|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/uuid.h> | 
|  | #include <linux/semaphore.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "hash.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "volumes.h" | 
|  | #include "print-tree.h" | 
|  | #include "async-thread.h" | 
|  | #include "locking.h" | 
|  | #include "tree-log.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "inode-map.h" | 
|  | #include "check-integrity.h" | 
|  | #include "rcu-string.h" | 
|  | #include "dev-replace.h" | 
|  | #include "raid56.h" | 
|  | #include "sysfs.h" | 
|  |  | 
|  | #ifdef CONFIG_X86 | 
|  | #include <asm/cpufeature.h> | 
|  | #endif | 
|  |  | 
|  | static struct extent_io_ops btree_extent_io_ops; | 
|  | static void end_workqueue_fn(struct btrfs_work *work); | 
|  | static void free_fs_root(struct btrfs_root *root); | 
|  | static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, | 
|  | int read_only); | 
|  | static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, | 
|  | struct btrfs_root *root); | 
|  | static void btrfs_destroy_ordered_extents(struct btrfs_root *root); | 
|  | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
|  | struct btrfs_root *root); | 
|  | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); | 
|  | static int btrfs_destroy_marked_extents(struct btrfs_root *root, | 
|  | struct extent_io_tree *dirty_pages, | 
|  | int mark); | 
|  | static int btrfs_destroy_pinned_extent(struct btrfs_root *root, | 
|  | struct extent_io_tree *pinned_extents); | 
|  | static int btrfs_cleanup_transaction(struct btrfs_root *root); | 
|  | static void btrfs_error_commit_super(struct btrfs_root *root); | 
|  |  | 
|  | /* | 
|  | * end_io_wq structs are used to do processing in task context when an IO is | 
|  | * complete.  This is used during reads to verify checksums, and it is used | 
|  | * by writes to insert metadata for new file extents after IO is complete. | 
|  | */ | 
|  | struct end_io_wq { | 
|  | struct bio *bio; | 
|  | bio_end_io_t *end_io; | 
|  | void *private; | 
|  | struct btrfs_fs_info *info; | 
|  | int error; | 
|  | int metadata; | 
|  | struct list_head list; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * async submit bios are used to offload expensive checksumming | 
|  | * onto the worker threads.  They checksum file and metadata bios | 
|  | * just before they are sent down the IO stack. | 
|  | */ | 
|  | struct async_submit_bio { | 
|  | struct inode *inode; | 
|  | struct bio *bio; | 
|  | struct list_head list; | 
|  | extent_submit_bio_hook_t *submit_bio_start; | 
|  | extent_submit_bio_hook_t *submit_bio_done; | 
|  | int rw; | 
|  | int mirror_num; | 
|  | unsigned long bio_flags; | 
|  | /* | 
|  | * bio_offset is optional, can be used if the pages in the bio | 
|  | * can't tell us where in the file the bio should go | 
|  | */ | 
|  | u64 bio_offset; | 
|  | struct btrfs_work work; | 
|  | int error; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Lockdep class keys for extent_buffer->lock's in this root.  For a given | 
|  | * eb, the lockdep key is determined by the btrfs_root it belongs to and | 
|  | * the level the eb occupies in the tree. | 
|  | * | 
|  | * Different roots are used for different purposes and may nest inside each | 
|  | * other and they require separate keysets.  As lockdep keys should be | 
|  | * static, assign keysets according to the purpose of the root as indicated | 
|  | * by btrfs_root->objectid.  This ensures that all special purpose roots | 
|  | * have separate keysets. | 
|  | * | 
|  | * Lock-nesting across peer nodes is always done with the immediate parent | 
|  | * node locked thus preventing deadlock.  As lockdep doesn't know this, use | 
|  | * subclass to avoid triggering lockdep warning in such cases. | 
|  | * | 
|  | * The key is set by the readpage_end_io_hook after the buffer has passed | 
|  | * csum validation but before the pages are unlocked.  It is also set by | 
|  | * btrfs_init_new_buffer on freshly allocated blocks. | 
|  | * | 
|  | * We also add a check to make sure the highest level of the tree is the | 
|  | * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code | 
|  | * needs update as well. | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | # if BTRFS_MAX_LEVEL != 8 | 
|  | #  error | 
|  | # endif | 
|  |  | 
|  | static struct btrfs_lockdep_keyset { | 
|  | u64			id;		/* root objectid */ | 
|  | const char		*name_stem;	/* lock name stem */ | 
|  | char			names[BTRFS_MAX_LEVEL + 1][20]; | 
|  | struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1]; | 
|  | } btrfs_lockdep_keysets[] = { | 
|  | { .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	}, | 
|  | { .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	}, | 
|  | { .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	}, | 
|  | { .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	}, | 
|  | { .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	}, | 
|  | { .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	}, | 
|  | { .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	}, | 
|  | { .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	}, | 
|  | { .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	}, | 
|  | { .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	}, | 
|  | { .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	}, | 
|  | { .id = 0,				.name_stem = "tree"	}, | 
|  | }; | 
|  |  | 
|  | void __init btrfs_init_lockdep(void) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | /* initialize lockdep class names */ | 
|  | for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { | 
|  | struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(ks->names); j++) | 
|  | snprintf(ks->names[j], sizeof(ks->names[j]), | 
|  | "btrfs-%s-%02d", ks->name_stem, j); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, | 
|  | int level) | 
|  | { | 
|  | struct btrfs_lockdep_keyset *ks; | 
|  |  | 
|  | BUG_ON(level >= ARRAY_SIZE(ks->keys)); | 
|  |  | 
|  | /* find the matching keyset, id 0 is the default entry */ | 
|  | for (ks = btrfs_lockdep_keysets; ks->id; ks++) | 
|  | if (ks->id == objectid) | 
|  | break; | 
|  |  | 
|  | lockdep_set_class_and_name(&eb->lock, | 
|  | &ks->keys[level], ks->names[level]); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * extents on the btree inode are pretty simple, there's one extent | 
|  | * that covers the entire device | 
|  | */ | 
|  | static struct extent_map *btree_get_extent(struct inode *inode, | 
|  | struct page *page, size_t pg_offset, u64 start, u64 len, | 
|  | int create) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
|  | struct extent_map *em; | 
|  | int ret; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, start, len); | 
|  | if (em) { | 
|  | em->bdev = | 
|  | BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
|  | read_unlock(&em_tree->lock); | 
|  | goto out; | 
|  | } | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | em = alloc_extent_map(); | 
|  | if (!em) { | 
|  | em = ERR_PTR(-ENOMEM); | 
|  | goto out; | 
|  | } | 
|  | em->start = 0; | 
|  | em->len = (u64)-1; | 
|  | em->block_len = (u64)-1; | 
|  | em->block_start = 0; | 
|  | em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
|  |  | 
|  | write_lock(&em_tree->lock); | 
|  | ret = add_extent_mapping(em_tree, em, 0); | 
|  | if (ret == -EEXIST) { | 
|  | free_extent_map(em); | 
|  | em = lookup_extent_mapping(em_tree, start, len); | 
|  | if (!em) | 
|  | em = ERR_PTR(-EIO); | 
|  | } else if (ret) { | 
|  | free_extent_map(em); | 
|  | em = ERR_PTR(ret); | 
|  | } | 
|  | write_unlock(&em_tree->lock); | 
|  |  | 
|  | out: | 
|  | return em; | 
|  | } | 
|  |  | 
|  | u32 btrfs_csum_data(char *data, u32 seed, size_t len) | 
|  | { | 
|  | return btrfs_crc32c(seed, data, len); | 
|  | } | 
|  |  | 
|  | void btrfs_csum_final(u32 crc, char *result) | 
|  | { | 
|  | put_unaligned_le32(~crc, result); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute the csum for a btree block, and either verify it or write it | 
|  | * into the csum field of the block. | 
|  | */ | 
|  | static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, | 
|  | int verify) | 
|  | { | 
|  | u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); | 
|  | char *result = NULL; | 
|  | unsigned long len; | 
|  | unsigned long cur_len; | 
|  | unsigned long offset = BTRFS_CSUM_SIZE; | 
|  | char *kaddr; | 
|  | unsigned long map_start; | 
|  | unsigned long map_len; | 
|  | int err; | 
|  | u32 crc = ~(u32)0; | 
|  | unsigned long inline_result; | 
|  |  | 
|  | len = buf->len - offset; | 
|  | while (len > 0) { | 
|  | err = map_private_extent_buffer(buf, offset, 32, | 
|  | &kaddr, &map_start, &map_len); | 
|  | if (err) | 
|  | return 1; | 
|  | cur_len = min(len, map_len - (offset - map_start)); | 
|  | crc = btrfs_csum_data(kaddr + offset - map_start, | 
|  | crc, cur_len); | 
|  | len -= cur_len; | 
|  | offset += cur_len; | 
|  | } | 
|  | if (csum_size > sizeof(inline_result)) { | 
|  | result = kzalloc(csum_size * sizeof(char), GFP_NOFS); | 
|  | if (!result) | 
|  | return 1; | 
|  | } else { | 
|  | result = (char *)&inline_result; | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, result); | 
|  |  | 
|  | if (verify) { | 
|  | if (memcmp_extent_buffer(buf, result, 0, csum_size)) { | 
|  | u32 val; | 
|  | u32 found = 0; | 
|  | memcpy(&found, result, csum_size); | 
|  |  | 
|  | read_extent_buffer(buf, &val, 0, csum_size); | 
|  | printk_ratelimited(KERN_INFO | 
|  | "BTRFS: %s checksum verify failed on %llu wanted %X found %X " | 
|  | "level %d\n", | 
|  | root->fs_info->sb->s_id, buf->start, | 
|  | val, found, btrfs_header_level(buf)); | 
|  | if (result != (char *)&inline_result) | 
|  | kfree(result); | 
|  | return 1; | 
|  | } | 
|  | } else { | 
|  | write_extent_buffer(buf, result, 0, csum_size); | 
|  | } | 
|  | if (result != (char *)&inline_result) | 
|  | kfree(result); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we can't consider a given block up to date unless the transid of the | 
|  | * block matches the transid in the parent node's pointer.  This is how we | 
|  | * detect blocks that either didn't get written at all or got written | 
|  | * in the wrong place. | 
|  | */ | 
|  | static int verify_parent_transid(struct extent_io_tree *io_tree, | 
|  | struct extent_buffer *eb, u64 parent_transid, | 
|  | int atomic) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!parent_transid || btrfs_header_generation(eb) == parent_transid) | 
|  | return 0; | 
|  |  | 
|  | if (atomic) | 
|  | return -EAGAIN; | 
|  |  | 
|  | lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, | 
|  | 0, &cached_state); | 
|  | if (extent_buffer_uptodate(eb) && | 
|  | btrfs_header_generation(eb) == parent_transid) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | printk_ratelimited("parent transid verify failed on %llu wanted %llu " | 
|  | "found %llu\n", | 
|  | eb->start, parent_transid, btrfs_header_generation(eb)); | 
|  | ret = 1; | 
|  | clear_extent_buffer_uptodate(eb); | 
|  | out: | 
|  | unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, | 
|  | &cached_state, GFP_NOFS); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return 0 if the superblock checksum type matches the checksum value of that | 
|  | * algorithm. Pass the raw disk superblock data. | 
|  | */ | 
|  | static int btrfs_check_super_csum(char *raw_disk_sb) | 
|  | { | 
|  | struct btrfs_super_block *disk_sb = | 
|  | (struct btrfs_super_block *)raw_disk_sb; | 
|  | u16 csum_type = btrfs_super_csum_type(disk_sb); | 
|  | int ret = 0; | 
|  |  | 
|  | if (csum_type == BTRFS_CSUM_TYPE_CRC32) { | 
|  | u32 crc = ~(u32)0; | 
|  | const int csum_size = sizeof(crc); | 
|  | char result[csum_size]; | 
|  |  | 
|  | /* | 
|  | * The super_block structure does not span the whole | 
|  | * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space | 
|  | * is filled with zeros and is included in the checkum. | 
|  | */ | 
|  | crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, | 
|  | crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); | 
|  | btrfs_csum_final(crc, result); | 
|  |  | 
|  | if (memcmp(raw_disk_sb, result, csum_size)) | 
|  | ret = 1; | 
|  |  | 
|  | if (ret && btrfs_super_generation(disk_sb) < 10) { | 
|  | printk(KERN_WARNING | 
|  | "BTRFS: super block crcs don't match, older mkfs detected\n"); | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { | 
|  | printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", | 
|  | csum_type); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to read a given tree block, doing retries as required when | 
|  | * the checksums don't match and we have alternate mirrors to try. | 
|  | */ | 
|  | static int btree_read_extent_buffer_pages(struct btrfs_root *root, | 
|  | struct extent_buffer *eb, | 
|  | u64 start, u64 parent_transid) | 
|  | { | 
|  | struct extent_io_tree *io_tree; | 
|  | int failed = 0; | 
|  | int ret; | 
|  | int num_copies = 0; | 
|  | int mirror_num = 0; | 
|  | int failed_mirror = 0; | 
|  |  | 
|  | clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
|  | io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; | 
|  | while (1) { | 
|  | ret = read_extent_buffer_pages(io_tree, eb, start, | 
|  | WAIT_COMPLETE, | 
|  | btree_get_extent, mirror_num); | 
|  | if (!ret) { | 
|  | if (!verify_parent_transid(io_tree, eb, | 
|  | parent_transid, 0)) | 
|  | break; | 
|  | else | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This buffer's crc is fine, but its contents are corrupted, so | 
|  | * there is no reason to read the other copies, they won't be | 
|  | * any less wrong. | 
|  | */ | 
|  | if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) | 
|  | break; | 
|  |  | 
|  | num_copies = btrfs_num_copies(root->fs_info, | 
|  | eb->start, eb->len); | 
|  | if (num_copies == 1) | 
|  | break; | 
|  |  | 
|  | if (!failed_mirror) { | 
|  | failed = 1; | 
|  | failed_mirror = eb->read_mirror; | 
|  | } | 
|  |  | 
|  | mirror_num++; | 
|  | if (mirror_num == failed_mirror) | 
|  | mirror_num++; | 
|  |  | 
|  | if (mirror_num > num_copies) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (failed && !ret && failed_mirror) | 
|  | repair_eb_io_failure(root, eb, failed_mirror); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * checksum a dirty tree block before IO.  This has extra checks to make sure | 
|  | * we only fill in the checksum field in the first page of a multi-page block | 
|  | */ | 
|  |  | 
|  | static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) | 
|  | { | 
|  | u64 start = page_offset(page); | 
|  | u64 found_start; | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | if (page != eb->pages[0]) | 
|  | return 0; | 
|  | found_start = btrfs_header_bytenr(eb); | 
|  | if (WARN_ON(found_start != start || !PageUptodate(page))) | 
|  | return 0; | 
|  | csum_tree_block(root, eb, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_tree_block_fsid(struct btrfs_root *root, | 
|  | struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | 
|  | u8 fsid[BTRFS_UUID_SIZE]; | 
|  | int ret = 1; | 
|  |  | 
|  | read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); | 
|  | while (fs_devices) { | 
|  | if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | fs_devices = fs_devices->seed; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define CORRUPT(reason, eb, root, slot)				\ | 
|  | btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\ | 
|  | "root=%llu, slot=%d", reason,			\ | 
|  | btrfs_header_bytenr(eb),	root->objectid, slot) | 
|  |  | 
|  | static noinline int check_leaf(struct btrfs_root *root, | 
|  | struct extent_buffer *leaf) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key leaf_key; | 
|  | u32 nritems = btrfs_header_nritems(leaf); | 
|  | int slot; | 
|  |  | 
|  | if (nritems == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Check the 0 item */ | 
