|  | /* | 
|  | * Cryptographic API. | 
|  | * | 
|  | * AES Cipher Algorithm. | 
|  | * | 
|  | * Based on Brian Gladman's code. | 
|  | * | 
|  | * Linux developers: | 
|  | *  Alexander Kjeldaas <astor@fast.no> | 
|  | *  Herbert Valerio Riedel <hvr@hvrlab.org> | 
|  | *  Kyle McMartin <kyle@debian.org> | 
|  | *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API). | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * --------------------------------------------------------------------------- | 
|  | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | 
|  | * All rights reserved. | 
|  | * | 
|  | * LICENSE TERMS | 
|  | * | 
|  | * The free distribution and use of this software in both source and binary | 
|  | * form is allowed (with or without changes) provided that: | 
|  | * | 
|  | *   1. distributions of this source code include the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer; | 
|  | * | 
|  | *   2. distributions in binary form include the above copyright | 
|  | *      notice, this list of conditions and the following disclaimer | 
|  | *      in the documentation and/or other associated materials; | 
|  | * | 
|  | *   3. the copyright holder's name is not used to endorse products | 
|  | *      built using this software without specific written permission. | 
|  | * | 
|  | * ALTERNATIVELY, provided that this notice is retained in full, this product | 
|  | * may be distributed under the terms of the GNU General Public License (GPL), | 
|  | * in which case the provisions of the GPL apply INSTEAD OF those given above. | 
|  | * | 
|  | * DISCLAIMER | 
|  | * | 
|  | * This software is provided 'as is' with no explicit or implied warranties | 
|  | * in respect of its properties, including, but not limited to, correctness | 
|  | * and/or fitness for purpose. | 
|  | * --------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | /* Some changes from the Gladman version: | 
|  | s/RIJNDAEL(e_key)/E_KEY/g | 
|  | s/RIJNDAEL(d_key)/D_KEY/g | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #define AES_MIN_KEY_SIZE	16 | 
|  | #define AES_MAX_KEY_SIZE	32 | 
|  |  | 
|  | #define AES_BLOCK_SIZE		16 | 
|  |  | 
|  | /* | 
|  | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) | 
|  | */ | 
|  | static inline u8 | 
|  | byte(const u32 x, const unsigned n) | 
|  | { | 
|  | return x >> (n << 3); | 
|  | } | 
|  |  | 
|  | struct aes_ctx { | 
|  | int key_length; | 
|  | u32 buf[120]; | 
|  | }; | 
|  |  | 
|  | #define E_KEY (&ctx->buf[0]) | 
|  | #define D_KEY (&ctx->buf[60]) | 
|  |  | 
|  | static u8 pow_tab[256] __initdata; | 
|  | static u8 log_tab[256] __initdata; | 
|  | static u8 sbx_tab[256] __initdata; | 
|  | static u8 isb_tab[256] __initdata; | 
|  | static u32 rco_tab[10]; | 
|  | static u32 ft_tab[4][256]; | 
|  | static u32 it_tab[4][256]; | 
|  |  | 
|  | static u32 fl_tab[4][256]; | 
|  | static u32 il_tab[4][256]; | 
|  |  | 
|  | static inline u8 __init | 
|  | f_mult (u8 a, u8 b) | 
|  | { | 
|  | u8 aa = log_tab[a], cc = aa + log_tab[b]; | 
|  |  | 
|  | return pow_tab[cc + (cc < aa ? 1 : 0)]; | 
|  | } | 
|  |  | 
|  | #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0) | 
|  |  | 
|  | #define f_rn(bo, bi, n, k)					\ | 
|  | bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\ | 
|  | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\ | 
|  | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | #define i_rn(bo, bi, n, k)					\ | 
|  | bo[n] =  it_tab[0][byte(bi[n],0)] ^				\ | 
