Credit bytes received | 
|  | * and free those chunks that we can. | 
|  | */ | 
|  | sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn); | 
|  | sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0); | 
|  |  | 
|  | /* Run through the transmitted queue. | 
|  | * Credit bytes received and free those chunks which we can. | 
|  | * | 
|  | * This is a MASSIVE candidate for optimization. | 
|  | */ | 
|  | list_for_each(pos, transport_list) { | 
|  | transport  = list_entry(pos, struct sctp_transport, | 
|  | transports); | 
|  | sctp_check_transmitted(q, &transport->transmitted, | 
|  | transport, sack, highest_new_tsn); | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * C) Let count_of_newacks be the number of | 
|  | * destinations for which cacc_saw_newack is set. | 
|  | */ | 
|  | if (transport->cacc.cacc_saw_newack) | 
|  | count_of_newacks ++; | 
|  | } | 
|  |  | 
|  | list_for_each(pos, transport_list) { | 
|  | transport  = list_entry(pos, struct sctp_transport, | 
|  | transports); | 
|  | sctp_mark_missing(q, &transport->transmitted, transport, | 
|  | highest_new_tsn, count_of_newacks); | 
|  | } | 
|  |  | 
|  | /* Move the Cumulative TSN Ack Point if appropriate.  */ | 
|  | if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) | 
|  | asoc->ctsn_ack_point = sack_ctsn; | 
|  |  | 
|  | /* Update unack_data field in the assoc. */ | 
|  | sctp_sack_update_unack_data(asoc, sack); | 
|  |  | 
|  | ctsn = asoc->ctsn_ack_point; | 
|  |  | 
|  | /* Throw away stuff rotting on the sack queue.  */ | 
|  | list_for_each_safe(lchunk, temp, &q->sacked) { | 
|  | tchunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | tsn = ntohl(tchunk->subh.data_hdr->tsn); | 
|  | if (TSN_lte(tsn, ctsn)) | 
|  | sctp_chunk_free(tchunk); | 
|  | } | 
|  |  | 
|  | /* ii) Set rwnd equal to the newly received a_rwnd minus the | 
|  | *     number of bytes still outstanding after processing the | 
|  | *     Cumulative TSN Ack and the Gap Ack Blocks. | 
|  | */ | 
|  |  | 
|  | sack_a_rwnd = ntohl(sack->a_rwnd); | 
|  | outstanding = q->outstanding_bytes; | 
|  |  | 
|  | if (outstanding < sack_a_rwnd) | 
|  | sack_a_rwnd -= outstanding; | 
|  | else | 
|  | sack_a_rwnd = 0; | 
|  |  | 
|  | asoc->peer.rwnd = sack_a_rwnd; | 
|  |  | 
|  | sctp_generate_fwdtsn(q, sack_ctsn); | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n", | 
|  | __FUNCTION__, sack_ctsn); | 
|  | SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, " | 
|  | "%p is 0x%x. Adv peer ack point: 0x%x\n", | 
|  | __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point); | 
|  |  | 
|  | /* See if all chunks are acked. | 
|  | * Make sure the empty queue handler will get run later. | 
|  | */ | 
|  | q->empty = (list_empty(&q->out_chunk_list) && | 
|  | list_empty(&q->control_chunk_list) && | 
|  | list_empty(&q->retransmit)); | 
|  | if (!q->empty) | 
|  | goto finish; | 
|  |  | 
|  | list_for_each(pos, transport_list) { | 
|  | transport  = list_entry(pos, struct sctp_transport, | 
|  | transports); | 
|  | q->empty = q->empty && list_empty(&transport->transmitted); | 
|  | if (!q->empty) | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("sack queue is empty.\n"); | 
|  | finish: | 
|  | return q->empty; | 
|  | } | 
|  |  | 
|  | /* Is the outqueue empty?  */ | 
|  | int sctp_outq_is_empty(const struct sctp_outq *q) | 
|  | { | 
|  | return q->empty; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * 2nd Level Abstractions | 
|  | ********************************************************************/ | 
|  |  | 
|  | /* Go through a transport's transmitted list or the association's retransmit | 
|  | * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. | 
|  | * The retransmit list will not have an associated transport. | 
