| /* |
| * This file is part of the Chelsio T4 Ethernet driver for Linux. |
| * |
| * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/skbuff.h> |
| #include <linux/netdevice.h> |
| #include <linux/if.h> |
| #include <linux/if_vlan.h> |
| #include <linux/jhash.h> |
| #include <linux/module.h> |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| #include <net/neighbour.h> |
| #include "cxgb4.h" |
| #include "l2t.h" |
| #include "t4_msg.h" |
| #include "t4fw_api.h" |
| #include "t4_regs.h" |
| #include "t4_values.h" |
| |
| /* identifies sync vs async L2T_WRITE_REQs */ |
| #define SYNC_WR_S 12 |
| #define SYNC_WR_V(x) ((x) << SYNC_WR_S) |
| #define SYNC_WR_F SYNC_WR_V(1) |
| |
| struct l2t_data { |
| unsigned int l2t_start; /* start index of our piece of the L2T */ |
| unsigned int l2t_size; /* number of entries in l2tab */ |
| rwlock_t lock; |
| atomic_t nfree; /* number of free entries */ |
| struct l2t_entry *rover; /* starting point for next allocation */ |
| struct l2t_entry l2tab[0]; /* MUST BE LAST */ |
| }; |
| |
| static inline unsigned int vlan_prio(const struct l2t_entry *e) |
| { |
| return e->vlan >> VLAN_PRIO_SHIFT; |
| } |
| |
| static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) |
| { |
| if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ |
| atomic_dec(&d->nfree); |
| } |
| |
| /* |
| * To avoid having to check address families we do not allow v4 and v6 |
| * neighbors to be on the same hash chain. We keep v4 entries in the first |
| * half of available hash buckets and v6 in the second. We need at least two |
| * entries in our L2T for this scheme to work. |
| */ |
| enum { |
| L2T_MIN_HASH_BUCKETS = 2, |
| }; |
| |
| static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key, |
| int ifindex) |
| { |
| unsigned int l2t_size_half = d->l2t_size / 2; |
| |
| return jhash_2words(*key, ifindex, 0) % l2t_size_half; |
| } |
| |
| static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key, |
| int ifindex) |
| { |
| unsigned int l2t_size_half = d->l2t_size / 2; |
| u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; |
| |
| return (l2t_size_half + |
| (jhash_2words(xor, ifindex, 0) % l2t_size_half)); |
| } |
| |
| static unsigned int addr_hash(struct l2t_data *d, const u32 *addr, |
| int addr_len, int ifindex) |
| { |
| return addr_len == 4 ? arp_hash(d, addr, ifindex) : |
| ipv6_hash(d, addr, ifindex); |
| } |
| |
| /* |
| * Checks if an L2T entry is for the given IP/IPv6 address. It does not check |
| * whether the L2T entry and the address are of the same address family. |
| * Callers ensure an address is only checked against L2T entries of the same |
| * family, something made trivial by the separation of IP and IPv6 hash chains |
| * mentioned above. Returns 0 if there's a match, |
| */ |
| static int addreq(const struct l2t_entry *e, const u32 *addr) |
| { |
| if (e->v6) |
| return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | |
| (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); |
| return e->addr[0] ^ addr[0]; |
| } |
| |
| static void neigh_replace(struct l2t_entry *e, struct neighbour *n) |
| { |
| neigh_hold(n); |
| if (e->neigh) |
| neigh_release(e->neigh); |
| e->neigh = n; |
| } |
| |
| /* |
| * Write an L2T entry. Must be called with the entry locked. |
| * The write may be synchronous or asynchronous. |
| */ |
| static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) |