|  | it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\ | 
|  | it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | #define ls_box(x)				\ | 
|  | ( fl_tab[0][byte(x, 0)] ^			\ | 
|  | fl_tab[1][byte(x, 1)] ^			\ | 
|  | fl_tab[2][byte(x, 2)] ^			\ | 
|  | fl_tab[3][byte(x, 3)] ) | 
|  |  | 
|  | #define f_rl(bo, bi, n, k)					\ | 
|  | bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\ | 
|  | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\ | 
|  | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | #define i_rl(bo, bi, n, k)					\ | 
|  | bo[n] =  il_tab[0][byte(bi[n],0)] ^				\ | 
|  | il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\ | 
|  | il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
|  | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | 
|  |  | 
|  | static void __init | 
|  | gen_tabs (void) | 
|  | { | 
|  | u32 i, t; | 
|  | u8 p, q; | 
|  |  | 
|  | /* log and power tables for GF(2**8) finite field with | 
|  | 0x011b as modular polynomial - the simplest primitive | 
|  | root is 0x03, used here to generate the tables */ | 
|  |  | 
|  | for (i = 0, p = 1; i < 256; ++i) { | 
|  | pow_tab[i] = (u8) p; | 
|  | log_tab[p] = (u8) i; | 
|  |  | 
|  | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
|  | } | 
|  |  | 
|  | log_tab[1] = 0; | 
|  |  | 
|  | for (i = 0, p = 1; i < 10; ++i) { | 
|  | rco_tab[i] = p; | 
|  |  | 
|  | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; ++i) { | 
|  | p = (i ? pow_tab[255 - log_tab[i]] : 0); | 
|  | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | 
|  | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | 
|  | sbx_tab[i] = p; | 
|  | isb_tab[p] = (u8) i; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 256; ++i) { | 
|  | p = sbx_tab[i]; | 
|  |  | 
|  | t = p; | 
|  | fl_tab[0][i] = t; | 
|  | fl_tab[1][i] = rol32(t, 8); | 
|  | fl_tab[2][i] = rol32(t, 16); | 
|  | fl_tab[3][i] = rol32(t, 24); | 
|  |  | 
|  | t = ((u32) ff_mult (2, p)) | | 
|  | ((u32) p << 8) | | 
|  | ((u32) p << 16) | ((u32) ff_mult (3, p) << 24); | 
|  |  | 
|  | ft_tab[0][i] = t; | 
|  | ft_tab[1][i] = rol32(t, 8); | 
|  | ft_tab[2][i] = rol32(t, 16); | 
|  | ft_tab[3][i] = rol32(t, 24); | 
|  |  | 
|  | p = isb_tab[i]; | 
|  |  | 
|  | t = p; | 
|  | il_tab[0][i] = t; | 
|  | il_tab[1][i] = rol32(t, 8); | 
|  | il_tab[2][i] = rol32(t, 16); | 
|  | il_tab[3][i] = rol32(t, 24); | 
|  |  | 
|  | t = ((u32) ff_mult (14, p)) | | 
|  | ((u32) ff_mult (9, p) << 8) | | 
|  | ((u32) ff_mult (13, p) << 16) | | 
|  | ((u32) ff_mult (11, p) << 24); | 
|  |  | 
|  | it_tab[0][i] = t; | 
|  | it_tab[1][i] = rol32(t, 8); | 
|  | it_tab[2][i] = rol32(t, 16); | 
|  | it_tab[3][i] = rol32(t, 24); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | 
|  |  | 
|  | #define imix_col(y,x)       \ | 
|  | u   = star_x(x);        \ | 
|  | v   = star_x(u);        \ | 
|  | w   = star_x(v);        \ | 
|  | t   = w ^ (x);          \ | 
|  | (y)  = u ^ v ^ w;        \ | 
|  | (y) ^= ror32(u ^ t,  8) ^ \ | 
|  | ror32(v ^ t, 16) ^ \ | 
|  | ror32(t,24) | 
|  |  | 
|  | /* initialise the key schedule from the user supplied key */ | 
|  |  | 
|  | #define loop4(i)                                    \ | 
|  | {   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \ | 
|  | t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \ | 
|  | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \ | 
|  | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \ | 
|  | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \ | 
|  | } | 
|  |  | 