|  | * | 
|  | * I added coherent debug information output.	--xguo | 
|  | * | 
|  | * Instead of printing 'sacked' or 'kept' for each TSN on the | 
|  | * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. | 
|  | * KEPT TSN6-TSN7, etc. | 
|  | */ | 
|  | static void sctp_check_transmitted(struct sctp_outq *q, | 
|  | struct list_head *transmitted_queue, | 
|  | struct sctp_transport *transport, | 
|  | struct sctp_sackhdr *sack, | 
|  | __u32 highest_new_tsn_in_sack) | 
|  | { | 
|  | struct list_head *lchunk; | 
|  | struct sctp_chunk *tchunk; | 
|  | struct list_head tlist; | 
|  | __u32 tsn; | 
|  | __u32 sack_ctsn; | 
|  | __u32 rtt; | 
|  | __u8 restart_timer = 0; | 
|  | int bytes_acked = 0; | 
|  |  | 
|  | /* These state variables are for coherent debug output. --xguo */ | 
|  |  | 
|  | #if SCTP_DEBUG | 
|  | __u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */ | 
|  | __u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */ | 
|  | __u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */ | 
|  | __u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */ | 
|  |  | 
|  | /* 0 : The last TSN was ACKed. | 
|  | * 1 : The last TSN was NOT ACKed (i.e. KEPT). | 
|  | * -1: We need to initialize. | 
|  | */ | 
|  | int dbg_prt_state = -1; | 
|  | #endif /* SCTP_DEBUG */ | 
|  |  | 
|  | sack_ctsn = ntohl(sack->cum_tsn_ack); | 
|  |  | 
|  | INIT_LIST_HEAD(&tlist); | 
|  |  | 
|  | /* The while loop will skip empty transmitted queues. */ | 
|  | while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { | 
|  | tchunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  |  | 
|  | if (sctp_chunk_abandoned(tchunk)) { | 
|  | /* Move the chunk to abandoned list. */ | 
|  | sctp_insert_list(&q->abandoned, lchunk); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | tsn = ntohl(tchunk->subh.data_hdr->tsn); | 
|  | if (sctp_acked(sack, tsn)) { | 
|  | /* If this queue is the retransmit queue, the | 
|  | * retransmit timer has already reclaimed | 
|  | * the outstanding bytes for this chunk, so only | 
|  | * count bytes associated with a transport. | 
|  | */ | 
|  | if (transport) { | 
|  | /* If this chunk is being used for RTT | 
|  | * measurement, calculate the RTT and update | 
|  | * the RTO using this value. | 
|  | * | 
|  | * 6.3.1 C5) Karn's algorithm: RTT measurements | 
|  | * MUST NOT be made using packets that were | 
|  | * retransmitted (and thus for which it is | 
|  | * ambiguous whether the reply was for the | 
|  | * first instance of the packet or a later | 
|  | * instance). | 
|  | */ | 
|  | if (!tchunk->tsn_gap_acked && | 
|  | !tchunk->resent && | 
|  | tchunk->rtt_in_progress) { | 
|  | tchunk->rtt_in_progress = 0; | 
|  | rtt = jiffies - tchunk->sent_at; | 
|  | sctp_transport_update_rto(transport, | 
|  | rtt); | 
|  | } | 
|  | } | 
|  | if (TSN_lte(tsn, sack_ctsn)) { | 
|  | /* RFC 2960  6.3.2 Retransmission Timer Rules | 
|  | * | 
|  | * R3) Whenever a SACK is received | 
|  | * that acknowledges the DATA chunk | 
|  | * with the earliest outstanding TSN | 
|  | * for that address, restart T3-rtx | 
|  | * timer for that address with its | 
|  | * current RTO. | 
|  | */ | 
|  | restart_timer = 1; | 
|  |  | 
|  | if (!tchunk->tsn_gap_acked) { | 
|  | tchunk->tsn_gap_acked = 1; | 
|  | bytes_acked += sctp_data_size(tchunk); | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * 2) If the SACK contains gap acks | 
|  | * and the flag CHANGEOVER_ACTIVE is | 
|  | * set the receiver of the SACK MUST | 
|  | * take the following action: | 
|  | * | 
|  | * B) For each TSN t being acked that | 
|  | * has not been acked in any SACK so | 
|  | * far, set cacc_saw_newack to 1 for | 
|  | * the destination that the TSN was | 
|  | * sent to. | 
|  | */ | 