| { |
| struct l2t_data *d = adap->l2t; |
| unsigned int l2t_idx = e->idx + d->l2t_start; |
| struct sk_buff *skb; |
| struct cpl_l2t_write_req *req; |
| |
| skb = alloc_skb(sizeof(*req), GFP_ATOMIC); |
| if (!skb) |
| return -ENOMEM; |
| |
| req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); |
| INIT_TP_WR(req, 0); |
| |
| OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, |
| l2t_idx | (sync ? SYNC_WR_F : 0) | |
| TID_QID_V(adap->sge.fw_evtq.abs_id))); |
| req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync)); |
| req->l2t_idx = htons(l2t_idx); |
| req->vlan = htons(e->vlan); |
| if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK)) |
| memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); |
| memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); |
| |
| t4_mgmt_tx(adap, skb); |
| |
| if (sync && e->state != L2T_STATE_SWITCHING) |
| e->state = L2T_STATE_SYNC_WRITE; |
| return 0; |
| } |
| |
| /* |
| * Send packets waiting in an L2T entry's ARP queue. Must be called with the |
| * entry locked. |
| */ |
| static void send_pending(struct adapter *adap, struct l2t_entry *e) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = __skb_dequeue(&e->arpq)) != NULL) |
| t4_ofld_send(adap, skb); |
| } |
| |
| /* |
| * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a |
| * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T |
| * index it refers to. |
| */ |
| void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) |
| { |
| struct l2t_data *d = adap->l2t; |
| unsigned int tid = GET_TID(rpl); |
| unsigned int l2t_idx = tid % L2T_SIZE; |
| |
| if (unlikely(rpl->status != CPL_ERR_NONE)) { |
| dev_err(adap->pdev_dev, |
| "Unexpected L2T_WRITE_RPL status %u for entry %u\n", |
| rpl->status, l2t_idx); |
| return; |
| } |
| |
| if (tid & SYNC_WR_F) { |
| struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start]; |
| |
| spin_lock(&e->lock); |
| if (e->state != L2T_STATE_SWITCHING) { |
| send_pending(adap, e); |
| e->state = (e->neigh->nud_state & NUD_STALE) ? |
| L2T_STATE_STALE : L2T_STATE_VALID; |
| } |
| spin_unlock(&e->lock); |
| } |
| } |
| |
| /* |
| * Add a packet to an L2T entry's queue of packets awaiting resolution. |
| * Must be called with the entry's lock held. |
| */ |
| static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) |
| { |
| __skb_queue_tail(&e->arpq, skb); |
| } |
| |
| int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, |
| struct l2t_entry *e) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| |
| again: |
| switch (e->state) { |
| case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ |
| neigh_event_send(e->neigh, NULL); |
| spin_lock_bh(&e->lock); |
| if (e->state == L2T_STATE_STALE) |
| e->state = L2T_STATE_VALID; |
| spin_unlock_bh(&e->lock); |
| case L2T_STATE_VALID: /* fast-path, send the packet on */ |
| return t4_ofld_send(adap, skb); |
| case L2T_STATE_RESOLVING: |
| case L2T_STATE_SYNC_WRITE: |
| spin_lock_bh(&e->lock); |
| if (e->state != L2T_STATE_SYNC_WRITE && |
| e->state != L2T_STATE_RESOLVING) { |
| spin_unlock_bh(&e->lock); |
| goto again; |
| } |
| arpq_enqueue(e, skb); |
| spin_unlock_bh(&e->lock); |
| |
| if (e->state == L2T_STATE_RESOLVING && |
| !neigh_event_send(e->neigh, NULL)) { |
| spin_lock_bh(&e->lock); |
| if (e->state == L2T_STATE_RESOLVING && |
| !skb_queue_empty(&e->arpq)) |
| write_l2e(adap, e, 1); |