|  | #define loop6(i)                                    \ | 
|  | {   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \ | 
|  | t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \ | 
|  | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \ | 
|  | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \ | 
|  | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \ | 
|  | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \ | 
|  | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \ | 
|  | } | 
|  |  | 
|  | #define loop8(i)                                    \ | 
|  | {   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \ | 
|  | t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \ | 
|  | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \ | 
|  | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \ | 
|  | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \ | 
|  | t  = E_KEY[8 * i + 4] ^ ls_box(t);    \ | 
|  | E_KEY[8 * i + 12] = t;                \ | 
|  | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \ | 
|  | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \ | 
|  | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \ | 
|  | } | 
|  |  | 
|  | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *key = (const __le32 *)in_key; | 
|  | u32 *flags = &tfm->crt_flags; | 
|  | u32 i, t, u, v, w; | 
|  |  | 
|  | if (key_len % 8) { | 
|  | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctx->key_length = key_len; | 
|  |  | 
|  | E_KEY[0] = le32_to_cpu(key[0]); | 
|  | E_KEY[1] = le32_to_cpu(key[1]); | 
|  | E_KEY[2] = le32_to_cpu(key[2]); | 
|  | E_KEY[3] = le32_to_cpu(key[3]); | 
|  |  | 
|  | switch (key_len) { | 
|  | case 16: | 
|  | t = E_KEY[3]; | 
|  | for (i = 0; i < 10; ++i) | 
|  | loop4 (i); | 
|  | break; | 
|  |  | 
|  | case 24: | 
|  | E_KEY[4] = le32_to_cpu(key[4]); | 
|  | t = E_KEY[5] = le32_to_cpu(key[5]); | 
|  | for (i = 0; i < 8; ++i) | 
|  | loop6 (i); | 
|  | break; | 
|  |  | 
|  | case 32: | 
|  | E_KEY[4] = le32_to_cpu(key[4]); | 
|  | E_KEY[5] = le32_to_cpu(key[5]); | 
|  | E_KEY[6] = le32_to_cpu(key[6]); | 
|  | t = E_KEY[7] = le32_to_cpu(key[7]); | 
|  | for (i = 0; i < 7; ++i) | 
|  | loop8 (i); | 
|  | break; | 
|  | } | 
|  |  | 
|  | D_KEY[0] = E_KEY[0]; | 
|  | D_KEY[1] = E_KEY[1]; | 
|  | D_KEY[2] = E_KEY[2]; | 
|  | D_KEY[3] = E_KEY[3]; | 
|  |  | 
|  | for (i = 4; i < key_len + 24; ++i) { | 
|  | imix_col (D_KEY[i], E_KEY[i]); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* encrypt a block of text */ | 
|  |  | 
|  | #define f_nround(bo, bi, k) \ | 
|  | f_rn(bo, bi, 0, k);     \ | 
|  | f_rn(bo, bi, 1, k);     \ | 
|  | f_rn(bo, bi, 2, k);     \ | 
|  | f_rn(bo, bi, 3, k);     \ | 
|  | k += 4 | 
|  |  | 
|  | #define f_lround(bo, bi, k) \ | 
|  | f_rl(bo, bi, 0, k);     \ | 
|  | f_rl(bo, bi, 1, k);     \ | 
|  | f_rl(bo, bi, 2, k);     \ | 
|  | f_rl(bo, bi, 3, k) | 
|  |  | 
|  | static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | const struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *src = (const __le32 *)in; | 
|  | __le32 *dst = (__le32 *)out; | 
|  | u32 b0[4], b1[4]; | 
|  | const u32 *kp = E_KEY + 4; | 
|  |  | 
|  | b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0]; | 
|  | b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1]; | 
|  | b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2]; | 
|  | b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3]; | 
|  |  | 
|  | if (ctx->key_length > 24) { | 
|  | f_nround (b1, b0, kp); | 