|  | if (transport && | 
|  | sack->num_gap_ack_blocks && | 
|  | q->asoc->peer.primary_path->cacc. | 
|  | changeover_active) | 
|  | transport->cacc.cacc_saw_newack | 
|  | = 1; | 
|  | } | 
|  |  | 
|  | list_add_tail(&tchunk->transmitted_list, | 
|  | &q->sacked); | 
|  | } else { | 
|  | /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 | 
|  | * M2) Each time a SACK arrives reporting | 
|  | * 'Stray DATA chunk(s)' record the highest TSN | 
|  | * reported as newly acknowledged, call this | 
|  | * value 'HighestTSNinSack'. A newly | 
|  | * acknowledged DATA chunk is one not | 
|  | * previously acknowledged in a SACK. | 
|  | * | 
|  | * When the SCTP sender of data receives a SACK | 
|  | * chunk that acknowledges, for the first time, | 
|  | * the receipt of a DATA chunk, all the still | 
|  | * unacknowledged DATA chunks whose TSN is | 
|  | * older than that newly acknowledged DATA | 
|  | * chunk, are qualified as 'Stray DATA chunks'. | 
|  | */ | 
|  | if (!tchunk->tsn_gap_acked) { | 
|  | tchunk->tsn_gap_acked = 1; | 
|  | bytes_acked += sctp_data_size(tchunk); | 
|  | } | 
|  | list_add_tail(lchunk, &tlist); | 
|  | } | 
|  |  | 
|  | #if SCTP_DEBUG | 
|  | switch (dbg_prt_state) { | 
|  | case 0:	/* last TSN was ACKed */ | 
|  | if (dbg_last_ack_tsn + 1 == tsn) { | 
|  | /* This TSN belongs to the | 
|  | * current ACK range. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (dbg_last_ack_tsn != dbg_ack_tsn) { | 
|  | /* Display the end of the | 
|  | * current range. | 
|  | */ | 
|  | SCTP_DEBUG_PRINTK("-%08x", | 
|  | dbg_last_ack_tsn); | 
|  | } | 
|  |  | 
|  | /* Start a new range.  */ | 
|  | SCTP_DEBUG_PRINTK(",%08x", tsn); | 
|  | dbg_ack_tsn = tsn; | 
|  | break; | 
|  |  | 
|  | case 1:	/* The last TSN was NOT ACKed. */ | 
|  | if (dbg_last_kept_tsn != dbg_kept_tsn) { | 
|  | /* Display the end of current range. */ | 
|  | SCTP_DEBUG_PRINTK("-%08x", | 
|  | dbg_last_kept_tsn); | 
|  | } | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("\n"); | 
|  |  | 
|  | /* FALL THROUGH... */ | 
|  | default: | 
|  | /* This is the first-ever TSN we examined.  */ | 
|  | /* Start a new range of ACK-ed TSNs.  */ | 
|  | SCTP_DEBUG_PRINTK("ACKed: %08x", tsn); | 
|  | dbg_prt_state = 0; | 
|  | dbg_ack_tsn = tsn; | 
|  | }; | 
|  |  | 
|  | dbg_last_ack_tsn = tsn; | 
|  | #endif /* SCTP_DEBUG */ | 
|  |  | 
|  | } else { | 
|  | if (tchunk->tsn_gap_acked) { | 
|  | SCTP_DEBUG_PRINTK("%s: Receiver reneged on " | 
|  | "data TSN: 0x%x\n", | 
|  | __FUNCTION__, | 
|  | tsn); | 
|  | tchunk->tsn_gap_acked = 0; | 
|  |  | 
|  | bytes_acked -= sctp_data_size(tchunk); | 
|  |  | 
|  | /* RFC 2960 6.3.2 Retransmission Timer Rules | 
|  | * | 
|  | * R4) Whenever a SACK is received missing a | 
|  | * TSN that was previously acknowledged via a | 
|  | * Gap Ack Block, start T3-rtx for the | 
|  | * destination address to which the DATA | 
|  | * chunk was originally | 
|  | * transmitted if it is not already running. | 
|  | */ | 
|  | restart_timer = 1; | 
|  | } | 
|  |  | 
|  | list_add_tail(lchunk, &tlist); | 
|  |  | 
|  | #if SCTP_DEBUG | 
|  | /* See the above comments on ACK-ed TSNs. */ | 
|  | switch (dbg_prt_state) { | 
|  | case 1: | 
|  | if (dbg_last_kept_tsn + 1 == tsn) | 
|  | break; | 
|  |  | 
|  | if (dbg_last_kept_tsn != dbg_kept_tsn) | 
|  | SCTP_DEBUG_PRINTK("-%08x", | 
|  | dbg_last_kept_tsn); | 
|  |  | 
|  | SCTP_DEBUG_PRINTK(",%08x", tsn); | 
|  | dbg_kept_tsn = tsn; | 
|  | break; | 
|  |  | 
|  | case 0: | 
|  | if (dbg_last_ack_tsn != dbg_ack_tsn) | 
|  | SCTP_DEBUG_PRINTK("-%08x", | 
|  | dbg_last_ack_tsn); | 
|  | SCTP_DEBUG_PRINTK("\n"); | 
|  |  | 
|  | /* FALL THROUGH... */ | 
|  | default: | 
|  | SCTP_DEBUG_PRINTK("KEPT: %08x",tsn); | 
|  | dbg_prt_state = 1; | 