|  | if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != | 
|  | BTRFS_LEAF_DATA_SIZE(root)) { | 
|  | CORRUPT("invalid item offset size pair", leaf, root, 0); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to make sure each items keys are in the correct order and their | 
|  | * offsets make sense.  We only have to loop through nritems-1 because | 
|  | * we check the current slot against the next slot, which verifies the | 
|  | * next slot's offset+size makes sense and that the current's slot | 
|  | * offset is correct. | 
|  | */ | 
|  | for (slot = 0; slot < nritems - 1; slot++) { | 
|  | btrfs_item_key_to_cpu(leaf, &leaf_key, slot); | 
|  | btrfs_item_key_to_cpu(leaf, &key, slot + 1); | 
|  |  | 
|  | /* Make sure the keys are in the right order */ | 
|  | if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { | 
|  | CORRUPT("bad key order", leaf, root, slot); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure the offset and ends are right, remember that the | 
|  | * item data starts at the end of the leaf and grows towards the | 
|  | * front. | 
|  | */ | 
|  | if (btrfs_item_offset_nr(leaf, slot) != | 
|  | btrfs_item_end_nr(leaf, slot + 1)) { | 
|  | CORRUPT("slot offset bad", leaf, root, slot); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to make sure that we don't point outside of the leaf, | 
|  | * just incase all the items are consistent to eachother, but | 
|  | * all point outside of the leaf. | 
|  | */ | 
|  | if (btrfs_item_end_nr(leaf, slot) > | 
|  | BTRFS_LEAF_DATA_SIZE(root)) { | 
|  | CORRUPT("slot end outside of leaf", leaf, root, slot); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, | 
|  | u64 phy_offset, struct page *page, | 
|  | u64 start, u64 end, int mirror) | 
|  | { | 
|  | u64 found_start; | 
|  | int found_level; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | 
|  | int ret = 0; | 
|  | int reads_done; | 
|  |  | 
|  | if (!page->private) | 
|  | goto out; | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  |  | 
|  | /* the pending IO might have been the only thing that kept this buffer | 
|  | * in memory.  Make sure we have a ref for all this other checks | 
|  | */ | 
|  | extent_buffer_get(eb); | 
|  |  | 
|  | reads_done = atomic_dec_and_test(&eb->io_pages); | 
|  | if (!reads_done) | 
|  | goto err; | 
|  |  | 
|  | eb->read_mirror = mirror; | 
|  | if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | found_start = btrfs_header_bytenr(eb); | 
|  | if (found_start != eb->start) { | 
|  | printk_ratelimited(KERN_INFO "BTRFS: bad tree block start " | 
|  | "%llu %llu\n", | 
|  | found_start, eb->start); | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | if (check_tree_block_fsid(root, eb)) { | 
|  | printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n", | 
|  | eb->start); | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  | found_level = btrfs_header_level(eb); | 
|  | if (found_level >= BTRFS_MAX_LEVEL) { | 
|  | btrfs_info(root->fs_info, "bad tree block level %d", | 
|  | (int)btrfs_header_level(eb)); | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), | 
|  | eb, found_level); | 
|  |  | 
|  | ret = csum_tree_block(root, eb, 1); | 
|  | if (ret) { | 
|  | ret = -EIO; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a leaf block and it is corrupt, set the corrupt bit so | 
|  | * that we don't try and read the other copies of this block, just | 
|  | * return -EIO. | 
|  | */ | 
|  | if (found_level == 0 && check_leaf(root, eb)) { | 
|  | set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | set_extent_buffer_uptodate(eb); | 
|  | err: | 
|  | if (reads_done && | 
|  | test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) | 
|  | btree_readahead_hook(root, eb, eb->start, ret); | 
|  |  | 
|  | if (ret) { | 
|  | /* | 
|  | * our io error hook is going to dec the io pages | 
|  | * again, we have to make sure it has something | 
|  | * to decrement | 
|  | */ | 
|  | atomic_inc(&eb->io_pages); | 
|  | clear_extent_buffer_uptodate(eb); | 
|  | } | 
|  | free_extent_buffer(eb); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btree_io_failed_hook(struct page *page, int failed_mirror) | 
|  | { | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; | 
|  |  | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); | 
|  | eb->read_mirror = failed_mirror; | 
|  | atomic_dec(&eb->io_pages); | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) | 
|  | btree_readahead_hook(root, eb, eb->start, -EIO); | 
|  | return -EIO;	/* we fixed nothing */ | 
|  | } | 
|  |  | 
|  | static void end_workqueue_bio(struct bio *bio, int err) | 
|  | { | 
|  | struct end_io_wq *end_io_wq = bio->bi_private; | 
|  | struct btrfs_fs_info *fs_info; | 
|  |  | 
|  | fs_info = end_io_wq->info; | 
|  | end_io_wq->error = err; | 
|  | end_io_wq->work.func = end_workqueue_fn; | 
|  | end_io_wq->work.flags = 0; | 
|  |  | 
|  | if (bio->bi_rw & REQ_WRITE) { | 
|  | if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) | 
|  | btrfs_queue_worker(&fs_info->endio_meta_write_workers, | 
|  | &end_io_wq->work); | 
|  | else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) | 
|  | btrfs_queue_worker(&fs_info->endio_freespace_worker, | 
|  | &end_io_wq->work); | 
|  | else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) | 
|  | btrfs_queue_worker(&fs_info->endio_raid56_workers, | 
|  | &end_io_wq->work); | 
|  | else | 
|  | btrfs_queue_worker(&fs_info->endio_write_workers, | 
|  | &end_io_wq->work); | 
|  | } else { | 
|  | if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) | 
|  | btrfs_queue_worker(&fs_info->endio_raid56_workers, | 
|  | &end_io_wq->work); | 
|  | else if (end_io_wq->metadata) | 
|  | btrfs_queue_worker(&fs_info->endio_meta_workers, | 
|  | &end_io_wq->work); | 
|  | else | 
|  | btrfs_queue_worker(&fs_info->endio_workers, | 
|  | &end_io_wq->work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For the metadata arg you want | 
|  | * | 
|  | * 0 - if data | 
|  | * 1 - if normal metadta | 
|  | * 2 - if writing to the free space cache area | 
|  | * 3 - raid parity work | 
|  | */ | 
|  | int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, | 
|  | int metadata) | 
|  | { | 
|  | struct end_io_wq *end_io_wq; | 
|  | end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); | 
|  | if (!end_io_wq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | end_io_wq->private = bio->bi_private; | 
|  | end_io_wq->end_io = bio->bi_end_io; | 
|  | end_io_wq->info = info; | 
|  | end_io_wq->error = 0; | 
|  | end_io_wq->bio = bio; | 
|  | end_io_wq->metadata = metadata; | 
|  |  | 
|  | bio->bi_private = end_io_wq; | 
|  | bio->bi_end_io = end_workqueue_bio; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) | 
|  | { | 
|  | unsigned long limit = min_t(unsigned long, | 
|  | info->workers.max_workers, | 
|  | info->fs_devices->open_devices); | 
|  | return 256 * limit; | 
|  | } | 
|  |  | 
|  | static void run_one_async_start(struct btrfs_work *work) | 
|  | { | 
|  | struct async_submit_bio *async; | 
|  | int ret; | 
|  |  | 
|  | async = container_of(work, struct  async_submit_bio, work); | 
|  | ret = async->submit_bio_start(async->inode, async->rw, async->bio, | 
|  | async->mirror_num, async->bio_flags, | 
|  | async->bio_offset); | 
|  | if (ret) | 
|  | async->error = ret; | 
|  | } | 
|  |  | 
|  | static void run_one_async_done(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct async_submit_bio *async; | 
|  | int limit; | 
|  |  | 
|  | async = container_of(work, struct  async_submit_bio, work); | 
|  | fs_info = BTRFS_I(async->inode)->root->fs_info; | 
|  |  | 
|  | limit = btrfs_async_submit_limit(fs_info); | 
|  | limit = limit * 2 / 3; | 
|  |  | 
|  | if (atomic_dec_return(&fs_info->nr_async_submits) < limit && | 
|  | waitqueue_active(&fs_info->async_submit_wait)) | 
|  | wake_up(&fs_info->async_submit_wait); | 
|  |  | 
|  | /* If an error occured we just want to clean up the bio and move on */ | 
|  | if (async->error) { | 
|  | bio_endio(async->bio, async->error); | 
|  | return; | 
|  | } | 
|  |  | 
|  | async->submit_bio_done(async->inode, async->rw, async->bio, | 
|  | async->mirror_num, async->bio_flags, | 
|  | async->bio_offset); | 
|  | } | 
|  |  | 
|  | static void run_one_async_free(struct btrfs_work *work) | 
|  | { | 
|  | struct async_submit_bio *async; | 
|  |  | 
|  | async = container_of(work, struct  async_submit_bio, work); | 
|  | kfree(async); | 
|  | } | 
|  |  | 
|  | int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, | 
|  | int rw, struct bio *bio, int mirror_num, | 
|  | unsigned long bio_flags, | 
|  | u64 bio_offset, | 
|  | extent_submit_bio_hook_t *submit_bio_start, | 
|  | extent_submit_bio_hook_t *submit_bio_done) | 
|  | { | 
|  | struct async_submit_bio *async; | 
|  |  | 
|  | async = kmalloc(sizeof(*async), GFP_NOFS); | 
|  | if (!async) | 
|  | return -ENOMEM; | 
|  |  | 
|  | async->inode = inode; | 
|  | async->rw = rw; | 
|  | async->bio = bio; | 
|  | async->mirror_num = mirror_num; | 
|  | async->submit_bio_start = submit_bio_start; | 
|  | async->submit_bio_done = submit_bio_done; | 
|  |  | 
|  | async->work.func = run_one_async_start; | 
|  | async->work.ordered_func = run_one_async_done; | 
|  | async->work.ordered_free = run_one_async_free; | 
|  |  | 
|  | async->work.flags = 0; | 
|  | async->bio_flags = bio_flags; | 
|  | async->bio_offset = bio_offset; | 
|  |  | 
|  | async->error = 0; | 
|  |  | 
|  | atomic_inc(&fs_info->nr_async_submits); | 
|  |  | 
|  | if (rw & REQ_SYNC) | 
|  | btrfs_set_work_high_prio(&async->work); | 
|  |  | 
|  | btrfs_queue_worker(&fs_info->workers, &async->work); | 
|  |  | 
|  | while (atomic_read(&fs_info->async_submit_draining) && | 
|  | atomic_read(&fs_info->nr_async_submits)) { | 
|  | wait_event(fs_info->async_submit_wait, | 
|  | (atomic_read(&fs_info->nr_async_submits) == 0)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btree_csum_one_bio(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | struct btrfs_root *root; | 
|  | int i, ret = 0; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | root = BTRFS_I(bvec->bv_page->mapping->host)->root; | 
|  | ret = csum_dirty_buffer(root, bvec->bv_page); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btree_submit_bio_start(struct inode *inode, int rw, | 
|  | struct bio *bio, int mirror_num, | 
|  | unsigned long bio_flags, | 
|  | u64 bio_offset) | 
|  | { | 
|  | /* | 
|  | * when we're called for a write, we're already in the async | 
|  | * submission context.  Just jump into btrfs_map_bio | 
|  | */ | 
|  | return btree_csum_one_bio(bio); | 
|  | } | 
|  |  | 
|  | static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, | 
|  | int mirror_num, unsigned long bio_flags, | 
|  | u64 bio_offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * when we're called for a write, we're already in the async | 
|  | * submission context.  Just jump into btrfs_map_bio | 
|  | */ | 
|  | ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); | 
|  | if (ret) | 
|  | bio_endio(bio, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int check_async_write(struct inode *inode, unsigned long bio_flags) | 
|  | { | 
|  | if (bio_flags & EXTENT_BIO_TREE_LOG) | 
|  | return 0; | 
|  | #ifdef CONFIG_X86 | 
|  | if (cpu_has_xmm4_2) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, | 
|  | int mirror_num, unsigned long bio_flags, | 
|  | u64 bio_offset) | 
|  | { | 
|  | int async = check_async_write(inode, bio_flags); | 
|  | int ret; | 
|  |  | 
|  | if (!(rw & REQ_WRITE)) { | 
|  | /* | 
|  | * called for a read, do the setup so that checksum validation | 
|  | * can happen in the async kernel threads | 
|  | */ | 
|  | ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, | 
|  | bio, 1); | 
|  | if (ret) | 
|  | goto out_w_error; | 
|  | ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, | 
|  | mirror_num, 0); | 
|  | } else if (!async) { | 
|  | ret = btree_csum_one_bio(bio); | 
|  | if (ret) | 
|  | goto out_w_error; | 
|  | ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, | 
|  | mirror_num, 0); | 
|  | } else { | 
|  | /* | 
|  | * kthread helpers are used to submit writes so that | 
|  | * checksumming can happen in parallel across all CPUs | 
|  | */ | 
|  | ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, | 
|  | inode, rw, bio, mirror_num, 0, | 
|  | bio_offset, | 
|  | __btree_submit_bio_start, | 
|  | __btree_submit_bio_done); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | out_w_error: | 
|  | bio_endio(bio, ret); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  | static int btree_migratepage(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | /* | 
|  | * we can't safely write a btree page from here, | 
|  | * we haven't done the locking hook | 
|  | */ | 
|  | if (PageDirty(page)) | 
|  | return -EAGAIN; | 
|  | /* | 
|  | * Buffers may be managed in a filesystem specific way. | 
|  | * We must have no buffers or drop them. | 
|  | */ | 
|  | if (page_has_private(page) && | 
|  | !try_to_release_page(page, GFP_KERNEL)) | 
|  | return -EAGAIN; | 
|  | return migrate_page(mapping, newpage, page, mode); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static int btree_writepages(struct address_space *mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  | int ret; | 
|  |  | 
|  | if (wbc->sync_mode == WB_SYNC_NONE) { | 
|  |  | 
|  | if (wbc->for_kupdate) | 
|  | return 0; | 
|  |  | 
|  | fs_info = BTRFS_I(mapping->host)->root->fs_info; | 
|  | /* this is a bit racy, but that's ok */ | 
|  | ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, | 
|  | BTRFS_DIRTY_METADATA_THRESH); | 
|  | if (ret < 0) | 
|  | return 0; | 
|  | } | 
|  | return btree_write_cache_pages(mapping, wbc); | 
|  | } | 
|  |  | 
|  | static int btree_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | struct extent_io_tree *tree; | 
|  | tree = &BTRFS_I(page->mapping->host)->io_tree; | 
|  | return extent_read_full_page(tree, page, btree_get_extent, 0); | 
|  | } | 
|  |  | 
|  | static int btree_releasepage(struct page *page, gfp_t gfp_flags) | 
|  | { | 
|  | if (PageWriteback(page) || PageDirty(page)) | 
|  | return 0; | 
|  |  | 
|  | return try_release_extent_buffer(page); | 
|  | } | 
|  |  | 
|  | static void btree_invalidatepage(struct page *page, unsigned int offset, | 
|  | unsigned int length) | 
|  | { | 
|  | struct extent_io_tree *tree; | 
|  | tree = &BTRFS_I(page->mapping->host)->io_tree; | 
|  | extent_invalidatepage(tree, page, offset); | 
|  | btree_releasepage(page, GFP_NOFS); | 
|  | if (PagePrivate(page)) { | 
|  | btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, | 
|  | "page private not zero on page %llu", | 
|  | (unsigned long long)page_offset(page)); | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int btree_set_page_dirty(struct page *page) | 
|  | { | 
|  | #ifdef DEBUG | 
|  | struct extent_buffer *eb; | 
|  |  | 
|  | BUG_ON(!PagePrivate(page)); | 
|  | eb = (struct extent_buffer *)page->private; | 
|  | BUG_ON(!eb); | 
|  | BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); | 
|  | BUG_ON(!atomic_read(&eb->refs)); | 
|  | btrfs_assert_tree_locked(eb); | 
|  | #endif | 
|  | return __set_page_dirty_nobuffers(page); | 
|  | } | 
|  |  | 
|  | static const struct address_space_operations btree_aops = { | 
|  | .readpage	= btree_readpage, | 
|  | .writepages	= btree_writepages, | 
|  | .releasepage	= btree_releasepage, | 
|  | .invalidatepage = btree_invalidatepage, | 
|  | #ifdef CONFIG_MIGRATION | 
|  | .migratepage	= btree_migratepage, | 
|  | #endif | 
|  | .set_page_dirty = btree_set_page_dirty, | 
|  | }; | 
|  |  | 
|  | int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, | 
|  | u64 parent_transid) | 
|  | { | 
|  | struct extent_buffer *buf = NULL; | 
|  | struct inode *btree_inode = root->fs_info->btree_inode; | 
|  | int ret = 0; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!buf) | 
|  | return 0; | 
|  | read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, | 