| spin_unlock_bh(&e->lock); |
| } |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(cxgb4_l2t_send); |
| |
| /* |
| * Allocate a free L2T entry. Must be called with l2t_data.lock held. |
| */ |
| static struct l2t_entry *alloc_l2e(struct l2t_data *d) |
| { |
| struct l2t_entry *end, *e, **p; |
| |
| if (!atomic_read(&d->nfree)) |
| return NULL; |
| |
| /* there's definitely a free entry */ |
| for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e) |
| if (atomic_read(&e->refcnt) == 0) |
| goto found; |
| |
| for (e = d->l2tab; atomic_read(&e->refcnt); ++e) |
| ; |
| found: |
| d->rover = e + 1; |
| atomic_dec(&d->nfree); |
| |
| /* |
| * The entry we found may be an inactive entry that is |
| * presently in the hash table. We need to remove it. |
| */ |
| if (e->state < L2T_STATE_SWITCHING) |
| for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) |
| if (*p == e) { |
| *p = e->next; |
| e->next = NULL; |
| break; |
| } |
| |
| e->state = L2T_STATE_UNUSED; |
| return e; |
| } |
| |
| static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan, |
| u8 port, u8 *dmac) |
| { |
| struct l2t_entry *end, *e, **p; |
| struct l2t_entry *first_free = NULL; |
| |
| for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) { |
| if (atomic_read(&e->refcnt) == 0) { |
| if (!first_free) |
| first_free = e; |
| } else { |
| if (e->state == L2T_STATE_SWITCHING) { |
| if (ether_addr_equal(e->dmac, dmac) && |
| (e->vlan == vlan) && (e->lport == port)) |
| goto exists; |
| } |
| } |
| } |
| |
| if (first_free) { |
| e = first_free; |
| goto found; |
| } |
| |
| return NULL; |
| |
| found: |
| /* The entry we found may be an inactive entry that is |
| * presently in the hash table. We need to remove it. |
| */ |
| if (e->state < L2T_STATE_SWITCHING) |
| for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) |
| if (*p == e) { |
| *p = e->next; |
| e->next = NULL; |
| break; |
| } |
| e->state = L2T_STATE_UNUSED; |
| |
| exists: |
| return e; |
| } |
| |
| /* Called when an L2T entry has no more users. The entry is left in the hash |
| * table since it is likely to be reused but we also bump nfree to indicate |
| * that the entry can be reallocated for a different neighbor. We also drop |
| * the existing neighbor reference in case the neighbor is going away and is |
| * waiting on our reference. |
| * |
| * Because entries can be reallocated to other neighbors once their ref count |
| * drops to 0 we need to take the entry's lock to avoid races with a new |
| * incarnation. |
| */ |
| static void _t4_l2e_free(struct l2t_entry *e) |
| { |
| struct l2t_data *d; |
| struct sk_buff *skb; |
| |
| if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ |
| if (e->neigh) { |
| neigh_release(e->neigh); |
| e->neigh = NULL; |
| } |
| while ((skb = __skb_dequeue(&e->arpq)) != NULL) |
| kfree_skb(skb); |
| } |
| |
| d = container_of(e, struct l2t_data, l2tab[e->idx]); |
| atomic_inc(&d->nfree); |
| } |
| |
| /* Locked version of _t4_l2e_free */ |
| static void t4_l2e_free(struct l2t_entry *e) |
| { |
| struct l2t_data *d; |
| struct sk_buff *skb; |
| |
| spin_lock_bh(&e->lock); |
| if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ |
| if (e->neigh) { |
| neigh_release(e->neigh); |
| e->neigh = NULL; |
| } |
| while ((skb = __skb_dequeue(&e->arpq)) != NULL) |
| kfree_skb(skb); |
| } |
| spin_unlock_bh(&e->lock); |
| |