|  | dbg_kept_tsn = tsn; | 
|  | }; | 
|  |  | 
|  | dbg_last_kept_tsn = tsn; | 
|  | #endif /* SCTP_DEBUG */ | 
|  | } | 
|  | } | 
|  |  | 
|  | #if SCTP_DEBUG | 
|  | /* Finish off the last range, displaying its ending TSN.  */ | 
|  | switch (dbg_prt_state) { | 
|  | case 0: | 
|  | if (dbg_last_ack_tsn != dbg_ack_tsn) { | 
|  | SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn); | 
|  | } else { | 
|  | SCTP_DEBUG_PRINTK("\n"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | if (dbg_last_kept_tsn != dbg_kept_tsn) { | 
|  | SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn); | 
|  | } else { | 
|  | SCTP_DEBUG_PRINTK("\n"); | 
|  | } | 
|  | }; | 
|  | #endif /* SCTP_DEBUG */ | 
|  | if (transport) { | 
|  | if (bytes_acked) { | 
|  | /* 8.2. When an outstanding TSN is acknowledged, | 
|  | * the endpoint shall clear the error counter of | 
|  | * the destination transport address to which the | 
|  | * DATA chunk was last sent. | 
|  | * The association's overall error counter is | 
|  | * also cleared. | 
|  | */ | 
|  | transport->error_count = 0; | 
|  | transport->asoc->overall_error_count = 0; | 
|  |  | 
|  | /* Mark the destination transport address as | 
|  | * active if it is not so marked. | 
|  | */ | 
|  | if ((transport->state == SCTP_INACTIVE) || | 
|  | (transport->state == SCTP_UNCONFIRMED)) { | 
|  | sctp_assoc_control_transport( | 
|  | transport->asoc, | 
|  | transport, | 
|  | SCTP_TRANSPORT_UP, | 
|  | SCTP_RECEIVED_SACK); | 
|  | } | 
|  |  | 
|  | sctp_transport_raise_cwnd(transport, sack_ctsn, | 
|  | bytes_acked); | 
|  |  | 
|  | transport->flight_size -= bytes_acked; | 
|  | q->outstanding_bytes -= bytes_acked; | 
|  | } else { | 
|  | /* RFC 2960 6.1, sctpimpguide-06 2.15.2 | 
|  | * When a sender is doing zero window probing, it | 
|  | * should not timeout the association if it continues | 
|  | * to receive new packets from the receiver. The | 
|  | * reason is that the receiver MAY keep its window | 
|  | * closed for an indefinite time. | 
|  | * A sender is doing zero window probing when the | 
|  | * receiver's advertised window is zero, and there is | 
|  | * only one data chunk in flight to the receiver. | 
|  | */ | 
|  | if (!q->asoc->peer.rwnd && | 
|  | !list_empty(&tlist) && | 
|  | (sack_ctsn+2 == q->asoc->next_tsn)) { | 
|  | SCTP_DEBUG_PRINTK("%s: SACK received for zero " | 
|  | "window probe: %u\n", | 
|  | __FUNCTION__, sack_ctsn); | 
|  | q->asoc->overall_error_count = 0; | 
|  | transport->error_count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RFC 2960 6.3.2 Retransmission Timer Rules | 
|  | * | 
|  | * R2) Whenever all outstanding data sent to an address have | 
|  | * been acknowledged, turn off the T3-rtx timer of that | 
|  | * address. | 
|  | */ | 
|  | if (!transport->flight_size) { | 
|  | if (timer_pending(&transport->T3_rtx_timer) && | 
|  | del_timer(&transport->T3_rtx_timer)) { | 
|  | sctp_transport_put(transport); | 
|  | } | 
|  | } else if (restart_timer) { | 
|  | if (!mod_timer(&transport->T3_rtx_timer, | 
|  | jiffies + transport->rto)) | 
|  | sctp_transport_hold(transport); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_splice(&tlist, transmitted_queue); | 
|  | } | 
|  |  | 
|  | /* Mark chunks as missing and consequently may get retransmitted. */ | 
|  | static void sctp_mark_missing(struct sctp_outq *q, | 
|  | struct list_head *transmitted_queue, | 
|  | struct sctp_transport *transport, | 
|  | __u32 highest_new_tsn_in_sack, | 
|  | int count_of_newacks) | 
|  | { | 
|  | struct sctp_chunk *chunk; | 
|  | struct list_head *pos; | 
|  | __u32 tsn; | 
|  | char do_fast_retransmit = 0; | 
|  | struct sctp_transport *primary = q->asoc->peer.primary_path; | 
|  |  | 
|  | list_for_each(pos, transmitted_queue) { | 
|  |  | 