|  | buf, 0, WAIT_NONE, btree_get_extent, 0); | 
|  | free_extent_buffer(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, | 
|  | int mirror_num, struct extent_buffer **eb) | 
|  | { | 
|  | struct extent_buffer *buf = NULL; | 
|  | struct inode *btree_inode = root->fs_info->btree_inode; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; | 
|  | int ret; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!buf) | 
|  | return 0; | 
|  |  | 
|  | set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); | 
|  |  | 
|  | ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, | 
|  | btree_get_extent, mirror_num); | 
|  | if (ret) { | 
|  | free_extent_buffer(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { | 
|  | free_extent_buffer(buf); | 
|  | return -EIO; | 
|  | } else if (extent_buffer_uptodate(buf)) { | 
|  | *eb = buf; | 
|  | } else { | 
|  | free_extent_buffer(buf); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, | 
|  | u64 bytenr, u32 blocksize) | 
|  | { | 
|  | return find_extent_buffer(root->fs_info, bytenr); | 
|  | } | 
|  |  | 
|  | struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, | 
|  | u64 bytenr, u32 blocksize) | 
|  | { | 
|  | return alloc_extent_buffer(root->fs_info, bytenr, blocksize); | 
|  | } | 
|  |  | 
|  |  | 
|  | int btrfs_write_tree_block(struct extent_buffer *buf) | 
|  | { | 
|  | return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, | 
|  | buf->start + buf->len - 1); | 
|  | } | 
|  |  | 
|  | int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) | 
|  | { | 
|  | return filemap_fdatawait_range(buf->pages[0]->mapping, | 
|  | buf->start, buf->start + buf->len - 1); | 
|  | } | 
|  |  | 
|  | struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, | 
|  | u32 blocksize, u64 parent_transid) | 
|  | { | 
|  | struct extent_buffer *buf = NULL; | 
|  | int ret; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(root, bytenr, blocksize); | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); | 
|  | if (ret) { | 
|  | free_extent_buffer(buf); | 
|  | return NULL; | 
|  | } | 
|  | return buf; | 
|  |  | 
|  | } | 
|  |  | 
|  | void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  |  | 
|  | if (btrfs_header_generation(buf) == | 
|  | fs_info->running_transaction->transid) { | 
|  | btrfs_assert_tree_locked(buf); | 
|  |  | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { | 
|  | __percpu_counter_add(&fs_info->dirty_metadata_bytes, | 
|  | -buf->len, | 
|  | fs_info->dirty_metadata_batch); | 
|  | /* ugh, clear_extent_buffer_dirty needs to lock the page */ | 
|  | btrfs_set_lock_blocking(buf); | 
|  | clear_extent_buffer_dirty(buf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, | 
|  | u32 stripesize, struct btrfs_root *root, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | u64 objectid) | 
|  | { | 
|  | root->node = NULL; | 
|  | root->commit_root = NULL; | 
|  | root->sectorsize = sectorsize; | 
|  | root->nodesize = nodesize; | 
|  | root->leafsize = leafsize; | 
|  | root->stripesize = stripesize; | 
|  | root->ref_cows = 0; | 
|  | root->track_dirty = 0; | 
|  | root->in_radix = 0; | 
|  | root->orphan_item_inserted = 0; | 
|  | root->orphan_cleanup_state = 0; | 
|  |  | 
|  | root->objectid = objectid; | 
|  | root->last_trans = 0; | 
|  | root->highest_objectid = 0; | 
|  | root->nr_delalloc_inodes = 0; | 
|  | root->nr_ordered_extents = 0; | 
|  | root->name = NULL; | 
|  | root->inode_tree = RB_ROOT; | 
|  | INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); | 
|  | root->block_rsv = NULL; | 
|  | root->orphan_block_rsv = NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&root->dirty_list); | 
|  | INIT_LIST_HEAD(&root->root_list); | 
|  | INIT_LIST_HEAD(&root->delalloc_inodes); | 
|  | INIT_LIST_HEAD(&root->delalloc_root); | 
|  | INIT_LIST_HEAD(&root->ordered_extents); | 
|  | INIT_LIST_HEAD(&root->ordered_root); | 
|  | INIT_LIST_HEAD(&root->logged_list[0]); | 
|  | INIT_LIST_HEAD(&root->logged_list[1]); | 
|  | spin_lock_init(&root->orphan_lock); | 
|  | spin_lock_init(&root->inode_lock); | 
|  | spin_lock_init(&root->delalloc_lock); | 
|  | spin_lock_init(&root->ordered_extent_lock); | 
|  | spin_lock_init(&root->accounting_lock); | 
|  | spin_lock_init(&root->log_extents_lock[0]); | 
|  | spin_lock_init(&root->log_extents_lock[1]); | 
|  | mutex_init(&root->objectid_mutex); | 
|  | mutex_init(&root->log_mutex); | 
|  | init_waitqueue_head(&root->log_writer_wait); | 
|  | init_waitqueue_head(&root->log_commit_wait[0]); | 
|  | init_waitqueue_head(&root->log_commit_wait[1]); | 
|  | atomic_set(&root->log_commit[0], 0); | 
|  | atomic_set(&root->log_commit[1], 0); | 
|  | atomic_set(&root->log_writers, 0); | 
|  | atomic_set(&root->log_batch, 0); | 
|  | atomic_set(&root->orphan_inodes, 0); | 
|  | atomic_set(&root->refs, 1); | 
|  | root->log_transid = 0; | 
|  | root->last_log_commit = 0; | 
|  | if (fs_info) | 
|  | extent_io_tree_init(&root->dirty_log_pages, | 
|  | fs_info->btree_inode->i_mapping); | 
|  |  | 
|  | memset(&root->root_key, 0, sizeof(root->root_key)); | 
|  | memset(&root->root_item, 0, sizeof(root->root_item)); | 
|  | memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); | 
|  | memset(&root->root_kobj, 0, sizeof(root->root_kobj)); | 
|  | if (fs_info) | 
|  | root->defrag_trans_start = fs_info->generation; | 
|  | else | 
|  | root->defrag_trans_start = 0; | 
|  | init_completion(&root->kobj_unregister); | 
|  | root->defrag_running = 0; | 
|  | root->root_key.objectid = objectid; | 
|  | root->anon_dev = 0; | 
|  |  | 
|  | spin_lock_init(&root->root_item_lock); | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); | 
|  | if (root) | 
|  | root->fs_info = fs_info; | 
|  | return root; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | /* Should only be used by the testing infrastructure */ | 
|  | struct btrfs_root *btrfs_alloc_dummy_root(void) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | root = btrfs_alloc_root(NULL); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | __setup_root(4096, 4096, 4096, 4096, root, NULL, 1); | 
|  | root->dummy_root = 1; | 
|  |  | 
|  | return root; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | u64 objectid) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  | uuid_le uuid; | 
|  |  | 
|  | root = btrfs_alloc_root(fs_info); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | __setup_root(tree_root->nodesize, tree_root->leafsize, | 
|  | tree_root->sectorsize, tree_root->stripesize, | 
|  | root, fs_info, objectid); | 
|  | root->root_key.objectid = objectid; | 
|  | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root->root_key.offset = 0; | 
|  |  | 
|  | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, | 
|  | 0, objectid, NULL, 0, 0, 0); | 
|  | if (IS_ERR(leaf)) { | 
|  | ret = PTR_ERR(leaf); | 
|  | leaf = NULL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); | 
|  | btrfs_set_header_bytenr(leaf, leaf->start); | 
|  | btrfs_set_header_generation(leaf, trans->transid); | 
|  | btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_set_header_owner(leaf, objectid); | 
|  | root->node = leaf; | 
|  |  | 
|  | write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), | 
|  | BTRFS_FSID_SIZE); | 
|  | write_extent_buffer(leaf, fs_info->chunk_tree_uuid, | 
|  | btrfs_header_chunk_tree_uuid(leaf), | 
|  | BTRFS_UUID_SIZE); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  |  | 
|  | root->commit_root = btrfs_root_node(root); | 
|  | root->track_dirty = 1; | 
|  |  | 
|  |  | 
|  | root->root_item.flags = 0; | 
|  | root->root_item.byte_limit = 0; | 
|  | btrfs_set_root_bytenr(&root->root_item, leaf->start); | 
|  | btrfs_set_root_generation(&root->root_item, trans->transid); | 
|  | btrfs_set_root_level(&root->root_item, 0); | 
|  | btrfs_set_root_refs(&root->root_item, 1); | 
|  | btrfs_set_root_used(&root->root_item, leaf->len); | 
|  | btrfs_set_root_last_snapshot(&root->root_item, 0); | 
|  | btrfs_set_root_dirid(&root->root_item, 0); | 
|  | uuid_le_gen(&uuid); | 
|  | memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); | 
|  | root->root_item.drop_level = 0; | 
|  |  | 
|  | key.objectid = objectid; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = 0; | 
|  | ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | btrfs_tree_unlock(leaf); | 
|  |  | 
|  | return root; | 
|  |  | 
|  | fail: | 
|  | if (leaf) { | 
|  | btrfs_tree_unlock(leaf); | 
|  | free_extent_buffer(leaf); | 
|  | } | 
|  | kfree(root); | 
|  |  | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | root = btrfs_alloc_root(fs_info); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | __setup_root(tree_root->nodesize, tree_root->leafsize, | 
|  | tree_root->sectorsize, tree_root->stripesize, | 
|  | root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; | 
|  | root->root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; | 
|  | /* | 
|  | * log trees do not get reference counted because they go away | 
|  | * before a real commit is actually done.  They do store pointers | 
|  | * to file data extents, and those reference counts still get | 
|  | * updated (along with back refs to the log tree). | 
|  | */ | 
|  | root->ref_cows = 0; | 
|  |  | 
|  | leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, | 
|  | BTRFS_TREE_LOG_OBJECTID, NULL, | 
|  | 0, 0, 0); | 
|  | if (IS_ERR(leaf)) { | 
|  | kfree(root); | 
|  | return ERR_CAST(leaf); | 
|  | } | 
|  |  | 
|  | memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); | 
|  | btrfs_set_header_bytenr(leaf, leaf->start); | 
|  | btrfs_set_header_generation(leaf, trans->transid); | 
|  | btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); | 
|  | root->node = leaf; | 
|  |  | 
|  | write_extent_buffer(root->node, root->fs_info->fsid, | 
|  | btrfs_header_fsid(), BTRFS_FSID_SIZE); | 
|  | btrfs_mark_buffer_dirty(root->node); | 
|  | btrfs_tree_unlock(root->node); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *log_root; | 
|  |  | 
|  | log_root = alloc_log_tree(trans, fs_info); | 
|  | if (IS_ERR(log_root)) | 
|  | return PTR_ERR(log_root); | 
|  | WARN_ON(fs_info->log_root_tree); | 
|  | fs_info->log_root_tree = log_root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_add_log_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_root *log_root; | 
|  | struct btrfs_inode_item *inode_item; | 
|  |  | 
|  | log_root = alloc_log_tree(trans, root->fs_info); | 
|  | if (IS_ERR(log_root)) | 
|  | return PTR_ERR(log_root); | 
|  |  | 
|  | log_root->last_trans = trans->transid; | 
|  | log_root->root_key.offset = root->root_key.objectid; | 
|  |  | 
|  | inode_item = &log_root->root_item.inode; | 
|  | btrfs_set_stack_inode_generation(inode_item, 1); | 
|  | btrfs_set_stack_inode_size(inode_item, 3); | 
|  | btrfs_set_stack_inode_nlink(inode_item, 1); | 
|  | btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); | 
|  | btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); | 
|  |  | 
|  | btrfs_set_root_node(&log_root->root_item, log_root->node); | 
|  |  | 
|  | WARN_ON(root->log_root); | 
|  | root->log_root = log_root; | 
|  | root->log_transid = 0; | 
|  | root->last_log_commit = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct btrfs_fs_info *fs_info = tree_root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | u64 generation; | 
|  | u32 blocksize; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | root = btrfs_alloc_root(fs_info); | 
|  | if (!root) { | 
|  | ret = -ENOMEM; | 
|  | goto alloc_fail; | 
|  | } | 
|  |  | 
|  | __setup_root(tree_root->nodesize, tree_root->leafsize, | 
|  | tree_root->sectorsize, tree_root->stripesize, | 
|  | root, fs_info, key->objectid); | 
|  |  | 
|  | ret = btrfs_find_root(tree_root, key, path, | 
|  | &root->root_item, &root->root_key); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | goto find_fail; | 
|  | } | 
|  |  | 
|  | generation = btrfs_root_generation(&root->root_item); | 
|  | blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); | 
|  | root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), | 
|  | blocksize, generation); | 
|  | if (!root->node) { | 
|  | ret = -ENOMEM; | 
|  | goto find_fail; | 
|  | } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { | 
|  | ret = -EIO; | 
|  | goto read_fail; | 
|  | } | 
|  | root->commit_root = btrfs_root_node(root); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return root; | 
|  |  | 
|  | read_fail: | 
|  | free_extent_buffer(root->node); | 
|  | find_fail: | 
|  | kfree(root); | 
|  | alloc_fail: | 
|  | root = ERR_PTR(ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, | 
|  | struct btrfs_key *location) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | root = btrfs_read_tree_root(tree_root, location); | 
|  | if (IS_ERR(root)) | 
|  | return root; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | root->ref_cows = 1; | 
|  | btrfs_check_and_init_root_item(&root->root_item); | 
|  | } | 
|  |  | 
|  | return root; | 
|  | } | 
|  |  | 
|  | int btrfs_init_fs_root(struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); | 
|  | root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), | 
|  | GFP_NOFS); | 
|  | if (!root->free_ino_pinned || !root->free_ino_ctl) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | btrfs_init_free_ino_ctl(root); | 
|  | mutex_init(&root->fs_commit_mutex); | 
|  | spin_lock_init(&root->cache_lock); | 
|  | init_waitqueue_head(&root->cache_wait); | 
|  |  | 
|  | ret = get_anon_bdev(&root->anon_dev); | 
|  | if (ret) | 
|  | goto fail; | 
|  | return 0; | 
|  | fail: | 
|  | kfree(root->free_ino_ctl); | 
|  | kfree(root->free_ino_pinned); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, | 
|  | u64 root_id) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | root = radix_tree_lookup(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root_id); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | ret = radix_tree_insert(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root->root_key.objectid, | 
|  | root); | 
|  | if (ret == 0) | 
|  | root->in_radix = 1; | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  | radix_tree_preload_end(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_key *location, | 
|  | bool check_ref) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | int ret; | 
|  |  | 
|  | if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) | 
|  | return fs_info->tree_root; | 
|  | if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) | 
|  | return fs_info->extent_root; | 
|  | if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) | 
|  | return fs_info->chunk_root; | 
|  | if (location->objectid == BTRFS_DEV_TREE_OBJECTID) | 
|  | return fs_info->dev_root; | 
|  | if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) | 
|  | return fs_info->csum_root; | 
|  | if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) | 
|  | return fs_info->quota_root ? fs_info->quota_root : | 
|  | ERR_PTR(-ENOENT); | 
|  | if (location->objectid == BTRFS_UUID_TREE_OBJECTID) | 
|  | return fs_info->uuid_root ? fs_info->uuid_root : | 
|  | ERR_PTR(-ENOENT); | 
|  | again: | 
|  | root = btrfs_lookup_fs_root(fs_info, location->objectid); | 
|  | if (root) { | 
|  | if (check_ref && btrfs_root_refs(&root->root_item) == 0) | 
|  | return ERR_PTR(-ENOENT); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | root = btrfs_read_fs_root(fs_info->tree_root, location); | 
|  | if (IS_ERR(root)) | 
|  | return root; | 
|  |  | 
|  | if (check_ref && btrfs_root_refs(&root->root_item) == 0) { | 
|  | ret = -ENOENT; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_fs_root(root); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, | 
|  | location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  | if (ret == 0) | 
|  | root->orphan_item_inserted = 1; | 
|  |  | 
|  | ret = btrfs_insert_fs_root(fs_info, root); | 
|  | if (ret) { | 
|  | if (ret == -EEXIST) { | 
|  | free_fs_root(root); | 
|  | goto again; | 
|  | } | 
|  | goto fail; | 