|  | f_nround (b0, b1, kp); | 
|  | } | 
|  |  | 
|  | if (ctx->key_length > 16) { | 
|  | f_nround (b1, b0, kp); | 
|  | f_nround (b0, b1, kp); | 
|  | } | 
|  |  | 
|  | f_nround (b1, b0, kp); | 
|  | f_nround (b0, b1, kp); | 
|  | f_nround (b1, b0, kp); | 
|  | f_nround (b0, b1, kp); | 
|  | f_nround (b1, b0, kp); | 
|  | f_nround (b0, b1, kp); | 
|  | f_nround (b1, b0, kp); | 
|  | f_nround (b0, b1, kp); | 
|  | f_nround (b1, b0, kp); | 
|  | f_lround (b0, b1, kp); | 
|  |  | 
|  | dst[0] = cpu_to_le32(b0[0]); | 
|  | dst[1] = cpu_to_le32(b0[1]); | 
|  | dst[2] = cpu_to_le32(b0[2]); | 
|  | dst[3] = cpu_to_le32(b0[3]); | 
|  | } | 
|  |  | 
|  | /* decrypt a block of text */ | 
|  |  | 
|  | #define i_nround(bo, bi, k) \ | 
|  | i_rn(bo, bi, 0, k);     \ | 
|  | i_rn(bo, bi, 1, k);     \ | 
|  | i_rn(bo, bi, 2, k);     \ | 
|  | i_rn(bo, bi, 3, k);     \ | 
|  | k -= 4 | 
|  |  | 
|  | #define i_lround(bo, bi, k) \ | 
|  | i_rl(bo, bi, 0, k);     \ | 
|  | i_rl(bo, bi, 1, k);     \ | 
|  | i_rl(bo, bi, 2, k);     \ | 
|  | i_rl(bo, bi, 3, k) | 
|  |  | 
|  | static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | { | 
|  | const struct aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const __le32 *src = (const __le32 *)in; | 
|  | __le32 *dst = (__le32 *)out; | 
|  | u32 b0[4], b1[4]; | 
|  | const int key_len = ctx->key_length; | 
|  | const u32 *kp = D_KEY + key_len + 20; | 
|  |  | 
|  | b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24]; | 
|  | b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25]; | 
|  | b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26]; | 
|  | b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27]; | 
|  |  | 
|  | if (key_len > 24) { | 
|  | i_nround (b1, b0, kp); | 
|  | i_nround (b0, b1, kp); | 
|  | } | 
|  |  | 
|  | if (key_len > 16) { | 
|  | i_nround (b1, b0, kp); | 
|  | i_nround (b0, b1, kp); | 
|  | } | 
|  |  | 
|  | i_nround (b1, b0, kp); | 
|  | i_nround (b0, b1, kp); | 
|  | i_nround (b1, b0, kp); | 
|  | i_nround (b0, b1, kp); | 
|  | i_nround (b1, b0, kp); | 
|  | i_nround (b0, b1, kp); | 
|  | i_nround (b1, b0, kp); | 
|  | i_nround (b0, b1, kp); | 
|  | i_nround (b1, b0, kp); | 
|  | i_lround (b0, b1, kp); | 
|  |  | 
|  | dst[0] = cpu_to_le32(b0[0]); | 
|  | dst[1] = cpu_to_le32(b0[1]); | 
|  | dst[2] = cpu_to_le32(b0[2]); | 
|  | dst[3] = cpu_to_le32(b0[3]); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct crypto_alg aes_alg = { | 
|  | .cra_name		=	"aes", | 
|  | .cra_driver_name	=	"aes-generic", | 
|  | .cra_priority		=	100, | 
|  | .cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
|  | .cra_blocksize		=	AES_BLOCK_SIZE, | 
|  | .cra_ctxsize		=	sizeof(struct aes_ctx), | 
|  | .cra_alignmask		=	3, | 
|  | .cra_module		=	THIS_MODULE, | 
|  | .cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list), | 
|  | .cra_u			=	{ | 
|  | .cipher = { | 
|  | .cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
|  | .cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
|  | .cia_setkey	   	= 	aes_set_key, | 
|  | .cia_encrypt	 	=	aes_encrypt, | 
|  | .cia_decrypt	  	=	aes_decrypt | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int __init aes_init(void) | 
|  | { | 
|  | gen_tabs(); | 
|  | return crypto_register_alg(&aes_alg); | 
|  | } | 
|  |  | 
|  | static void __exit aes_fini(void) | 
|  | { | 
|  | crypto_unregister_alg(&aes_alg); | 
|  | } | 
|  |  | 
|  | module_init(aes_init); | 
|  | module_exit(aes_fini); | 
|  |  | 
|  | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  |  |