|  | chunk = list_entry(pos, struct sctp_chunk, transmitted_list); | 
|  | tsn = ntohl(chunk->subh.data_hdr->tsn); | 
|  |  | 
|  | /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all | 
|  | * 'Unacknowledged TSN's', if the TSN number of an | 
|  | * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' | 
|  | * value, increment the 'TSN.Missing.Report' count on that | 
|  | * chunk if it has NOT been fast retransmitted or marked for | 
|  | * fast retransmit already. | 
|  | */ | 
|  | if (!chunk->fast_retransmit && | 
|  | !chunk->tsn_gap_acked && | 
|  | TSN_lt(tsn, highest_new_tsn_in_sack)) { | 
|  |  | 
|  | /* SFR-CACC may require us to skip marking | 
|  | * this chunk as missing. | 
|  | */ | 
|  | if (!transport || !sctp_cacc_skip(primary, transport, | 
|  | count_of_newacks, tsn)) { | 
|  | chunk->tsn_missing_report++; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK( | 
|  | "%s: TSN 0x%x missing counter: %d\n", | 
|  | __FUNCTION__, tsn, | 
|  | chunk->tsn_missing_report); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * M4) If any DATA chunk is found to have a | 
|  | * 'TSN.Missing.Report' | 
|  | * value larger than or equal to 3, mark that chunk for | 
|  | * retransmission and start the fast retransmit procedure. | 
|  | */ | 
|  |  | 
|  | if (chunk->tsn_missing_report >= 3) { | 
|  | chunk->fast_retransmit = 1; | 
|  | do_fast_retransmit = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (transport) { | 
|  | if (do_fast_retransmit) | 
|  | sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " | 
|  | "ssthresh: %d, flight_size: %d, pba: %d\n", | 
|  | __FUNCTION__, transport, transport->cwnd, | 
|  | transport->ssthresh, transport->flight_size, | 
|  | transport->partial_bytes_acked); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Is the given TSN acked by this packet?  */ | 
|  | static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) | 
|  | { | 
|  | int i; | 
|  | sctp_sack_variable_t *frags; | 
|  | __u16 gap; | 
|  | __u32 ctsn = ntohl(sack->cum_tsn_ack); | 
|  |  | 
|  | if (TSN_lte(tsn, ctsn)) | 
|  | goto pass; | 
|  |  | 
|  | /* 3.3.4 Selective Acknowledgement (SACK) (3): | 
|  | * | 
|  | * Gap Ack Blocks: | 
|  | *  These fields contain the Gap Ack Blocks. They are repeated | 
|  | *  for each Gap Ack Block up to the number of Gap Ack Blocks | 
|  | *  defined in the Number of Gap Ack Blocks field. All DATA | 
|  | *  chunks with TSNs greater than or equal to (Cumulative TSN | 
|  | *  Ack + Gap Ack Block Start) and less than or equal to | 
|  | *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack | 
|  | *  Block are assumed to have been received correctly. | 
|  | */ | 
|  |  | 
|  | frags = sack->variable; | 
|  | gap = tsn - ctsn; | 
|  | for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) { | 
|  | if (TSN_lte(ntohs(frags[i].gab.start), gap) && | 
|  | TSN_lte(gap, ntohs(frags[i].gab.end))) | 
|  | goto pass; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | pass: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, | 
|  | int nskips, __u16 stream) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nskips; i++) { | 
|  | if (skiplist[i].stream == stream) | 
|  | return i; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ | 
|  | static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) | 
|  | { | 
|  | struct sctp_association *asoc = q->asoc; | 
|  | struct sctp_chunk *ftsn_chunk = NULL; | 
|  | struct sctp_fwdtsn_skip ftsn_skip_arr[10]; | 
|  | int nskips = 0; | 
|  | int skip_pos = 0; | 
|  | __u32 tsn; | 
|  | struct sctp_chunk *chunk; | 
|  | struct list_head *lchunk, *temp; | 
|  |  | 
|  | /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the | 
|  | * received SACK. | 
|  | * | 