|  | } | 
|  | return root; | 
|  | fail: | 
|  | free_fs_root(root); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static int btrfs_congested_fn(void *congested_data, int bdi_bits) | 
|  | { | 
|  | struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; | 
|  | int ret = 0; | 
|  | struct btrfs_device *device; | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { | 
|  | if (!device->bdev) | 
|  | continue; | 
|  | bdi = blk_get_backing_dev_info(device->bdev); | 
|  | if (bdi && bdi_congested(bdi, bdi_bits)) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this fails, caller must call bdi_destroy() to get rid of the | 
|  | * bdi again. | 
|  | */ | 
|  | static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | bdi->capabilities = BDI_CAP_MAP_COPY; | 
|  | err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | bdi->ra_pages	= default_backing_dev_info.ra_pages; | 
|  | bdi->congested_fn	= btrfs_congested_fn; | 
|  | bdi->congested_data	= info; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called by the kthread helper functions to finally call the bio end_io | 
|  | * functions.  This is where read checksum verification actually happens | 
|  | */ | 
|  | static void end_workqueue_fn(struct btrfs_work *work) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct end_io_wq *end_io_wq; | 
|  | int error; | 
|  |  | 
|  | end_io_wq = container_of(work, struct end_io_wq, work); | 
|  | bio = end_io_wq->bio; | 
|  |  | 
|  | error = end_io_wq->error; | 
|  | bio->bi_private = end_io_wq->private; | 
|  | bio->bi_end_io = end_io_wq->end_io; | 
|  | kfree(end_io_wq); | 
|  | bio_endio_nodec(bio, error); | 
|  | } | 
|  |  | 
|  | static int cleaner_kthread(void *arg) | 
|  | { | 
|  | struct btrfs_root *root = arg; | 
|  | int again; | 
|  |  | 
|  | do { | 
|  | again = 0; | 
|  |  | 
|  | /* Make the cleaner go to sleep early. */ | 
|  | if (btrfs_need_cleaner_sleep(root)) | 
|  | goto sleep; | 
|  |  | 
|  | if (!mutex_trylock(&root->fs_info->cleaner_mutex)) | 
|  | goto sleep; | 
|  |  | 
|  | /* | 
|  | * Avoid the problem that we change the status of the fs | 
|  | * during the above check and trylock. | 
|  | */ | 
|  | if (btrfs_need_cleaner_sleep(root)) { | 
|  | mutex_unlock(&root->fs_info->cleaner_mutex); | 
|  | goto sleep; | 
|  | } | 
|  |  | 
|  | btrfs_run_delayed_iputs(root); | 
|  | again = btrfs_clean_one_deleted_snapshot(root); | 
|  | mutex_unlock(&root->fs_info->cleaner_mutex); | 
|  |  | 
|  | /* | 
|  | * The defragger has dealt with the R/O remount and umount, | 
|  | * needn't do anything special here. | 
|  | */ | 
|  | btrfs_run_defrag_inodes(root->fs_info); | 
|  | sleep: | 
|  | if (!try_to_freeze() && !again) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (!kthread_should_stop()) | 
|  | schedule(); | 
|  | __set_current_state(TASK_RUNNING); | 
|  | } | 
|  | } while (!kthread_should_stop()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int transaction_kthread(void *arg) | 
|  | { | 
|  | struct btrfs_root *root = arg; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_transaction *cur; | 
|  | u64 transid; | 
|  | unsigned long now; | 
|  | unsigned long delay; | 
|  | bool cannot_commit; | 
|  |  | 
|  | do { | 
|  | cannot_commit = false; | 
|  | delay = HZ * root->fs_info->commit_interval; | 
|  | mutex_lock(&root->fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | cur = root->fs_info->running_transaction; | 
|  | if (!cur) { | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | goto sleep; | 
|  | } | 
|  |  | 
|  | now = get_seconds(); | 
|  | if (cur->state < TRANS_STATE_BLOCKED && | 
|  | (now < cur->start_time || | 
|  | now - cur->start_time < root->fs_info->commit_interval)) { | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | delay = HZ * 5; | 
|  | goto sleep; | 
|  | } | 
|  | transid = cur->transid; | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  |  | 
|  | /* If the file system is aborted, this will always fail. */ | 
|  | trans = btrfs_attach_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | if (PTR_ERR(trans) != -ENOENT) | 
|  | cannot_commit = true; | 
|  | goto sleep; | 
|  | } | 
|  | if (transid == trans->transid) { | 
|  | btrfs_commit_transaction(trans, root); | 
|  | } else { | 
|  | btrfs_end_transaction(trans, root); | 
|  | } | 
|  | sleep: | 
|  | wake_up_process(root->fs_info->cleaner_kthread); | 
|  | mutex_unlock(&root->fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, | 
|  | &root->fs_info->fs_state))) | 
|  | btrfs_cleanup_transaction(root); | 
|  | if (!try_to_freeze()) { | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | if (!kthread_should_stop() && | 
|  | (!btrfs_transaction_blocked(root->fs_info) || | 
|  | cannot_commit)) | 
|  | schedule_timeout(delay); | 
|  | __set_current_state(TASK_RUNNING); | 
|  | } | 
|  | } while (!kthread_should_stop()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this will find the highest generation in the array of | 
|  | * root backups.  The index of the highest array is returned, | 
|  | * or -1 if we can't find anything. | 
|  | * | 
|  | * We check to make sure the array is valid by comparing the | 
|  | * generation of the latest  root in the array with the generation | 
|  | * in the super block.  If they don't match we pitch it. | 
|  | */ | 
|  | static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) | 
|  | { | 
|  | u64 cur; | 
|  | int newest_index = -1; | 
|  | struct btrfs_root_backup *root_backup; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { | 
|  | root_backup = info->super_copy->super_roots + i; | 
|  | cur = btrfs_backup_tree_root_gen(root_backup); | 
|  | if (cur == newest_gen) | 
|  | newest_index = i; | 
|  | } | 
|  |  | 
|  | /* check to see if we actually wrapped around */ | 
|  | if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { | 
|  | root_backup = info->super_copy->super_roots; | 
|  | cur = btrfs_backup_tree_root_gen(root_backup); | 
|  | if (cur == newest_gen) | 
|  | newest_index = 0; | 
|  | } | 
|  | return newest_index; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * find the oldest backup so we know where to store new entries | 
|  | * in the backup array.  This will set the backup_root_index | 
|  | * field in the fs_info struct | 
|  | */ | 
|  | static void find_oldest_super_backup(struct btrfs_fs_info *info, | 
|  | u64 newest_gen) | 
|  | { | 
|  | int newest_index = -1; | 
|  |  | 
|  | newest_index = find_newest_super_backup(info, newest_gen); | 
|  | /* if there was garbage in there, just move along */ | 
|  | if (newest_index == -1) { | 
|  | info->backup_root_index = 0; | 
|  | } else { | 
|  | info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * copy all the root pointers into the super backup array. | 
|  | * this will bump the backup pointer by one when it is | 
|  | * done | 
|  | */ | 
|  | static void backup_super_roots(struct btrfs_fs_info *info) | 
|  | { | 
|  | int next_backup; | 
|  | struct btrfs_root_backup *root_backup; | 
|  | int last_backup; | 
|  |  | 
|  | next_backup = info->backup_root_index; | 
|  | last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % | 
|  | BTRFS_NUM_BACKUP_ROOTS; | 
|  |  | 
|  | /* | 
|  | * just overwrite the last backup if we're at the same generation | 
|  | * this happens only at umount | 
|  | */ | 
|  | root_backup = info->super_for_commit->super_roots + last_backup; | 
|  | if (btrfs_backup_tree_root_gen(root_backup) == | 
|  | btrfs_header_generation(info->tree_root->node)) | 
|  | next_backup = last_backup; | 
|  |  | 
|  | root_backup = info->super_for_commit->super_roots + next_backup; | 
|  |  | 
|  | /* | 
|  | * make sure all of our padding and empty slots get zero filled | 
|  | * regardless of which ones we use today | 
|  | */ | 
|  | memset(root_backup, 0, sizeof(*root_backup)); | 
|  |  | 
|  | info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; | 
|  |  | 
|  | btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); | 
|  | btrfs_set_backup_tree_root_gen(root_backup, | 
|  | btrfs_header_generation(info->tree_root->node)); | 
|  |  | 
|  | btrfs_set_backup_tree_root_level(root_backup, | 
|  | btrfs_header_level(info->tree_root->node)); | 
|  |  | 
|  | btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); | 
|  | btrfs_set_backup_chunk_root_gen(root_backup, | 
|  | btrfs_header_generation(info->chunk_root->node)); | 
|  | btrfs_set_backup_chunk_root_level(root_backup, | 
|  | btrfs_header_level(info->chunk_root->node)); | 
|  |  | 
|  | btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); | 
|  | btrfs_set_backup_extent_root_gen(root_backup, | 
|  | btrfs_header_generation(info->extent_root->node)); | 
|  | btrfs_set_backup_extent_root_level(root_backup, | 
|  | btrfs_header_level(info->extent_root->node)); | 
|  |  | 
|  | /* | 
|  | * we might commit during log recovery, which happens before we set | 
|  | * the fs_root.  Make sure it is valid before we fill it in. | 
|  | */ | 
|  | if (info->fs_root && info->fs_root->node) { | 
|  | btrfs_set_backup_fs_root(root_backup, | 
|  | info->fs_root->node->start); | 
|  | btrfs_set_backup_fs_root_gen(root_backup, | 
|  | btrfs_header_generation(info->fs_root->node)); | 
|  | btrfs_set_backup_fs_root_level(root_backup, | 
|  | btrfs_header_level(info->fs_root->node)); | 
|  | } | 
|  |  | 
|  | btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); | 
|  | btrfs_set_backup_dev_root_gen(root_backup, | 
|  | btrfs_header_generation(info->dev_root->node)); | 
|  | btrfs_set_backup_dev_root_level(root_backup, | 
|  | btrfs_header_level(info->dev_root->node)); | 
|  |  | 
|  | btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); | 
|  | btrfs_set_backup_csum_root_gen(root_backup, | 
|  | btrfs_header_generation(info->csum_root->node)); | 
|  | btrfs_set_backup_csum_root_level(root_backup, | 
|  | btrfs_header_level(info->csum_root->node)); | 
|  |  | 
|  | btrfs_set_backup_total_bytes(root_backup, | 
|  | btrfs_super_total_bytes(info->super_copy)); | 
|  | btrfs_set_backup_bytes_used(root_backup, | 
|  | btrfs_super_bytes_used(info->super_copy)); | 
|  | btrfs_set_backup_num_devices(root_backup, | 
|  | btrfs_super_num_devices(info->super_copy)); | 
|  |  | 
|  | /* | 
|  | * if we don't copy this out to the super_copy, it won't get remembered | 
|  | * for the next commit | 
|  | */ | 
|  | memcpy(&info->super_copy->super_roots, | 
|  | &info->super_for_commit->super_roots, | 
|  | sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this copies info out of the root backup array and back into | 
|  | * the in-memory super block.  It is meant to help iterate through | 
|  | * the array, so you send it the number of backups you've already | 
|  | * tried and the last backup index you used. | 
|  | * | 
|  | * this returns -1 when it has tried all the backups | 
|  | */ | 
|  | static noinline int next_root_backup(struct btrfs_fs_info *info, | 
|  | struct btrfs_super_block *super, | 
|  | int *num_backups_tried, int *backup_index) | 
|  | { | 
|  | struct btrfs_root_backup *root_backup; | 
|  | int newest = *backup_index; | 
|  |  | 
|  | if (*num_backups_tried == 0) { | 
|  | u64 gen = btrfs_super_generation(super); | 
|  |  | 
|  | newest = find_newest_super_backup(info, gen); | 
|  | if (newest == -1) | 
|  | return -1; | 
|  |  | 
|  | *backup_index = newest; | 
|  | *num_backups_tried = 1; | 
|  | } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { | 
|  | /* we've tried all the backups, all done */ | 
|  | return -1; | 
|  | } else { | 
|  | /* jump to the next oldest backup */ | 
|  | newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % | 
|  | BTRFS_NUM_BACKUP_ROOTS; | 
|  | *backup_index = newest; | 
|  | *num_backups_tried += 1; | 
|  | } | 
|  | root_backup = super->super_roots + newest; | 
|  |  | 
|  | btrfs_set_super_generation(super, | 
|  | btrfs_backup_tree_root_gen(root_backup)); | 
|  | btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); | 
|  | btrfs_set_super_root_level(super, | 
|  | btrfs_backup_tree_root_level(root_backup)); | 
|  | btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); | 
|  |  | 
|  | /* | 
|  | * fixme: the total bytes and num_devices need to match or we should | 
|  | * need a fsck | 
|  | */ | 
|  | btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); | 
|  | btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* helper to cleanup workers */ | 
|  | static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | btrfs_stop_workers(&fs_info->generic_worker); | 
|  | btrfs_stop_workers(&fs_info->fixup_workers); | 
|  | btrfs_stop_workers(&fs_info->delalloc_workers); | 
|  | btrfs_stop_workers(&fs_info->workers); | 
|  | btrfs_stop_workers(&fs_info->endio_workers); | 
|  | btrfs_stop_workers(&fs_info->endio_meta_workers); | 
|  | btrfs_stop_workers(&fs_info->endio_raid56_workers); | 
|  | btrfs_stop_workers(&fs_info->rmw_workers); | 
|  | btrfs_stop_workers(&fs_info->endio_meta_write_workers); | 
|  | btrfs_stop_workers(&fs_info->endio_write_workers); | 
|  | btrfs_stop_workers(&fs_info->endio_freespace_worker); | 
|  | btrfs_stop_workers(&fs_info->submit_workers); | 
|  | btrfs_stop_workers(&fs_info->delayed_workers); | 
|  | btrfs_stop_workers(&fs_info->caching_workers); | 
|  | btrfs_stop_workers(&fs_info->readahead_workers); | 
|  | btrfs_stop_workers(&fs_info->flush_workers); | 
|  | btrfs_stop_workers(&fs_info->qgroup_rescan_workers); | 
|  | } | 
|  |  | 
|  | static void free_root_extent_buffers(struct btrfs_root *root) | 
|  | { | 
|  | if (root) { | 
|  | free_extent_buffer(root->node); | 
|  | free_extent_buffer(root->commit_root); | 
|  | root->node = NULL; | 
|  | root->commit_root = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* helper to cleanup tree roots */ | 
|  | static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) | 
|  | { | 
|  | free_root_extent_buffers(info->tree_root); | 
|  |  | 
|  | free_root_extent_buffers(info->dev_root); | 
|  | free_root_extent_buffers(info->extent_root); | 
|  | free_root_extent_buffers(info->csum_root); | 
|  | free_root_extent_buffers(info->quota_root); | 
|  | free_root_extent_buffers(info->uuid_root); | 
|  | if (chunk_root) | 
|  | free_root_extent_buffers(info->chunk_root); | 
|  | } | 
|  |  | 
|  | static void del_fs_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *gang[8]; | 
|  | int i; | 
|  |  | 
|  | while (!list_empty(&fs_info->dead_roots)) { | 
|  | gang[0] = list_entry(fs_info->dead_roots.next, | 
|  | struct btrfs_root, root_list); | 
|  | list_del(&gang[0]->root_list); | 
|  |  | 
|  | if (gang[0]->in_radix) { | 
|  | btrfs_drop_and_free_fs_root(fs_info, gang[0]); | 
|  | } else { | 
|  | free_extent_buffer(gang[0]->node); | 
|  | free_extent_buffer(gang[0]->commit_root); | 
|  | btrfs_put_fs_root(gang[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | (void **)gang, 0, | 
|  | ARRAY_SIZE(gang)); | 
|  | if (!ret) | 
|  | break; | 
|  | for (i = 0; i < ret; i++) | 
|  | btrfs_drop_and_free_fs_root(fs_info, gang[i]); | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
|  | btrfs_free_log_root_tree(NULL, fs_info); | 
|  | btrfs_destroy_pinned_extent(fs_info->tree_root, | 
|  | fs_info->pinned_extents); | 
|  | } | 
|  | } | 
|  |  | 
|  | int open_ctree(struct super_block *sb, | 
|  | struct btrfs_fs_devices *fs_devices, | 
|  | char *options) | 
|  | { | 
|  | u32 sectorsize; | 
|  | u32 nodesize; | 
|  | u32 leafsize; | 
|  | u32 blocksize; | 
|  | u32 stripesize; | 
|  | u64 generation; | 
|  | u64 features; | 
|  | struct btrfs_key location; | 
|  | struct buffer_head *bh; | 
|  | struct btrfs_super_block *disk_super; | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
|  | struct btrfs_root *tree_root; | 
|  | struct btrfs_root *extent_root; | 
|  | struct btrfs_root *csum_root; | 
|  | struct btrfs_root *chunk_root; | 
|  | struct btrfs_root *dev_root; | 
|  | struct btrfs_root *quota_root; | 
|  | struct btrfs_root *uuid_root; | 
|  | struct btrfs_root *log_tree_root; | 
|  | int ret; | 