| d = container_of(e, struct l2t_data, l2tab[e->idx]); |
| atomic_inc(&d->nfree); |
| } |
| |
| void cxgb4_l2t_release(struct l2t_entry *e) |
| { |
| if (atomic_dec_and_test(&e->refcnt)) |
| t4_l2e_free(e); |
| } |
| EXPORT_SYMBOL(cxgb4_l2t_release); |
| |
| /* |
| * Update an L2T entry that was previously used for the same next hop as neigh. |
| * Must be called with softirqs disabled. |
| */ |
| static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) |
| { |
| unsigned int nud_state; |
| |
| spin_lock(&e->lock); /* avoid race with t4_l2t_free */ |
| if (neigh != e->neigh) |
| neigh_replace(e, neigh); |
| nud_state = neigh->nud_state; |
| if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || |
| !(nud_state & NUD_VALID)) |
| e->state = L2T_STATE_RESOLVING; |
| else if (nud_state & NUD_CONNECTED) |
| e->state = L2T_STATE_VALID; |
| else |
| e->state = L2T_STATE_STALE; |
| spin_unlock(&e->lock); |
| } |
| |
| struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, |
| const struct net_device *physdev, |
| unsigned int priority) |
| { |
| u8 lport; |
| u16 vlan; |
| struct l2t_entry *e; |
| int addr_len = neigh->tbl->key_len; |
| u32 *addr = (u32 *)neigh->primary_key; |
| int ifidx = neigh->dev->ifindex; |
| int hash = addr_hash(d, addr, addr_len, ifidx); |
| |
| if (neigh->dev->flags & IFF_LOOPBACK) |
| lport = netdev2pinfo(physdev)->tx_chan + 4; |
| else |
| lport = netdev2pinfo(physdev)->lport; |
| |
| if (neigh->dev->priv_flags & IFF_802_1Q_VLAN) |
| vlan = vlan_dev_vlan_id(neigh->dev); |
| else |
| vlan = VLAN_NONE; |
| |
| write_lock_bh(&d->lock); |
| for (e = d->l2tab[hash].first; e; e = e->next) |
| if (!addreq(e, addr) && e->ifindex == ifidx && |
| e->vlan == vlan && e->lport == lport) { |
| l2t_hold(d, e); |
| if (atomic_read(&e->refcnt) == 1) |
| reuse_entry(e, neigh); |
| goto done; |
| } |
| |
| /* Need to allocate a new entry */ |
| e = alloc_l2e(d); |
| if (e) { |
| spin_lock(&e->lock); /* avoid race with t4_l2t_free */ |
| e->state = L2T_STATE_RESOLVING; |
| if (neigh->dev->flags & IFF_LOOPBACK) |
| memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac)); |
| memcpy(e->addr, addr, addr_len); |
| e->ifindex = ifidx; |
| e->hash = hash; |
| e->lport = lport; |
| e->v6 = addr_len == 16; |
| atomic_set(&e->refcnt, 1); |
| neigh_replace(e, neigh); |
| e->vlan = vlan; |
| e->next = d->l2tab[hash].first; |
| d->l2tab[hash].first = e; |
| spin_unlock(&e->lock); |
| } |
| done: |
| write_unlock_bh(&d->lock); |
| return e; |
| } |
| EXPORT_SYMBOL(cxgb4_l2t_get); |
| |
| u64 cxgb4_select_ntuple(struct net_device *dev, |
| const struct l2t_entry *l2t) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| struct tp_params *tp = &adap->params.tp; |
| u64 ntuple = 0; |
| |
| /* Initialize each of the fields which we care about which are present |
| * in the Compressed Filter Tuple. |
| */ |
| if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE) |
| ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift; |
| |
| if (tp->port_shift >= 0) |
| ntuple |= (u64)l2t->lport << tp->port_shift; |
| |
| if (tp->protocol_shift >= 0) |
| ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift; |
| |
| if (tp->vnic_shift >= 0) { |
| u32 viid = cxgb4_port_viid(dev); |
| u32 vf = FW_VIID_VIN_G(viid); |
| u32 pf = FW_VIID_PFN_G(viid); |
| u32 vld = FW_VIID_VIVLD_G(viid); |
| |
| ntuple |= (u64)(FT_VNID_ID_VF_V(vf) | |