|  | * If (Advanced.Peer.Ack.Point < SackCumAck), then update | 
|  | * Advanced.Peer.Ack.Point to be equal to SackCumAck. | 
|  | */ | 
|  | if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) | 
|  | asoc->adv_peer_ack_point = ctsn; | 
|  |  | 
|  | /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" | 
|  | * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as | 
|  | * the chunk next in the out-queue space is marked as "abandoned" as | 
|  | * shown in the following example: | 
|  | * | 
|  | * Assuming that a SACK arrived with the Cumulative TSN ACK 102 | 
|  | * and the Advanced.Peer.Ack.Point is updated to this value: | 
|  | * | 
|  | *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point | 
|  | *   normal SACK processing           local advancement | 
|  | *                ...                           ... | 
|  | *   Adv.Ack.Pt-> 102 acked                     102 acked | 
|  | *                103 abandoned                 103 abandoned | 
|  | *                104 abandoned     Adv.Ack.P-> 104 abandoned | 
|  | *                105                           105 | 
|  | *                106 acked                     106 acked | 
|  | *                ...                           ... | 
|  | * | 
|  | * In this example, the data sender successfully advanced the | 
|  | * "Advanced.Peer.Ack.Point" from 102 to 104 locally. | 
|  | */ | 
|  | list_for_each_safe(lchunk, temp, &q->abandoned) { | 
|  | chunk = list_entry(lchunk, struct sctp_chunk, | 
|  | transmitted_list); | 
|  | tsn = ntohl(chunk->subh.data_hdr->tsn); | 
|  |  | 
|  | /* Remove any chunks in the abandoned queue that are acked by | 
|  | * the ctsn. | 
|  | */ | 
|  | if (TSN_lte(tsn, ctsn)) { | 
|  | list_del_init(lchunk); | 
|  | if (!chunk->tsn_gap_acked) { | 
|  | chunk->transport->flight_size -= | 
|  | sctp_data_size(chunk); | 
|  | q->outstanding_bytes -= sctp_data_size(chunk); | 
|  | } | 
|  | sctp_chunk_free(chunk); | 
|  | } else { | 
|  | if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { | 
|  | asoc->adv_peer_ack_point = tsn; | 
|  | if (chunk->chunk_hdr->flags & | 
|  | SCTP_DATA_UNORDERED) | 
|  | continue; | 
|  | skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], | 
|  | nskips, | 
|  | chunk->subh.data_hdr->stream); | 
|  | ftsn_skip_arr[skip_pos].stream = | 
|  | chunk->subh.data_hdr->stream; | 
|  | ftsn_skip_arr[skip_pos].ssn = | 
|  | chunk->subh.data_hdr->ssn; | 
|  | if (skip_pos == nskips) | 
|  | nskips++; | 
|  | if (nskips == 10) | 
|  | break; | 
|  | } else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" | 
|  | * is greater than the Cumulative TSN ACK carried in the received | 
|  | * SACK, the data sender MUST send the data receiver a FORWARD TSN | 
|  | * chunk containing the latest value of the | 
|  | * "Advanced.Peer.Ack.Point". | 
|  | * | 
|  | * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD | 
|  | * list each stream and sequence number in the forwarded TSN. This | 
|  | * information will enable the receiver to easily find any | 
|  | * stranded TSN's waiting on stream reorder queues. Each stream | 
|  | * SHOULD only be reported once; this means that if multiple | 
|  | * abandoned messages occur in the same stream then only the | 
|  | * highest abandoned stream sequence number is reported. If the | 
|  | * total size of the FORWARD TSN does NOT fit in a single MTU then | 
|  | * the sender of the FORWARD TSN SHOULD lower the | 
|  | * Advanced.Peer.Ack.Point to the last TSN that will fit in a | 
|  | * single MTU. | 
|  | */ | 
|  | if (asoc->adv_peer_ack_point > ctsn) | 
|  | ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, | 
|  | nskips, &ftsn_skip_arr[0]); | 
|  |  | 
|  | if (ftsn_chunk) { | 
|  | list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | } | 
|  | } |