|  | int err = -EINVAL; | 
|  | int num_backups_tried = 0; | 
|  | int backup_index = 0; | 
|  | bool create_uuid_tree; | 
|  | bool check_uuid_tree; | 
|  |  | 
|  | tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); | 
|  | chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); | 
|  | if (!tree_root || !chunk_root) { | 
|  | err = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = init_srcu_struct(&fs_info->subvol_srcu); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = setup_bdi(fs_info, &fs_info->bdi); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail_srcu; | 
|  | } | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail_bdi; | 
|  | } | 
|  | fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * | 
|  | (1 + ilog2(nr_cpu_ids)); | 
|  |  | 
|  | ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail_dirty_metadata_bytes; | 
|  | } | 
|  |  | 
|  | fs_info->btree_inode = new_inode(sb); | 
|  | if (!fs_info->btree_inode) { | 
|  | err = -ENOMEM; | 
|  | goto fail_delalloc_bytes; | 
|  | } | 
|  |  | 
|  | mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); | 
|  |  | 
|  | INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); | 
|  | INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); | 
|  | INIT_LIST_HEAD(&fs_info->trans_list); | 
|  | INIT_LIST_HEAD(&fs_info->dead_roots); | 
|  | INIT_LIST_HEAD(&fs_info->delayed_iputs); | 
|  | INIT_LIST_HEAD(&fs_info->delalloc_roots); | 
|  | INIT_LIST_HEAD(&fs_info->caching_block_groups); | 
|  | spin_lock_init(&fs_info->delalloc_root_lock); | 
|  | spin_lock_init(&fs_info->trans_lock); | 
|  | spin_lock_init(&fs_info->fs_roots_radix_lock); | 
|  | spin_lock_init(&fs_info->delayed_iput_lock); | 
|  | spin_lock_init(&fs_info->defrag_inodes_lock); | 
|  | spin_lock_init(&fs_info->free_chunk_lock); | 
|  | spin_lock_init(&fs_info->tree_mod_seq_lock); | 
|  | spin_lock_init(&fs_info->super_lock); | 
|  | spin_lock_init(&fs_info->buffer_lock); | 
|  | rwlock_init(&fs_info->tree_mod_log_lock); | 
|  | mutex_init(&fs_info->reloc_mutex); | 
|  | seqlock_init(&fs_info->profiles_lock); | 
|  |  | 
|  | init_completion(&fs_info->kobj_unregister); | 
|  | INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); | 
|  | INIT_LIST_HEAD(&fs_info->space_info); | 
|  | INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); | 
|  | btrfs_mapping_init(&fs_info->mapping_tree); | 
|  | btrfs_init_block_rsv(&fs_info->global_block_rsv, | 
|  | BTRFS_BLOCK_RSV_GLOBAL); | 
|  | btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, | 
|  | BTRFS_BLOCK_RSV_DELALLOC); | 
|  | btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); | 
|  | btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); | 
|  | btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); | 
|  | btrfs_init_block_rsv(&fs_info->delayed_block_rsv, | 
|  | BTRFS_BLOCK_RSV_DELOPS); | 
|  | atomic_set(&fs_info->nr_async_submits, 0); | 
|  | atomic_set(&fs_info->async_delalloc_pages, 0); | 
|  | atomic_set(&fs_info->async_submit_draining, 0); | 
|  | atomic_set(&fs_info->nr_async_bios, 0); | 
|  | atomic_set(&fs_info->defrag_running, 0); | 
|  | atomic64_set(&fs_info->tree_mod_seq, 0); | 
|  | fs_info->sb = sb; | 
|  | fs_info->max_inline = 8192 * 1024; | 
|  | fs_info->metadata_ratio = 0; | 
|  | fs_info->defrag_inodes = RB_ROOT; | 
|  | fs_info->free_chunk_space = 0; | 
|  | fs_info->tree_mod_log = RB_ROOT; | 
|  | fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
|  | fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); | 
|  | /* readahead state */ | 
|  | INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); | 
|  | spin_lock_init(&fs_info->reada_lock); | 
|  |  | 
|  | fs_info->thread_pool_size = min_t(unsigned long, | 
|  | num_online_cpus() + 2, 8); | 
|  |  | 
|  | INIT_LIST_HEAD(&fs_info->ordered_roots); | 
|  | spin_lock_init(&fs_info->ordered_root_lock); | 
|  | fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), | 
|  | GFP_NOFS); | 
|  | if (!fs_info->delayed_root) { | 
|  | err = -ENOMEM; | 
|  | goto fail_iput; | 
|  | } | 
|  | btrfs_init_delayed_root(fs_info->delayed_root); | 
|  |  | 
|  | mutex_init(&fs_info->scrub_lock); | 
|  | atomic_set(&fs_info->scrubs_running, 0); | 
|  | atomic_set(&fs_info->scrub_pause_req, 0); | 
|  | atomic_set(&fs_info->scrubs_paused, 0); | 
|  | atomic_set(&fs_info->scrub_cancel_req, 0); | 
|  | init_waitqueue_head(&fs_info->scrub_pause_wait); | 
|  | fs_info->scrub_workers_refcnt = 0; | 
|  | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | fs_info->check_integrity_print_mask = 0; | 
|  | #endif | 
|  |  | 
|  | spin_lock_init(&fs_info->balance_lock); | 
|  | mutex_init(&fs_info->balance_mutex); | 
|  | atomic_set(&fs_info->balance_running, 0); | 
|  | atomic_set(&fs_info->balance_pause_req, 0); | 
|  | atomic_set(&fs_info->balance_cancel_req, 0); | 
|  | fs_info->balance_ctl = NULL; | 
|  | init_waitqueue_head(&fs_info->balance_wait_q); | 
|  |  | 
|  | sb->s_blocksize = 4096; | 
|  | sb->s_blocksize_bits = blksize_bits(4096); | 
|  | sb->s_bdi = &fs_info->bdi; | 
|  |  | 
|  | fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; | 
|  | set_nlink(fs_info->btree_inode, 1); | 
|  | /* | 
|  | * we set the i_size on the btree inode to the max possible int. | 
|  | * the real end of the address space is determined by all of | 
|  | * the devices in the system | 
|  | */ | 
|  | fs_info->btree_inode->i_size = OFFSET_MAX; | 
|  | fs_info->btree_inode->i_mapping->a_ops = &btree_aops; | 
|  | fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; | 
|  |  | 
|  | RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); | 
|  | extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, | 
|  | fs_info->btree_inode->i_mapping); | 
|  | BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; | 
|  | extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); | 
|  |  | 
|  | BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; | 
|  |  | 
|  | BTRFS_I(fs_info->btree_inode)->root = tree_root; | 
|  | memset(&BTRFS_I(fs_info->btree_inode)->location, 0, | 
|  | sizeof(struct btrfs_key)); | 
|  | set_bit(BTRFS_INODE_DUMMY, | 
|  | &BTRFS_I(fs_info->btree_inode)->runtime_flags); | 
|  | btrfs_insert_inode_hash(fs_info->btree_inode); | 
|  |  | 
|  | spin_lock_init(&fs_info->block_group_cache_lock); | 
|  | fs_info->block_group_cache_tree = RB_ROOT; | 
|  | fs_info->first_logical_byte = (u64)-1; | 
|  |  | 
|  | extent_io_tree_init(&fs_info->freed_extents[0], | 
|  | fs_info->btree_inode->i_mapping); | 
|  | extent_io_tree_init(&fs_info->freed_extents[1], | 
|  | fs_info->btree_inode->i_mapping); | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
|  | fs_info->do_barriers = 1; | 
|  |  | 
|  |  | 
|  | mutex_init(&fs_info->ordered_operations_mutex); | 
|  | mutex_init(&fs_info->ordered_extent_flush_mutex); | 
|  | mutex_init(&fs_info->tree_log_mutex); | 
|  | mutex_init(&fs_info->chunk_mutex); | 
|  | mutex_init(&fs_info->transaction_kthread_mutex); | 
|  | mutex_init(&fs_info->cleaner_mutex); | 
|  | mutex_init(&fs_info->volume_mutex); | 
|  | init_rwsem(&fs_info->extent_commit_sem); | 
|  | init_rwsem(&fs_info->cleanup_work_sem); | 
|  | init_rwsem(&fs_info->subvol_sem); | 
|  | sema_init(&fs_info->uuid_tree_rescan_sem, 1); | 
|  | fs_info->dev_replace.lock_owner = 0; | 
|  | atomic_set(&fs_info->dev_replace.nesting_level, 0); | 
|  | mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); | 
|  | mutex_init(&fs_info->dev_replace.lock_management_lock); | 
|  | mutex_init(&fs_info->dev_replace.lock); | 
|  |  | 
|  | spin_lock_init(&fs_info->qgroup_lock); | 
|  | mutex_init(&fs_info->qgroup_ioctl_lock); | 
|  | fs_info->qgroup_tree = RB_ROOT; | 
|  | INIT_LIST_HEAD(&fs_info->dirty_qgroups); | 
|  | fs_info->qgroup_seq = 1; | 
|  | fs_info->quota_enabled = 0; | 
|  | fs_info->pending_quota_state = 0; | 
|  | fs_info->qgroup_ulist = NULL; | 
|  | mutex_init(&fs_info->qgroup_rescan_lock); | 
|  |  | 
|  | btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); | 
|  | btrfs_init_free_cluster(&fs_info->data_alloc_cluster); | 
|  |  | 
|  | init_waitqueue_head(&fs_info->transaction_throttle); | 
|  | init_waitqueue_head(&fs_info->transaction_wait); | 
|  | init_waitqueue_head(&fs_info->transaction_blocked_wait); | 
|  | init_waitqueue_head(&fs_info->async_submit_wait); | 
|  |  | 
|  | ret = btrfs_alloc_stripe_hash_table(fs_info); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | __setup_root(4096, 4096, 4096, 4096, tree_root, | 
|  | fs_info, BTRFS_ROOT_TREE_OBJECTID); | 
|  |  | 
|  | invalidate_bdev(fs_devices->latest_bdev); | 
|  |  | 
|  | /* | 
|  | * Read super block and check the signature bytes only | 
|  | */ | 
|  | bh = btrfs_read_dev_super(fs_devices->latest_bdev); | 
|  | if (!bh) { | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to check superblock checksum, the type is stored inside. | 
|  | * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). | 
|  | */ | 
|  | if (btrfs_check_super_csum(bh->b_data)) { | 
|  | printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * super_copy is zeroed at allocation time and we never touch the | 
|  | * following bytes up to INFO_SIZE, the checksum is calculated from | 
|  | * the whole block of INFO_SIZE | 
|  | */ | 
|  | memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); | 
|  | memcpy(fs_info->super_for_commit, fs_info->super_copy, | 
|  | sizeof(*fs_info->super_for_commit)); | 
|  | brelse(bh); | 
|  |  | 
|  | memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); | 
|  |  | 
|  | ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | disk_super = fs_info->super_copy; | 
|  | if (!btrfs_super_root(disk_super)) | 
|  | goto fail_alloc; | 
|  |  | 
|  | /* check FS state, whether FS is broken. */ | 
|  | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) | 
|  | set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); | 
|  |  | 
|  | /* | 
|  | * run through our array of backup supers and setup | 
|  | * our ring pointer to the oldest one | 
|  | */ | 
|  | generation = btrfs_super_generation(disk_super); | 
|  | find_oldest_super_backup(fs_info, generation); | 
|  |  | 
|  | /* | 
|  | * In the long term, we'll store the compression type in the super | 
|  | * block, and it'll be used for per file compression control. | 
|  | */ | 
|  | fs_info->compress_type = BTRFS_COMPRESS_ZLIB; | 
|  |  | 
|  | ret = btrfs_parse_options(tree_root, options); | 
|  | if (ret) { | 
|  | err = ret; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | features = btrfs_super_incompat_flags(disk_super) & | 
|  | ~BTRFS_FEATURE_INCOMPAT_SUPP; | 
|  | if (features) { | 
|  | printk(KERN_ERR "BTRFS: couldn't mount because of " | 
|  | "unsupported optional features (%Lx).\n", | 
|  | features); | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | if (btrfs_super_leafsize(disk_super) != | 
|  | btrfs_super_nodesize(disk_super)) { | 
|  | printk(KERN_ERR "BTRFS: couldn't mount because metadata " | 
|  | "blocksizes don't match.  node %d leaf %d\n", | 
|  | btrfs_super_nodesize(disk_super), | 
|  | btrfs_super_leafsize(disk_super)); | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  | if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { | 
|  | printk(KERN_ERR "BTRFS: couldn't mount because metadata " | 
|  | "blocksize (%d) was too large\n", | 
|  | btrfs_super_leafsize(disk_super)); | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | features = btrfs_super_incompat_flags(disk_super); | 
|  | features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; | 
|  | if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) | 
|  | features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; | 
|  |  | 
|  | if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) | 
|  | printk(KERN_ERR "BTRFS: has skinny extents\n"); | 
|  |  | 
|  | /* | 
|  | * flag our filesystem as having big metadata blocks if | 
|  | * they are bigger than the page size | 
|  | */ | 
|  | if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { | 
|  | if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) | 
|  | printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); | 
|  | features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; | 
|  | } | 
|  |  | 
|  | nodesize = btrfs_super_nodesize(disk_super); | 
|  | leafsize = btrfs_super_leafsize(disk_super); | 
|  | sectorsize = btrfs_super_sectorsize(disk_super); | 
|  | stripesize = btrfs_super_stripesize(disk_super); | 
|  | fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); | 
|  | fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); | 
|  |  | 
|  | /* | 
|  | * mixed block groups end up with duplicate but slightly offset | 
|  | * extent buffers for the same range.  It leads to corruptions | 
|  | */ | 
|  | if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && | 
|  | (sectorsize != leafsize)) { | 
|  | printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " | 
|  | "are not allowed for mixed block groups on %s\n", | 
|  | sb->s_id); | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Needn't use the lock because there is no other task which will | 
|  | * update the flag. | 
|  | */ | 
|  | btrfs_set_super_incompat_flags(disk_super, features); | 
|  |  | 
|  | features = btrfs_super_compat_ro_flags(disk_super) & | 
|  | ~BTRFS_FEATURE_COMPAT_RO_SUPP; | 
|  | if (!(sb->s_flags & MS_RDONLY) && features) { | 
|  | printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " | 
|  | "unsupported option features (%Lx).\n", | 
|  | features); | 
|  | err = -EINVAL; | 
|  | goto fail_alloc; | 
|  | } | 
|  |  | 
|  | btrfs_init_workers(&fs_info->generic_worker, | 
|  | "genwork", 1, NULL); | 
|  |  | 
|  | btrfs_init_workers(&fs_info->workers, "worker", | 
|  | fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  |  | 
|  | btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", | 
|  | fs_info->thread_pool_size, NULL); | 
|  |  | 
|  | btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", | 
|  | fs_info->thread_pool_size, NULL); | 
|  |  | 
|  | btrfs_init_workers(&fs_info->submit_workers, "submit", | 
|  | min_t(u64, fs_devices->num_devices, | 
|  | fs_info->thread_pool_size), NULL); | 
|  |  | 
|  | btrfs_init_workers(&fs_info->caching_workers, "cache", | 
|  | fs_info->thread_pool_size, NULL); | 
|  |  | 
|  | /* a higher idle thresh on the submit workers makes it much more | 
|  | * likely that bios will be send down in a sane order to the | 
|  | * devices | 
|  | */ | 
|  | fs_info->submit_workers.idle_thresh = 64; | 
|  |  | 
|  | fs_info->workers.idle_thresh = 16; | 
|  | fs_info->workers.ordered = 1; | 
|  |  | 
|  | fs_info->delalloc_workers.idle_thresh = 2; | 
|  | fs_info->delalloc_workers.ordered = 1; | 
|  |  | 
|  | btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->endio_workers, "endio", | 
|  | fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", | 
|  | fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->endio_meta_write_workers, | 
|  | "endio-meta-write", fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->endio_raid56_workers, | 
|  | "endio-raid56", fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->rmw_workers, | 
|  | "rmw", fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", | 
|  | fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", | 
|  | 1, &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", | 
|  | fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->readahead_workers, "readahead", | 
|  | fs_info->thread_pool_size, | 
|  | &fs_info->generic_worker); | 
|  | btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, | 
|  | &fs_info->generic_worker); | 
|  |  | 
|  | /* | 
|  | * endios are largely parallel and should have a very | 
|  | * low idle thresh | 
|  | */ | 
|  | fs_info->endio_workers.idle_thresh = 4; | 
|  | fs_info->endio_meta_workers.idle_thresh = 4; | 
|  | fs_info->endio_raid56_workers.idle_thresh = 4; | 
|  | fs_info->rmw_workers.idle_thresh = 2; | 
|  |  | 
|  | fs_info->endio_write_workers.idle_thresh = 2; | 