| FT_VNID_ID_PF_V(pf) | |
| FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift; |
| } |
| |
| return ntuple; |
| } |
| EXPORT_SYMBOL(cxgb4_select_ntuple); |
| |
| /* |
| * Called when address resolution fails for an L2T entry to handle packets |
| * on the arpq head. If a packet specifies a failure handler it is invoked, |
| * otherwise the packet is sent to the device. |
| */ |
| static void handle_failed_resolution(struct adapter *adap, struct l2t_entry *e) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = __skb_dequeue(&e->arpq)) != NULL) { |
| const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); |
| |
| spin_unlock(&e->lock); |
| if (cb->arp_err_handler) |
| cb->arp_err_handler(cb->handle, skb); |
| else |
| t4_ofld_send(adap, skb); |
| spin_lock(&e->lock); |
| } |
| } |
| |
| /* |
| * Called when the host's neighbor layer makes a change to some entry that is |
| * loaded into the HW L2 table. |
| */ |
| void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) |
| { |
| struct l2t_entry *e; |
| struct sk_buff_head *arpq = NULL; |
| struct l2t_data *d = adap->l2t; |
| int addr_len = neigh->tbl->key_len; |
| u32 *addr = (u32 *) neigh->primary_key; |
| int ifidx = neigh->dev->ifindex; |
| int hash = addr_hash(d, addr, addr_len, ifidx); |
| |
| read_lock_bh(&d->lock); |
| for (e = d->l2tab[hash].first; e; e = e->next) |
| if (!addreq(e, addr) && e->ifindex == ifidx) { |
| spin_lock(&e->lock); |
| if (atomic_read(&e->refcnt)) |
| goto found; |
| spin_unlock(&e->lock); |
| break; |
| } |
| read_unlock_bh(&d->lock); |
| return; |
| |
| found: |
| read_unlock(&d->lock); |
| |
| if (neigh != e->neigh) |
| neigh_replace(e, neigh); |
| |
| if (e->state == L2T_STATE_RESOLVING) { |
| if (neigh->nud_state & NUD_FAILED) { |
| arpq = &e->arpq; |
| } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && |
| !skb_queue_empty(&e->arpq)) { |
| write_l2e(adap, e, 1); |
| } |
| } else { |
| e->state = neigh->nud_state & NUD_CONNECTED ? |
| L2T_STATE_VALID : L2T_STATE_STALE; |
| if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) |
| write_l2e(adap, e, 0); |
| } |
| |
| if (arpq) |
| handle_failed_resolution(adap, e); |
| spin_unlock_bh(&e->lock); |
| } |
| |
| /* Allocate an L2T entry for use by a switching rule. Such need to be |
| * explicitly freed and while busy they are not on any hash chain, so normal |
| * address resolution updates do not see them. |
| */ |
| struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan, |
| u8 port, u8 *eth_addr) |
| { |
| struct l2t_data *d = adap->l2t; |
| struct l2t_entry *e; |
| int ret; |
| |
| write_lock_bh(&d->lock); |
| e = find_or_alloc_l2e(d, vlan, port, eth_addr); |
| if (e) { |
| spin_lock(&e->lock); /* avoid race with t4_l2t_free */ |
| if (!atomic_read(&e->refcnt)) { |
| e->state = L2T_STATE_SWITCHING; |
| e->vlan = vlan; |
| e->lport = port; |
| ether_addr_copy(e->dmac, eth_addr); |
| atomic_set(&e->refcnt, 1); |
| ret = write_l2e(adap, e, 0); |
| if (ret < 0) { |
| _t4_l2e_free(e); |
| spin_unlock(&e->lock); |
| write_unlock_bh(&d->lock); |
| return NULL; |
| } |
| } else { |
| atomic_inc(&e->refcnt); |
| } |
| |
| spin_unlock(&e->lock); |
| } |
| write_unlock_bh(&d->lock); |
| return e; |
| } |
| |
| /** |
| * @dev: net_device pointer |
| * @vlan: VLAN Id |
| * @port: Associated port |
| * @dmac: Destination MAC address to add to L2T |
| * Returns pointer to the allocated l2t entry |