|  | fs_info->endio_meta_write_workers.idle_thresh = 2; | 
|  | fs_info->readahead_workers.idle_thresh = 2; | 
|  |  | 
|  | /* | 
|  | * btrfs_start_workers can really only fail because of ENOMEM so just | 
|  | * return -ENOMEM if any of these fail. | 
|  | */ | 
|  | ret = btrfs_start_workers(&fs_info->workers); | 
|  | ret |= btrfs_start_workers(&fs_info->generic_worker); | 
|  | ret |= btrfs_start_workers(&fs_info->submit_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->delalloc_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->fixup_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->endio_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->endio_meta_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->rmw_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->endio_write_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); | 
|  | ret |= btrfs_start_workers(&fs_info->delayed_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->caching_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->readahead_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->flush_workers); | 
|  | ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); | 
|  | if (ret) { | 
|  | err = -ENOMEM; | 
|  | goto fail_sb_buffer; | 
|  | } | 
|  |  | 
|  | fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); | 
|  | fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, | 
|  | 4 * 1024 * 1024 / PAGE_CACHE_SIZE); | 
|  |  | 
|  | tree_root->nodesize = nodesize; | 
|  | tree_root->leafsize = leafsize; | 
|  | tree_root->sectorsize = sectorsize; | 
|  | tree_root->stripesize = stripesize; | 
|  |  | 
|  | sb->s_blocksize = sectorsize; | 
|  | sb->s_blocksize_bits = blksize_bits(sectorsize); | 
|  |  | 
|  | if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { | 
|  | printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); | 
|  | goto fail_sb_buffer; | 
|  | } | 
|  |  | 
|  | if (sectorsize != PAGE_SIZE) { | 
|  | printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " | 
|  | "found on %s\n", (unsigned long)sectorsize, sb->s_id); | 
|  | goto fail_sb_buffer; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | ret = btrfs_read_sys_array(tree_root); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "BTRFS: failed to read the system " | 
|  | "array on %s\n", sb->s_id); | 
|  | goto fail_sb_buffer; | 
|  | } | 
|  |  | 
|  | blocksize = btrfs_level_size(tree_root, | 
|  | btrfs_super_chunk_root_level(disk_super)); | 
|  | generation = btrfs_super_chunk_root_generation(disk_super); | 
|  |  | 
|  | __setup_root(nodesize, leafsize, sectorsize, stripesize, | 
|  | chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); | 
|  |  | 
|  | chunk_root->node = read_tree_block(chunk_root, | 
|  | btrfs_super_chunk_root(disk_super), | 
|  | blocksize, generation); | 
|  | if (!chunk_root->node || | 
|  | !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { | 
|  | printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", | 
|  | sb->s_id); | 
|  | goto fail_tree_roots; | 
|  | } | 
|  | btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); | 
|  | chunk_root->commit_root = btrfs_root_node(chunk_root); | 
|  |  | 
|  | read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, | 
|  | btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); | 
|  |  | 
|  | ret = btrfs_read_chunk_tree(chunk_root); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", | 
|  | sb->s_id); | 
|  | goto fail_tree_roots; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * keep the device that is marked to be the target device for the | 
|  | * dev_replace procedure | 
|  | */ | 
|  | btrfs_close_extra_devices(fs_info, fs_devices, 0); | 
|  |  | 
|  | if (!fs_devices->latest_bdev) { | 
|  | printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", | 
|  | sb->s_id); | 
|  | goto fail_tree_roots; | 
|  | } | 
|  |  | 
|  | retry_root_backup: | 
|  | blocksize = btrfs_level_size(tree_root, | 
|  | btrfs_super_root_level(disk_super)); | 
|  | generation = btrfs_super_generation(disk_super); | 
|  |  | 
|  | tree_root->node = read_tree_block(tree_root, | 
|  | btrfs_super_root(disk_super), | 
|  | blocksize, generation); | 
|  | if (!tree_root->node || | 
|  | !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { | 
|  | printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", | 
|  | sb->s_id); | 
|  |  | 
|  | goto recovery_tree_root; | 
|  | } | 
|  |  | 
|  | btrfs_set_root_node(&tree_root->root_item, tree_root->node); | 
|  | tree_root->commit_root = btrfs_root_node(tree_root); | 
|  | btrfs_set_root_refs(&tree_root->root_item, 1); | 
|  |  | 
|  | location.objectid = BTRFS_EXTENT_TREE_OBJECTID; | 
|  | location.type = BTRFS_ROOT_ITEM_KEY; | 
|  | location.offset = 0; | 
|  |  | 
|  | extent_root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(extent_root)) { | 
|  | ret = PTR_ERR(extent_root); | 
|  | goto recovery_tree_root; | 
|  | } | 
|  | extent_root->track_dirty = 1; | 
|  | fs_info->extent_root = extent_root; | 
|  |  | 
|  | location.objectid = BTRFS_DEV_TREE_OBJECTID; | 
|  | dev_root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(dev_root)) { | 
|  | ret = PTR_ERR(dev_root); | 
|  | goto recovery_tree_root; | 
|  | } | 
|  | dev_root->track_dirty = 1; | 
|  | fs_info->dev_root = dev_root; | 
|  | btrfs_init_devices_late(fs_info); | 
|  |  | 
|  | location.objectid = BTRFS_CSUM_TREE_OBJECTID; | 
|  | csum_root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(csum_root)) { | 
|  | ret = PTR_ERR(csum_root); | 
|  | goto recovery_tree_root; | 
|  | } | 
|  | csum_root->track_dirty = 1; | 
|  | fs_info->csum_root = csum_root; | 
|  |  | 
|  | location.objectid = BTRFS_QUOTA_TREE_OBJECTID; | 
|  | quota_root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (!IS_ERR(quota_root)) { | 
|  | quota_root->track_dirty = 1; | 
|  | fs_info->quota_enabled = 1; | 
|  | fs_info->pending_quota_state = 1; | 
|  | fs_info->quota_root = quota_root; | 
|  | } | 
|  |  | 
|  | location.objectid = BTRFS_UUID_TREE_OBJECTID; | 
|  | uuid_root = btrfs_read_tree_root(tree_root, &location); | 
|  | if (IS_ERR(uuid_root)) { | 
|  | ret = PTR_ERR(uuid_root); | 
|  | if (ret != -ENOENT) | 
|  | goto recovery_tree_root; | 
|  | create_uuid_tree = true; | 
|  | check_uuid_tree = false; | 
|  | } else { | 
|  | uuid_root->track_dirty = 1; | 
|  | fs_info->uuid_root = uuid_root; | 
|  | create_uuid_tree = false; | 
|  | check_uuid_tree = | 
|  | generation != btrfs_super_uuid_tree_generation(disk_super); | 
|  | } | 
|  |  | 
|  | fs_info->generation = generation; | 
|  | fs_info->last_trans_committed = generation; | 
|  |  | 
|  | ret = btrfs_recover_balance(fs_info); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "BTRFS: failed to recover balance\n"); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_dev_stats(fs_info); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", | 
|  | ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_dev_replace(fs_info); | 
|  | if (ret) { | 
|  | pr_err("BTRFS: failed to init dev_replace: %d\n", ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | btrfs_close_extra_devices(fs_info, fs_devices, 1); | 
|  |  | 
|  | ret = btrfs_sysfs_add_one(fs_info); | 
|  | if (ret) { | 
|  | pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); | 
|  | goto fail_block_groups; | 
|  | } | 
|  |  | 
|  | ret = btrfs_init_space_info(fs_info); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); | 
|  | goto fail_sysfs; | 
|  | } | 
|  |  | 
|  | ret = btrfs_read_block_groups(extent_root); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); | 
|  | goto fail_sysfs; | 
|  | } | 
|  | fs_info->num_tolerated_disk_barrier_failures = | 
|  | btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); | 
|  | if (fs_info->fs_devices->missing_devices > | 
|  | fs_info->num_tolerated_disk_barrier_failures && | 
|  | !(sb->s_flags & MS_RDONLY)) { | 
|  | printk(KERN_WARNING "BTRFS: " | 
|  | "too many missing devices, writeable mount is not allowed\n"); | 
|  | goto fail_sysfs; | 
|  | } | 
|  |  | 
|  | fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, | 
|  | "btrfs-cleaner"); | 
|  | if (IS_ERR(fs_info->cleaner_kthread)) | 
|  | goto fail_sysfs; | 
|  |  | 
|  | fs_info->transaction_kthread = kthread_run(transaction_kthread, | 
|  | tree_root, | 
|  | "btrfs-transaction"); | 
|  | if (IS_ERR(fs_info->transaction_kthread)) | 
|  | goto fail_cleaner; | 
|  |  | 
|  | if (!btrfs_test_opt(tree_root, SSD) && | 
|  | !btrfs_test_opt(tree_root, NOSSD) && | 
|  | !fs_info->fs_devices->rotating) { | 
|  | printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " | 
|  | "mode\n"); | 
|  | btrfs_set_opt(fs_info->mount_opt, SSD); | 
|  | } | 
|  |  | 
|  | /* Set the real inode map cache flag */ | 
|  | if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE)) | 
|  | btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { | 
|  | ret = btrfsic_mount(tree_root, fs_devices, | 
|  | btrfs_test_opt(tree_root, | 
|  | CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? | 
|  | 1 : 0, | 
|  | fs_info->check_integrity_print_mask); | 
|  | if (ret) | 
|  | printk(KERN_WARNING "BTRFS: failed to initialize" | 
|  | " integrity check module %s\n", sb->s_id); | 
|  | } | 
|  | #endif | 
|  | ret = btrfs_read_qgroup_config(fs_info); | 
|  | if (ret) | 
|  | goto fail_trans_kthread; | 
|  |  | 
|  | /* do not make disk changes in broken FS */ | 
|  | if (btrfs_super_log_root(disk_super) != 0) { | 
|  | u64 bytenr = btrfs_super_log_root(disk_super); | 
|  |  | 
|  | if (fs_devices->rw_devices == 0) { | 
|  | printk(KERN_WARNING "BTRFS: log replay required " | 
|  | "on RO media\n"); | 
|  | err = -EIO; | 
|  | goto fail_qgroup; | 
|  | } | 
|  | blocksize = | 
|  | btrfs_level_size(tree_root, | 
|  | btrfs_super_log_root_level(disk_super)); | 
|  |  | 
|  | log_tree_root = btrfs_alloc_root(fs_info); | 
|  | if (!log_tree_root) { | 
|  | err = -ENOMEM; | 
|  | goto fail_qgroup; | 
|  | } | 
|  |  | 
|  | __setup_root(nodesize, leafsize, sectorsize, stripesize, | 
|  | log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | log_tree_root->node = read_tree_block(tree_root, bytenr, | 
|  | blocksize, | 
|  | generation + 1); | 
|  | if (!log_tree_root->node || | 
|  | !extent_buffer_uptodate(log_tree_root->node)) { | 
|  | printk(KERN_ERR "BTRFS: failed to read log tree\n"); | 
|  | free_extent_buffer(log_tree_root->node); | 
|  | kfree(log_tree_root); | 
|  | goto fail_trans_kthread; | 
|  | } | 
|  | /* returns with log_tree_root freed on success */ | 
|  | ret = btrfs_recover_log_trees(log_tree_root); | 
|  | if (ret) { | 
|  | btrfs_error(tree_root->fs_info, ret, | 
|  | "Failed to recover log tree"); | 
|  | free_extent_buffer(log_tree_root->node); | 
|  | kfree(log_tree_root); | 
|  | goto fail_trans_kthread; | 
|  | } | 
|  |  | 
|  | if (sb->s_flags & MS_RDONLY) { | 
|  | ret = btrfs_commit_super(tree_root); | 
|  | if (ret) | 
|  | goto fail_trans_kthread; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = btrfs_find_orphan_roots(tree_root); | 
|  | if (ret) | 
|  | goto fail_trans_kthread; | 
|  |  | 
|  | if (!(sb->s_flags & MS_RDONLY)) { | 
|  | ret = btrfs_cleanup_fs_roots(fs_info); | 
|  | if (ret) | 
|  | goto fail_trans_kthread; | 
|  |  | 
|  | ret = btrfs_recover_relocation(tree_root); | 
|  | if (ret < 0) { | 
|  | printk(KERN_WARNING | 
|  | "BTRFS: failed to recover relocation\n"); | 
|  | err = -EINVAL; | 
|  | goto fail_qgroup; | 
|  | } | 
|  | } | 
|  |  | 
|  | location.objectid = BTRFS_FS_TREE_OBJECTID; | 
|  | location.type = BTRFS_ROOT_ITEM_KEY; | 
|  | location.offset = 0; | 
|  |  | 
|  | fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); | 
|  | if (IS_ERR(fs_info->fs_root)) { | 
|  | err = PTR_ERR(fs_info->fs_root); | 
|  | goto fail_qgroup; | 
|  | } | 
|  |  | 
|  | if (sb->s_flags & MS_RDONLY) | 
|  | return 0; | 
|  |  | 
|  | down_read(&fs_info->cleanup_work_sem); | 
|  | if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || | 
|  | (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { | 
|  | up_read(&fs_info->cleanup_work_sem); | 
|  | close_ctree(tree_root); | 
|  | return ret; | 
|  | } | 
|  | up_read(&fs_info->cleanup_work_sem); | 
|  |  | 
|  | ret = btrfs_resume_balance_async(fs_info); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "BTRFS: failed to resume balance\n"); | 
|  | close_ctree(tree_root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = btrfs_resume_dev_replace_async(fs_info); | 
|  | if (ret) { | 
|  | pr_warn("BTRFS: failed to resume dev_replace\n"); | 
|  | close_ctree(tree_root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_qgroup_rescan_resume(fs_info); | 
|  |  | 
|  | if (create_uuid_tree) { | 
|  | pr_info("BTRFS: creating UUID tree\n"); | 
|  | ret = btrfs_create_uuid_tree(fs_info); | 
|  | if (ret) { | 
|  | pr_warn("BTRFS: failed to create the UUID tree %d\n", | 
|  | ret); | 
|  | close_ctree(tree_root); | 
|  | return ret; | 
|  | } | 
|  | } else if (check_uuid_tree || | 
|  | btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { | 
|  | pr_info("BTRFS: checking UUID tree\n"); | 
|  | ret = btrfs_check_uuid_tree(fs_info); | 
|  | if (ret) { | 
|  | pr_warn("BTRFS: failed to check the UUID tree %d\n", | 
|  | ret); | 
|  | close_ctree(tree_root); | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | fs_info->update_uuid_tree_gen = 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_qgroup: | 
|  | btrfs_free_qgroup_config(fs_info); | 
|  | fail_trans_kthread: | 
|  | kthread_stop(fs_info->transaction_kthread); | 
|  | btrfs_cleanup_transaction(fs_info->tree_root); | 
|  | del_fs_roots(fs_info); | 
|  | fail_cleaner: | 
|  | kthread_stop(fs_info->cleaner_kthread); | 
|  |  | 
|  | /* | 
|  | * make sure we're done with the btree inode before we stop our | 
|  | * kthreads | 
|  | */ | 
|  | filemap_write_and_wait(fs_info->btree_inode->i_mapping); | 
|  |  | 
|  | fail_sysfs: | 
|  | btrfs_sysfs_remove_one(fs_info); | 
|  |  | 
|  | fail_block_groups: | 
|  | btrfs_put_block_group_cache(fs_info); | 
|  | btrfs_free_block_groups(fs_info); | 
|  |  | 
|  | fail_tree_roots: | 
|  | free_root_pointers(fs_info, 1); | 
|  | invalidate_inode_pages2(fs_info->btree_inode->i_mapping); | 
|  |  | 
|  | fail_sb_buffer: | 
|  | btrfs_stop_all_workers(fs_info); | 
|  | fail_alloc: | 
|  | fail_iput: | 
|  | btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
|  |  | 
|  | iput(fs_info->btree_inode); | 
|  | fail_delalloc_bytes: | 
|  | percpu_counter_destroy(&fs_info->delalloc_bytes); | 
|  | fail_dirty_metadata_bytes: | 
|  | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
|  | fail_bdi: | 
|  | bdi_destroy(&fs_info->bdi); | 
|  | fail_srcu: | 
|  | cleanup_srcu_struct(&fs_info->subvol_srcu); | 
|  | fail: | 
|  | btrfs_free_stripe_hash_table(fs_info); | 
|  | btrfs_close_devices(fs_info->fs_devices); | 
|  | return err; | 
|  |  | 
|  | recovery_tree_root: | 
|  | if (!btrfs_test_opt(tree_root, RECOVERY)) | 
|  | goto fail_tree_roots; | 
|  |  | 
|  | free_root_pointers(fs_info, 0); | 
|  |  | 
|  | /* don't use the log in recovery mode, it won't be valid */ | 
|  | btrfs_set_super_log_root(disk_super, 0); | 
|  |  | 
|  | /* we can't trust the free space cache either */ | 
|  | btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); | 
|  |  | 
|  | ret = next_root_backup(fs_info, fs_info->super_copy, | 
|  | &num_backups_tried, &backup_index); | 
|  | if (ret == -1) | 
|  | goto fail_block_groups; | 
|  | goto retry_root_backup; | 
|  | } | 
|  |  | 
|  | static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | if (uptodate) { | 
|  | set_buffer_uptodate(bh); | 
|  | } else { | 
|  | struct btrfs_device *device = (struct btrfs_device *) | 
|  | bh->b_private; | 
|  |  | 
|  | printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " | 
|  | "I/O error on %s\n", | 
|  | rcu_str_deref(device->name)); | 
|  | /* note, we dont' set_buffer_write_io_error because we have | 
|  | * our own ways of dealing with the IO errors | 
|  | */ | 
|  | clear_buffer_uptodate(bh); | 
|  | btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | } | 
|  | unlock_buffer(bh); | 
|  | put_bh(bh); | 
|  | } | 
|  |  | 
|  | struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | struct buffer_head *latest = NULL; | 
|  | struct btrfs_super_block *super; | 
|  | int i; | 
|  | u64 transid = 0; | 
|  | u64 bytenr; | 
|  |  | 
|  | /* we would like to check all the supers, but that would make | 
|  | * a btrfs mount succeed after a mkfs from a different FS. | 
|  | * So, we need to add a special mount option to scan for | 
|  | * later supers, using BTRFS_SUPER_MIRROR_MAX instead | 
|  | */ | 
|  | for (i = 0; i < 1; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE >= | 
|  | i_size_read(bdev->bd_inode)) | 
|  | break; | 
|  | bh = __bread(bdev, bytenr / 4096, | 
|  | BTRFS_SUPER_INFO_SIZE); | 
|  | if (!bh) | 
|  | continue; | 
|  |  | 
|  | super = (struct btrfs_super_block *)bh->b_data; | 
|  | if (btrfs_super_bytenr(super) != bytenr || | 
|  | btrfs_super_magic(super) != BTRFS_MAGIC) { | 
|  | brelse(bh); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!latest || btrfs_super_generation(super) > transid) { | 
|  | brelse(latest); | 
|  | latest = bh; | 
|  | transid = btrfs_super_generation(super); | 
|  | } else { | 
|  | brelse(bh); | 
|  | } | 
|  | } | 
|  | return latest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this should be called twice, once with wait == 0 and | 
|  | * once with wait == 1.  When wait == 0 is done, all the buffer heads | 
|  | * we write are pinned. | 
|  | * | 
|  | * They are released when wait == 1 is done. | 
|  | * max_mirrors must be the same for both runs, and it indicates how | 
|  | * many supers on this one device should be written. | 
|  | * | 
|  | * max_mirrors == 0 means to write them all. | 
|  | */ | 
|  | static int write_dev_supers(struct btrfs_device *device, | 
|  | struct btrfs_super_block *sb, | 
|  | int do_barriers, int wait, int max_mirrors) | 
|  | { | 
|  | struct buffer_head *bh; | 
|  | int i; | 
|  | int ret; | 
|  | int errors = 0; | 
|  | u32 crc; | 
|  | u64 bytenr; | 
|  |  | 
|  | if (max_mirrors == 0) | 
|  | max_mirrors = BTRFS_SUPER_MIRROR_MAX; | 
|  |  | 
|  | for (i = 0; i < max_mirrors; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) | 
|  | break; | 
|  |  | 
|  | if (wait) { | 
|  | bh = __find_get_block(device->bdev, bytenr / 4096, | 
|  | BTRFS_SUPER_INFO_SIZE); | 
|  | if (!bh) { | 
|  | errors++; | 
|  | continue; | 
|  | } | 
|  | wait_on_buffer(bh); | 
|  | if (!buffer_uptodate(bh)) | 
|  | errors++; | 
|  |  | 
|  | /* drop our reference */ | 
|  | brelse(bh); | 
|  |  | 
|  | /* drop the reference from the wait == 0 run */ | 
|  | brelse(bh); | 
|  | continue; | 
|  | } else { | 
|  | btrfs_set_super_bytenr(sb, bytenr); | 
|  |  | 
|  | crc = ~(u32)0; | 
|  | crc = btrfs_csum_data((char *)sb + | 
|  | BTRFS_CSUM_SIZE, crc, | 
|  | BTRFS_SUPER_INFO_SIZE - | 
|  | BTRFS_CSUM_SIZE); | 
|  | btrfs_csum_final(crc, sb->csum); | 
|  |  | 
|  | /* | 
|  | * one reference for us, and we leave it for the | 
|  | * caller | 
|  | */ | 
|  | bh = __getblk(device->bdev, bytenr / 4096, | 
|  | BTRFS_SUPER_INFO_SIZE); | 
|  | if (!bh) { | 
|  | printk(KERN_ERR "BTRFS: couldn't get super " | 
|  | "buffer head for bytenr %Lu\n", bytenr); | 
|  | errors++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); | 
|  |  | 
|  | /* one reference for submit_bh */ | 
|  | get_bh(bh); | 
|  |  | 
|  | set_buffer_uptodate(bh); | 
|  | lock_buffer(bh); | 
|  | bh->b_end_io = btrfs_end_buffer_write_sync; | 
|  | bh->b_private = device; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we fua the first super.  The others we allow | 
|  | * to go down lazy. | 
|  | */ | 
|  | if (i == 0) | 
|  | ret = btrfsic_submit_bh(WRITE_FUA, bh); | 
|  | else | 
|  | ret = btrfsic_submit_bh(WRITE_SYNC, bh); | 
|  | if (ret) | 
|  | errors++; | 
|  | } | 
|  | return errors < i ? 0 : -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * endio for the write_dev_flush, this will wake anyone waiting | 
|  | * for the barrier when it is done | 
|  | */ | 
|  | static void btrfs_end_empty_barrier(struct bio *bio, int err) | 
|  | { | 
|  | if (err) { | 
|  | if (err == -EOPNOTSUPP) | 
|  | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | 
|  | clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | } | 
|  | if (bio->bi_private) | 
|  | complete(bio->bi_private); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * trigger flushes for one the devices.  If you pass wait == 0, the flushes are | 
|  | * sent down.  With wait == 1, it waits for the previous flush. | 
|  | * | 
|  | * any device where the flush fails with eopnotsupp are flagged as not-barrier | 
|  | * capable | 
|  | */ | 
|  | static int write_dev_flush(struct btrfs_device *device, int wait) | 
|  | { | 
|  | struct bio *bio; | 
|  | int ret = 0; | 
|  |  | 
|  | if (device->nobarriers) | 
|  | return 0; | 
|  |  | 
|  | if (wait) { | 
|  | bio = device->flush_bio; | 
|  | if (!bio) | 
|  | return 0; | 
|  |  | 
|  | wait_for_completion(&device->flush_wait); | 
|  |  | 
|  | if (bio_flagged(bio, BIO_EOPNOTSUPP)) { | 
|  | printk_in_rcu("BTRFS: disabling barriers on dev %s\n", | 
|  | rcu_str_deref(device->name)); | 
|  | device->nobarriers = 1; | 
|  | } else if (!bio_flagged(bio, BIO_UPTODATE)) { | 
|  | ret = -EIO; | 
|  | btrfs_dev_stat_inc_and_print(device, | 
|  | BTRFS_DEV_STAT_FLUSH_ERRS); | 
|  | } | 
|  |  | 
|  | /* drop the reference from the wait == 0 run */ | 
|  | bio_put(bio); | 
|  | device->flush_bio = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * one reference for us, and we leave it for the | 
|  | * caller | 
|  | */ | 
|  | device->flush_bio = NULL; | 
|  | bio = btrfs_io_bio_alloc(GFP_NOFS, 0); | 
|  | if (!bio) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bio->bi_end_io = btrfs_end_empty_barrier; | 
|  | bio->bi_bdev = device->bdev; | 
|  | init_completion(&device->flush_wait); | 
|  | bio->bi_private = &device->flush_wait; | 
|  | device->flush_bio = bio; | 
|  |  | 
|  | bio_get(bio); | 
|  | btrfsic_submit_bio(WRITE_FLUSH, bio); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send an empty flush down to each device in parallel, | 
|  | * then wait for them | 
|  | */ | 
|  | static int barrier_all_devices(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head; | 
|  | struct btrfs_device *dev; | 
|  | int errors_send = 0; | 
|  | int errors_wait = 0; | 
|  | int ret; | 
|  |  | 
|  | /* send down all the barriers */ | 
|  | head = &info->fs_devices->devices; | 
|  | list_for_each_entry_rcu(dev, head, dev_list) { | 
|  | if (!dev->bdev) { | 
|  | errors_send++; | 
|  | continue; | 
|  | } | 
|  | if (!dev->in_fs_metadata || !dev->writeable) | 
|  | continue; | 
|  |  | 
|  | ret = write_dev_flush(dev, 0); | 
|  | if (ret) | 
|  | errors_send++; | 
|  | } | 
|  |  | 
|  | /* wait for all the barriers */ | 
|  | list_for_each_entry_rcu(dev, head, dev_list) { | 
|  | if (!dev->bdev) { | 
|  | errors_wait++; | 
|  | continue; | 
|  | } | 
|  | if (!dev->in_fs_metadata || !dev->writeable) | 
|  | continue; | 
|  |  | 
|  | ret = write_dev_flush(dev, 1); | 
|  | if (ret) | 
|  | errors_wait++; | 
|  | } | 
|  | if (errors_send > info->num_tolerated_disk_barrier_failures || | 
|  | errors_wait > info->num_tolerated_disk_barrier_failures) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_calc_num_tolerated_disk_barrier_failures( | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_ioctl_space_info space; | 
|  | struct btrfs_space_info *sinfo; | 
|  | u64 types[] = {BTRFS_BLOCK_GROUP_DATA, | 
|  | BTRFS_BLOCK_GROUP_SYSTEM, | 
|  | BTRFS_BLOCK_GROUP_METADATA, | 
|  | BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; | 
|  | int num_types = 4; | 
|  | int i; | 
|  | int c; | 
|  | int num_tolerated_disk_barrier_failures = | 
|  | (int)fs_info->fs_devices->num_devices; | 
|  |  | 
|  | for (i = 0; i < num_types; i++) { | 
|  | struct btrfs_space_info *tmp; | 
|  |  | 
|  | sinfo = NULL; | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { | 
|  | if (tmp->flags == types[i]) { | 
|  | sinfo = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!sinfo) | 
|  | continue; | 
|  |  | 
|  | down_read(&sinfo->groups_sem); | 
|  | for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { | 
|  | if (!list_empty(&sinfo->block_groups[c])) { | 
|  | u64 flags; | 
|  |  | 
|  | btrfs_get_block_group_info( | 
|  | &sinfo->block_groups[c], &space); | 
|  | if (space.total_bytes == 0 || | 
|  | space.used_bytes == 0) | 
|  | continue; | 
|  | flags = space.flags; | 
|  | /* | 
|  | * return | 
|  | * 0: if dup, single or RAID0 is configured for | 
|  | *    any of metadata, system or data, else | 
|  | * 1: if RAID5 is configured, or if RAID1 or | 
|  | *    RAID10 is configured and only two mirrors | 
|  | *    are used, else | 
|  | * 2: if RAID6 is configured, else | 
|  | * num_mirrors - 1: if RAID1 or RAID10 is | 
|  | *                  configured and more than | 
|  | *                  2 mirrors are used. | 
|  | */ | 
|  | if (num_tolerated_disk_barrier_failures > 0 && | 
|  | ((flags & (BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID0)) || | 
|  | ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) | 
|  | == 0))) | 
|  | num_tolerated_disk_barrier_failures = 0; | 
|  | else if (num_tolerated_disk_barrier_failures > 1) { | 
|  | if (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) { | 
|  | num_tolerated_disk_barrier_failures = 1; | 
|  | } else if (flags & | 
|  | BTRFS_BLOCK_GROUP_RAID6) { | 
|  | num_tolerated_disk_barrier_failures = 2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | up_read(&sinfo->groups_sem); | 
|  | } | 
|  |  | 
|  | return num_tolerated_disk_barrier_failures; | 
|  | } | 
|  |  | 
|  | static int write_all_supers(struct btrfs_root *root, int max_mirrors) | 
|  | { | 
|  | struct list_head *head; | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_super_block *sb; | 
|  | struct btrfs_dev_item *dev_item; | 
|  | int ret; | 
|  | int do_barriers; | 
|  | int max_errors; | 
|  | int total_errors = 0; | 
|  | u64 flags; | 
|  |  | 
|  | do_barriers = !btrfs_test_opt(root, NOBARRIER); | 
|  | backup_super_roots(root->fs_info); | 
|  |  | 
|  | sb = root->fs_info->super_for_commit; | 
|  | dev_item = &sb->dev_item; | 
|  |  | 
|  | mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | head = &root->fs_info->fs_devices->devices; | 
|  | max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; | 
|  |  | 
|  | if (do_barriers) { | 
|  | ret = barrier_all_devices(root->fs_info); | 
|  | if (ret) { | 
|  | mutex_unlock( | 
|  | &root->fs_info->fs_devices->device_list_mutex); | 
|  | btrfs_error(root->fs_info, ret, | 
|  | "errors while submitting device barriers."); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry_rcu(dev, head, dev_list) { | 
|  | if (!dev->bdev) { | 
|  | total_errors++; | 
|  | continue; | 
|  | } | 
|  | if (!dev->in_fs_metadata || !dev->writeable) | 
|  | continue; | 
|  |  | 
|  | btrfs_set_stack_device_generation(dev_item, 0); | 
|  | btrfs_set_stack_device_type(dev_item, dev->type); | 
|  | btrfs_set_stack_device_id(dev_item, dev->devid); | 
|  | btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); | 
|  | btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); | 
|  | btrfs_set_stack_device_io_align(dev_item, dev->io_align); | 
|  | btrfs_set_stack_device_io_width(dev_item, dev->io_width); | 
|  | btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); | 
|  | memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); | 
|  | memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); | 
|  |  | 
|  | flags = btrfs_super_flags(sb); | 
|  | btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); | 
|  |  | 
|  | ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); | 
|  | if (ret) | 
|  | total_errors++; | 
|  | } | 
|  | if (total_errors > max_errors) { | 
|  | btrfs_err(root->fs_info, "%d errors while writing supers", | 
|  | total_errors); | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | /* FUA is masked off if unsupported and can't be the reason */ | 
|  | btrfs_error(root->fs_info, -EIO, | 
|  | "%d errors while writing supers", total_errors); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | total_errors = 0; | 
|  | list_for_each_entry_rcu(dev, head, dev_list) { | 
|  | if (!dev->bdev) | 
|  | continue; | 
|  | if (!dev->in_fs_metadata || !dev->writeable) | 
|  | continue; | 
|  |  | 
|  | ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); | 
|  | if (ret) | 
|  | total_errors++; | 
|  | } | 
|  | mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
|  | if (total_errors > max_errors) { | 
|  | btrfs_error(root->fs_info, -EIO, | 
|  | "%d errors while writing supers", total_errors); | 
|  | return -EIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int write_ctree_super(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, int max_mirrors) | 
|  | { | 
|  | return write_all_supers(root, max_mirrors); | 
|  | } | 
|  |  | 
|  | /* Drop a fs root from the radix tree and free it. */ | 
|  | void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | spin_lock(&fs_info->fs_roots_radix_lock); | 
|  | radix_tree_delete(&fs_info->fs_roots_radix, | 
|  | (unsigned long)root->root_key.objectid); | 
|  | spin_unlock(&fs_info->fs_roots_radix_lock); | 
|  |  | 
|  | if (btrfs_root_refs(&root->root_item) == 0) | 
|  | synchronize_srcu(&fs_info->subvol_srcu); | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | btrfs_free_log(NULL, root); | 
|  |  | 
|  | __btrfs_remove_free_space_cache(root->free_ino_pinned); | 
|  | __btrfs_remove_free_space_cache(root->free_ino_ctl); | 
|  | free_fs_root(root); | 
|  | } | 
|  |  | 
|  | static void free_fs_root(struct btrfs_root *root) | 
|  | { | 
|  | iput(root->cache_inode); | 
|  | WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); | 
|  | btrfs_free_block_rsv(root, root->orphan_block_rsv); | 
|  | root->orphan_block_rsv = NULL; | 
|  | if (root->anon_dev) | 
|  | free_anon_bdev(root->anon_dev); | 
|  | free_extent_buffer(root->node); | 
|  | free_extent_buffer(root->commit_root); | 
|  | kfree(root->free_ino_ctl); | 
|  | kfree(root->free_ino_pinned); | 
|  | kfree(root->name); | 
|  | btrfs_put_fs_root(root); | 
|  | } | 
|  |  | 
|  | void btrfs_free_fs_root(struct btrfs_root *root) | 
|  | { | 
|  | free_fs_root(root); | 
|  | } | 
|  |  | 
|  | int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u64 root_objectid = 0; | 
|  | struct btrfs_root *gang[8]; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | while (1) { | 
|  | ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, | 
|  | (void **)gang, root_objectid, | 
|  | ARRAY_SIZE(gang)); | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | root_objectid = gang[ret - 1]->root_key.objectid + 1; | 
|  | for (i = 0; i < ret; i++) { | 
|  | int err; | 
|  |  | 
|  | root_objectid = gang[i]->root_key.objectid; | 
|  | err = btrfs_orphan_cleanup(gang[i]); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | root_objectid++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_commit_super(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | mutex_lock(&root->fs_info->cleaner_mutex); | 
|  | btrfs_run_delayed_iputs(root); | 
|  | mutex_unlock(&root->fs_info->cleaner_mutex); | 
|  | wake_up_process(root->fs_info->cleaner_kthread); | 
|  |  | 
|  | /* wait until ongoing cleanup work done */ | 
|  | down_write(&root->fs_info->cleanup_work_sem); | 
|  | up_write(&root->fs_info->cleanup_work_sem); | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  | return btrfs_commit_transaction(trans, root); | 
|  | } | 
|  |  | 
|  | int close_ctree(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  |  | 
|  | fs_info->closing = 1; | 
|  | smp_mb(); | 
|  |  | 
|  | /* wait for the uuid_scan task to finish */ | 
|  | down(&fs_info->uuid_tree_rescan_sem); | 
|  | /* avoid complains from lockdep et al., set sem back to initial state */ | 
|  | up(&fs_info->uuid_tree_rescan_sem); | 
|  |  | 
|  | /* pause restriper - we want to resume on mount */ | 
|  | btrfs_pause_balance(fs_info); | 
|  |  | 
|  | btrfs_dev_replace_suspend_for_unmount(fs_info); | 
|  |  | 
|  | btrfs_scrub_cancel(fs_info); | 
|  |  | 
|  | /* wait for any defraggers to finish */ | 
|  | wait_event(fs_info->transaction_wait, | 
|  | (atomic_read(&fs_info->defrag_running) == 0)); | 
|  |  | 
|  | /* clear out the rbtree of defraggable inodes */ | 
|  | btrfs_cleanup_defrag_inodes(fs_info); | 
|  |  | 
|  | if (!(fs_info->sb->s_flags & MS_RDONLY)) { | 
|  | ret = btrfs_commit_super(root); | 
|  | if (ret) | 
|  | btrfs_err(root->fs_info, "commit super ret %d", ret); | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | btrfs_error_commit_super(root); | 
|  |  | 
|  | kthread_stop(fs_info->transaction_kthread); | 
|  | kthread_stop(fs_info->cleaner_kthread); | 
|  |  | 
|  | fs_info->closing = 2; | 
|  | smp_mb(); | 
|  |  | 
|  | btrfs_free_qgroup_config(root->fs_info); | 
|  |  | 
|  | if (percpu_counter_sum(&fs_info->delalloc_bytes)) { | 
|  | btrfs_info(root->fs_info, "at unmount delalloc count %lld", | 
|  | percpu_counter_sum(&fs_info->delalloc_bytes)); | 
|  | } | 
|  |  | 
|  | btrfs_sysfs_remove_one(fs_info); | 
|  |  | 
|  | del_fs_roots(fs_info); | 
|  |  | 
|  | btrfs_put_block_group_cache(fs_info); | 
|  |  | 
|  | btrfs_free_block_groups(fs_info); | 
|  |  | 
|  | btrfs_stop_all_workers(fs_info); | 
|  |  | 
|  | free_root_pointers(fs_info, 1); | 
|  |  | 
|  | iput(fs_info->btree_inode); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
|  | if (btrfs_test_opt(root, CHECK_INTEGRITY)) | 
|  | btrfsic_unmount(root, fs_info->fs_devices); | 
|  | #endif | 
|  |  | 
|  | btrfs_close_devices(fs_info->fs_devices); | 
|  | btrfs_mapping_tree_free(&fs_info->mapping_tree); | 
|  |  | 
|  | percpu_counter_destroy(&fs_info->dirty_metadata_bytes); | 
|  | percpu_counter_destroy(&fs_info->delalloc_bytes); | 
|  | bdi_destroy(&fs_info->bdi); | 
|  | cleanup_srcu_struct(&fs_info->subvol_srcu); | 
|  |  | 
|  | btrfs_free_stripe_hash_table(fs_info); | 
|  |  | 
|  | btrfs_free_block_rsv(root, root->orphan_block_rsv); | 
|  | root->orphan_block_rsv = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, | 
|  | int atomic) | 
|  | { | 
|  | int ret; | 
|  | struct inode *btree_inode = buf->pages[0]->mapping->host; | 
|  |  | 
|  | ret = extent_buffer_uptodate(buf); | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, | 
|  | parent_transid, atomic); | 
|  | if (ret == -EAGAIN) | 
|  | return ret; | 
|  | return !ret; | 
|  | } | 
|  |  | 
|  | int btrfs_set_buffer_uptodate(struct extent_buffer *buf) | 
|  | { | 
|  | return set_extent_buffer_uptodate(buf); | 
|  | } | 
|  |  | 
|  | void btrfs_mark_buffer_dirty(struct extent_buffer *buf) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | u64 transid = btrfs_header_generation(buf); | 
|  | int was_dirty; | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | /* | 
|  | * This is a fast path so only do this check if we have sanity tests | 
|  | * enabled.  Normal people shouldn't be marking dummy buffers as dirty | 
|  | * outside of the sanity tests. | 
|  | */ | 
|  | if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) | 
|  | return; | 
|  | #endif | 
|  | root = BTRFS_I(buf->pages[0]->mapping->host)->root; | 
|  | btrfs_assert_tree_locked(buf); | 
|  | if (transid != root->fs_info->generation) | 
|  | WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " | 
|  | "found %llu running %llu\n", | 
|  | buf->start, transid, root->fs_info->generation); | 
|  | was_dirty = set_extent_buffer_dirty(buf); | 
|  | if (!was_dirty) | 
|  | __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, | 
|  | buf->len, | 
|  | root->fs_info->dirty_metadata_batch); | 
|  | } | 
|  |  | 
|  | static void __btrfs_btree_balance_dirty(struct btrfs_root *root, | 
|  | int flush_delayed) | 
|  | { | 
|  | /* | 
|  | * looks as though older kernels can get into trouble with | 
|  | * this code, they end up stuck in balance_dirty_pages forever | 
|  | */ | 
|  | int ret; | 
|  |  | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | return; | 
|  |  | 
|  | if (flush_delayed) | 
|  | btrfs_balance_delayed_items(root); | 
|  |  | 
|  | ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, | 
|  | BTRFS_DIRTY_METADATA_THRESH); | 
|  | if (ret > 0) { | 
|  | balance_dirty_pages_ratelimited( | 
|  | root->fs_info->btree_inode->i_mapping); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | void btrfs_btree_balance_dirty(struct btrfs_root *root) | 
|  | { | 
|  | __btrfs_btree_balance_dirty(root, 1); | 
|  | } | 
|  |  | 
|  | void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) | 
|  | { | 
|  | __btrfs_btree_balance_dirty(root, 0); | 
|  | } | 
|  |  | 
|  | int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; | 
|  | return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); | 
|  | } | 
|  |  | 
|  | static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, | 
|  | int read_only) | 
|  | { | 
|  | /* | 
|  | * Placeholder for checks | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_error_commit_super(struct btrfs_root *root) | 
|  | { | 
|  | mutex_lock(&root->fs_info->cleaner_mutex); | 
|  | btrfs_run_delayed_iputs(root); | 
|  | mutex_unlock(&root->fs_info->cleaner_mutex); | 
|  |  | 
|  | down_write(&root->fs_info->cleanup_work_sem); | 
|  | up_write(&root->fs_info->cleanup_work_sem); | 
|  |  | 
|  | /* cleanup FS via transaction */ | 
|  | btrfs_cleanup_transaction(root); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_inode *btrfs_inode; | 
|  | struct list_head splice; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | mutex_lock(&root->fs_info->ordered_operations_mutex); | 
|  | spin_lock(&root->fs_info->ordered_root_lock); | 
|  |  | 
|  | list_splice_init(&t->ordered_operations, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | btrfs_inode = list_entry(splice.next, struct btrfs_inode, | 
|  | ordered_operations); | 
|  |  | 
|  | list_del_init(&btrfs_inode->ordered_operations); | 
|  | spin_unlock(&root->fs_info->ordered_root_lock); | 
|  |  | 
|  | btrfs_invalidate_inodes(btrfs_inode->root); | 
|  |  | 
|  | spin_lock(&root->fs_info->ordered_root_lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(&root->fs_info->ordered_root_lock); | 
|  | mutex_unlock(&root->fs_info->ordered_operations_mutex); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_ordered_extents(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_ordered_extent *ordered; | 
|  |  | 
|  | spin_lock(&root->ordered_extent_lock); | 
|  | /* | 
|  | * This will just short circuit the ordered completion stuff which will | 
|  | * make sure the ordered extent gets properly cleaned up. | 
|  | */ | 
|  | list_for_each_entry(ordered, &root->ordered_extents, | 
|  | root_extent_list) | 
|  | set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); | 
|  | spin_unlock(&root->ordered_extent_lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct list_head splice; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | spin_lock(&fs_info->ordered_root_lock); | 
|  | list_splice_init(&fs_info->ordered_roots, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | ordered_root); | 
|  | list_move_tail(&root->ordered_root, | 
|  | &fs_info->ordered_roots); | 
|  |  | 
|  | btrfs_destroy_ordered_extents(root); | 
|  |  | 
|  | cond_resched_lock(&fs_info->ordered_root_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->ordered_root_lock); | 
|  | } | 
|  |  | 
|  | static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_refs = &trans->delayed_refs; | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | if (atomic_read(&delayed_refs->num_entries) == 0) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_info(root->fs_info, "delayed_refs has NO entry"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | while ((node = rb_first(&delayed_refs->href_root)) != NULL) { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | bool pin_bytes = false; | 
|  |  | 
|  | head = rb_entry(node, struct btrfs_delayed_ref_head, | 
|  | href_node); | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | atomic_inc(&head->node.refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | continue; | 
|  | } | 
|  | spin_lock(&head->lock); | 
|  | while ((node = rb_first(&head->ref_root)) != NULL) { | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, | 
|  | rb_node); | 
|  | ref->in_tree = 0; | 
|  | rb_erase(&ref->rb_node, &head->ref_root); | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  | btrfs_put_delayed_ref(ref); | 
|  | } | 
|  | if (head->must_insert_reserved) | 
|  | pin_bytes = true; | 
|  | btrfs_free_delayed_extent_op(head->extent_op); | 
|  | delayed_refs->num_heads--; | 
|  | if (head->processing == 0) | 
|  | delayed_refs->num_heads_ready--; | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  | head->node.in_tree = 0; | 
|  | rb_erase(&head->href_node, &delayed_refs->href_root); | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | mutex_unlock(&head->mutex); | 
|  |  | 
|  | if (pin_bytes) | 
|  | btrfs_pin_extent(root, head->node.bytenr, | 
|  | head->node.num_bytes, 1); | 
|  | btrfs_put_delayed_ref(&head->node); | 
|  | cond_resched(); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_inode *btrfs_inode; | 
|  | struct list_head splice; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | spin_lock(&root->delalloc_lock); | 
|  | list_splice_init(&root->delalloc_inodes, &splice); | 
|  |  | 
|  | while (!list_empty(&splice)) { | 
|  | btrfs_inode = list_first_entry(&splice, struct btrfs_inode, | 
|  | delalloc_inodes); | 
|  |  | 
|  | list_del_init(&btrfs_inode->delalloc_inodes); | 
|  | clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
|  | &btrfs_inode->runtime_flags); | 
|  | spin_unlock(&root->delalloc_lock); | 
|  |  | 
|  | btrfs_invalidate_inodes(btrfs_inode->root); | 
|  |  | 
|  | spin_lock(&root->delalloc_lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(&root->delalloc_lock); | 
|  | } | 
|  |  | 
|  | static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_root *root; | 
|  | struct list_head splice; | 
|  |  | 
|  | INIT_LIST_HEAD(&splice); | 
|  |  | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | list_splice_init(&fs_info->delalloc_roots, &splice); | 
|  | while (!list_empty(&splice)) { | 
|  | root = list_first_entry(&splice, struct btrfs_root, | 
|  | delalloc_root); | 
|  | list_del_init(&root->delalloc_root); | 
|  | root = btrfs_grab_fs_root(root); | 
|  | BUG_ON(!root); | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  |  | 
|  | btrfs_destroy_delalloc_inodes(root); | 
|  | btrfs_put_fs_root(root); | 
|  |  | 
|  | spin_lock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->delalloc_root_lock); | 
|  | } | 
|  |  | 
|  | static int btrfs_destroy_marked_extents(struct btrfs_root *root, | 
|  | struct extent_io_tree *dirty_pages, | 
|  | int mark) | 
|  | { | 
|  | int ret; | 
|  | struct extent_buffer *eb; | 
|  | u64 start = 0; | 
|  | u64 end; | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_extent_bit(dirty_pages, start, &start, &end, | 
|  | mark, NULL); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); | 
|  | while (start <= end) { | 
|  | eb = btrfs_find_tree_block(root, start, | 
|  | root->leafsize); | 
|  | start += root->leafsize; | 
|  | if (!eb) | 
|  | continue; | 
|  | wait_on_extent_buffer_writeback(eb); | 
|  |  | 
|  | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, | 
|  | &eb->bflags)) | 
|  | clear_extent_buffer_dirty(eb); | 
|  | free_extent_buffer_stale(eb); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_destroy_pinned_extent(struct btrfs_root *root, | 
|  | struct extent_io_tree *pinned_extents) | 
|  | { | 
|  | struct extent_io_tree *unpin; | 
|  | u64 start; | 
|  | u64 end; | 
|  | int ret; | 
|  | bool loop = true; | 
|  |  | 
|  | unpin = pinned_extents; | 
|  | again: | 
|  | while (1) { | 
|  | ret = find_first_extent_bit(unpin, 0, &start, &end, | 
|  | EXTENT_DIRTY, NULL); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* opt_discard */ | 
|  | if (btrfs_test_opt(root, DISCARD)) | 
|  | ret = btrfs_error_discard_extent(root, start, | 
|  | end + 1 - start, | 
|  | NULL); | 
|  |  | 
|  | clear_extent_dirty(unpin, start, end, GFP_NOFS); | 
|  | btrfs_error_unpin_extent_range(root, start, end); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | if (loop) { | 
|  | if (unpin == &root->fs_info->freed_extents[0]) | 
|  | unpin = &root->fs_info->freed_extents[1]; | 
|  | else | 
|  | unpin = &root->fs_info->freed_extents[0]; | 
|  | loop = false; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, | 
|  | struct btrfs_root *root) | 
|  | { | 
|  | btrfs_destroy_ordered_operations(cur_trans, root); | 
|  |  | 
|  | btrfs_destroy_delayed_refs(cur_trans, root); | 
|  |  | 
|  | cur_trans->state = TRANS_STATE_COMMIT_START; | 
|  | wake_up(&root->fs_info->transaction_blocked_wait); | 
|  |  | 
|  | cur_trans->state = TRANS_STATE_UNBLOCKED; | 
|  | wake_up(&root->fs_info->transaction_wait); | 
|  |  | 
|  | btrfs_destroy_delayed_inodes(root); | 
|  | btrfs_assert_delayed_root_empty(root); | 
|  |  | 
|  | btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, | 
|  | EXTENT_DIRTY); | 
|  | btrfs_destroy_pinned_extent(root, | 
|  | root->fs_info->pinned_extents); | 
|  |  | 
|  | cur_trans->state =TRANS_STATE_COMPLETED; | 
|  | wake_up(&cur_trans->commit_wait); | 
|  |  | 
|  | /* | 
|  | memset(cur_trans, 0, sizeof(*cur_trans)); | 
|  | kmem_cache_free(btrfs_transaction_cachep, cur_trans); | 
|  | */ | 
|  | } | 
|  |  | 
|  | static int btrfs_cleanup_transaction(struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_transaction *t; | 
|  |  | 
|  | mutex_lock(&root->fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | while (!list_empty(&root->fs_info->trans_list)) { | 
|  | t = list_first_entry(&root->fs_info->trans_list, | 
|  | struct btrfs_transaction, list); | 
|  | if (t->state >= TRANS_STATE_COMMIT_START) { | 
|  | atomic_inc(&t->use_count); | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | btrfs_wait_for_commit(root, t->transid); | 
|  | btrfs_put_transaction(t); | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | continue; | 
|  | } | 
|  | if (t == root->fs_info->running_transaction) { | 
|  | t->state = TRANS_STATE_COMMIT_DOING; | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | /* | 
|  | * We wait for 0 num_writers since we don't hold a trans | 
|  | * handle open currently for this transaction. | 
|  | */ | 
|  | wait_event(t->writer_wait, | 
|  | atomic_read(&t->num_writers) == 0); | 
|  | } else { | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | } | 
|  | btrfs_cleanup_one_transaction(t, root); | 
|  |  | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | if (t == root->fs_info->running_transaction) | 
|  | root->fs_info->running_transaction = NULL; | 
|  | list_del_init(&t->list); | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  |  | 
|  | btrfs_put_transaction(t); | 
|  | trace_btrfs_transaction_commit(root); | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | } | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | btrfs_destroy_all_ordered_extents(root->fs_info); | 
|  | btrfs_destroy_delayed_inodes(root); | 
|  | btrfs_assert_delayed_root_empty(root); | 
|  | btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); | 
|  | btrfs_destroy_all_delalloc_inodes(root->fs_info); | 
|  | mutex_unlock(&root->fs_info->transaction_kthread_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct extent_io_ops btree_extent_io_ops = { | 
|  | .readpage_end_io_hook = btree_readpage_end_io_hook, | 
|  | .readpage_io_failed_hook = btree_io_failed_hook, | 
|  | .submit_bio_hook = btree_submit_bio_hook, | 
|  | /* note we're sharing with inode.c for the merge bio hook */ | 
|  | .merge_bio_hook = btrfs_merge_bio_hook, | 
|  | }; |