| * |
| * Allocates an L2T entry for use by switching rule of a filter |
| */ |
| struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan, |
| u8 port, u8 *dmac) |
| { |
| struct adapter *adap = netdev2adap(dev); |
| |
| return t4_l2t_alloc_switching(adap, vlan, port, dmac); |
| } |
| EXPORT_SYMBOL(cxgb4_l2t_alloc_switching); |
| |
| struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end) |
| { |
| unsigned int l2t_size; |
| int i; |
| struct l2t_data *d; |
| |
| if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE) |
| return NULL; |
| l2t_size = l2t_end - l2t_start + 1; |
| if (l2t_size < L2T_MIN_HASH_BUCKETS) |
| return NULL; |
| |
| d = t4_alloc_mem(sizeof(*d) + l2t_size * sizeof(struct l2t_entry)); |
| if (!d) |
| return NULL; |
| |
| d->l2t_start = l2t_start; |
| d->l2t_size = l2t_size; |
| |
| d->rover = d->l2tab; |
| atomic_set(&d->nfree, l2t_size); |
| rwlock_init(&d->lock); |
| |
| for (i = 0; i < d->l2t_size; ++i) { |
| d->l2tab[i].idx = i; |
| d->l2tab[i].state = L2T_STATE_UNUSED; |
| spin_lock_init(&d->l2tab[i].lock); |
| atomic_set(&d->l2tab[i].refcnt, 0); |
| skb_queue_head_init(&d->l2tab[i].arpq); |
| } |
| return d; |
| } |
| |
| static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| struct l2t_data *d = seq->private; |
| |
| return pos >= d->l2t_size ? NULL : &d->l2tab[pos]; |
| } |
| |
| static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; |
| } |
| |
| static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| v = l2t_get_idx(seq, *pos); |
| if (v) |
| ++*pos; |
| return v; |
| } |
| |
| static void l2t_seq_stop(struct seq_file *seq, void *v) |
| { |
| } |
| |
| static char l2e_state(const struct l2t_entry *e) |
| { |
| switch (e->state) { |
| case L2T_STATE_VALID: return 'V'; |
| case L2T_STATE_STALE: return 'S'; |
| case L2T_STATE_SYNC_WRITE: return 'W'; |
| case L2T_STATE_RESOLVING: |
| return skb_queue_empty(&e->arpq) ? 'R' : 'A'; |
| case L2T_STATE_SWITCHING: return 'X'; |
| default: |
| return 'U'; |
| } |
| } |
| |
| static int l2t_seq_show(struct seq_file *seq, void *v) |
| { |
| if (v == SEQ_START_TOKEN) |
| seq_puts(seq, " Idx IP address " |
| "Ethernet address VLAN/P LP State Users Port\n"); |
| else { |
| char ip[60]; |
| struct l2t_data *d = seq->private; |
| struct l2t_entry *e = v; |
| |
| spin_lock_bh(&e->lock); |
| if (e->state == L2T_STATE_SWITCHING) |
| ip[0] = '\0'; |
| else |
| sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); |
| seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", |
| e->idx + d->l2t_start, ip, e->dmac, |
| e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, |
| l2e_state(e), atomic_read(&e->refcnt), |
| e->neigh ? e->neigh->dev->name : ""); |
| spin_unlock_bh(&e->lock); |
| } |
| return 0; |
| } |
| |
| static const struct seq_operations l2t_seq_ops = { |
| .start = l2t_seq_start, |
| .next = l2t_seq_next, |
| .stop = l2t_seq_stop, |
| .show = l2t_seq_show |
| }; |
| |
| static int l2t_seq_open(struct inode *inode, struct file *file) |
| { |
| int rc = seq_open(file, &l2t_seq_ops); |
| |
| if (!rc) { |
| struct adapter *adap = inode->i_private; |
| struct seq_file *seq = file->private_data; |
| |
| seq->private = adap->l2t; |
| } |
| return rc; |
| } |
| |
| const struct file_operations t4_l2t_fops = { |
| .owner = THIS_MODULE, |
| .open = l2t_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |