| /* QLogic qed NIC Driver |
| * Copyright (c) 2015 QLogic Corporation |
| * |
| * This software is available under the terms of the GNU General Public License |
| * (GPL) Version 2, available from the file COPYING in the main directory of |
| * this source tree. |
| */ |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/mutex.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/etherdevice.h> |
| #include <linux/qed/qed_chain.h> |
| #include <linux/qed/qed_if.h> |
| #include "qed.h" |
| #include "qed_cxt.h" |
| #include "qed_dcbx.h" |
| #include "qed_dev_api.h" |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_init_ops.h" |
| #include "qed_int.h" |
| #include "qed_ll2.h" |
| #include "qed_mcp.h" |
| #include "qed_reg_addr.h" |
| #include "qed_sp.h" |
| #include "qed_sriov.h" |
| #include "qed_vf.h" |
| #include "qed_roce.h" |
| |
| static DEFINE_SPINLOCK(qm_lock); |
| |
| #define QED_MIN_DPIS (4) |
| #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) |
| |
| /* API common to all protocols */ |
| enum BAR_ID { |
| BAR_ID_0, /* used for GRC */ |
| BAR_ID_1 /* Used for doorbells */ |
| }; |
| |
| static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, enum BAR_ID bar_id) |
| { |
| u32 bar_reg = (bar_id == BAR_ID_0 ? |
| PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); |
| u32 val; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return 1 << 17; |
| |
| val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg); |
| if (val) |
| return 1 << (val + 15); |
| |
| /* Old MFW initialized above registered only conditionally */ |
| if (p_hwfn->cdev->num_hwfns > 1) { |
| DP_INFO(p_hwfn, |
| "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); |
| return BAR_ID_0 ? 256 * 1024 : 512 * 1024; |
| } else { |
| DP_INFO(p_hwfn, |
| "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); |
| return 512 * 1024; |
| } |
| } |
| |
| void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) |
| { |
| u32 i; |
| |
| cdev->dp_level = dp_level; |
| cdev->dp_module = dp_module; |
| for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| p_hwfn->dp_level = dp_level; |
| p_hwfn->dp_module = dp_module; |
| } |
| } |
| |
| void qed_init_struct(struct qed_dev *cdev) |
| { |
| u8 i; |
| |
| for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| p_hwfn->cdev = cdev; |
| p_hwfn->my_id = i; |
| p_hwfn->b_active = false; |
| |
| mutex_init(&p_hwfn->dmae_info.mutex); |
| } |
| |
| /* hwfn 0 is always active */ |
| cdev->hwfns[0].b_active = true; |
| |
| /* set the default cache alignment to 128 */ |
| cdev->cache_shift = 7; |
| } |
| |
| static void qed_qm_info_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| |
| kfree(qm_info->qm_pq_params); |
| qm_info->qm_pq_params = NULL; |
| kfree(qm_info->qm_vport_params); |
| qm_info->qm_vport_params = NULL; |
| kfree(qm_info->qm_port_params); |
| qm_info->qm_port_params = NULL; |
| kfree(qm_info->wfq_data); |
| qm_info->wfq_data = NULL; |
| } |
| |
| void qed_resc_free(struct qed_dev *cdev) |
| { |
| int i; |
| |
| if (IS_VF(cdev)) |
| return; |
| |
| kfree(cdev->fw_data); |
| cdev->fw_data = NULL; |
| |
| kfree(cdev->reset_stats); |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| kfree(p_hwfn->p_tx_cids); |
| p_hwfn->p_tx_cids = NULL; |
| kfree(p_hwfn->p_rx_cids); |
| p_hwfn->p_rx_cids = NULL; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| qed_cxt_mngr_free(p_hwfn); |
| qed_qm_info_free(p_hwfn); |
| qed_spq_free(p_hwfn); |
| qed_eq_free(p_hwfn, p_hwfn->p_eq); |
| qed_consq_free(p_hwfn, p_hwfn->p_consq); |
| qed_int_free(p_hwfn); |
| #ifdef CONFIG_QED_LL2 |
| qed_ll2_free(p_hwfn, p_hwfn->p_ll2_info); |
| #endif |
| qed_iov_free(p_hwfn); |
| qed_dmae_info_free(p_hwfn); |
| qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info); |
| } |
| } |
| |
| static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable) |
| { |
| u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0; |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| struct init_qm_port_params *p_qm_port; |
| bool init_rdma_offload_pq = false; |
| bool init_pure_ack_pq = false; |
| bool init_ooo_pq = false; |
| u16 num_pqs, multi_cos_tcs = 1; |
| u8 pf_wfq = qm_info->pf_wfq; |
| u32 pf_rl = qm_info->pf_rl; |
| u16 num_pf_rls = 0; |
| u16 num_vfs = 0; |
| |
| #ifdef CONFIG_QED_SRIOV |
| if (p_hwfn->cdev->p_iov_info) |
| num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; |
| #endif |
| memset(qm_info, 0, sizeof(*qm_info)); |
| |
| num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */ |
| num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT); |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) { |
| num_pqs++; /* for RoCE queue */ |
| init_rdma_offload_pq = true; |
| /* we subtract num_vfs because each require a rate limiter, |
| * and one default rate limiter |
| */ |
| if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) |
| num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1; |
| |
| num_pqs += num_pf_rls; |
| qm_info->num_pf_rls = (u8) num_pf_rls; |
| } |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { |
| num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */ |
| init_pure_ack_pq = true; |
| init_ooo_pq = true; |
| } |
| |
| /* Sanity checking that setup requires legal number of resources */ |
| if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) { |
| DP_ERR(p_hwfn, |
| "Need too many Physical queues - 0x%04x when only %04x are available\n", |
| num_pqs, RESC_NUM(p_hwfn, QED_PQ)); |
| return -EINVAL; |
| } |
| |
| /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete. |
| */ |
| qm_info->qm_pq_params = kcalloc(num_pqs, |
| sizeof(struct init_qm_pq_params), |
| b_sleepable ? GFP_KERNEL : GFP_ATOMIC); |
| if (!qm_info->qm_pq_params) |
| goto alloc_err; |
| |
| qm_info->qm_vport_params = kcalloc(num_vports, |
| sizeof(struct init_qm_vport_params), |
| b_sleepable ? GFP_KERNEL |
| : GFP_ATOMIC); |
| if (!qm_info->qm_vport_params) |
| goto alloc_err; |
| |
| qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS, |
| sizeof(struct init_qm_port_params), |
| b_sleepable ? GFP_KERNEL |
| : GFP_ATOMIC); |
| if (!qm_info->qm_port_params) |
| goto alloc_err; |
| |
| qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data), |
| b_sleepable ? GFP_KERNEL : GFP_ATOMIC); |
| if (!qm_info->wfq_data) |
| goto alloc_err; |
| |
| vport_id = (u8)RESC_START(p_hwfn, QED_VPORT); |
| |
| /* First init rate limited queues */ |
| for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) { |
| qm_info->qm_pq_params[curr_queue].vport_id = vport_id++; |
| qm_info->qm_pq_params[curr_queue].tc_id = |
| p_hwfn->hw_info.non_offload_tc; |
| qm_info->qm_pq_params[curr_queue].wrr_group = 1; |
| qm_info->qm_pq_params[curr_queue].rl_valid = 1; |
| } |
| |
| /* First init per-TC PQs */ |
| for (i = 0; i < multi_cos_tcs; i++) { |
| struct init_qm_pq_params *params = |
| &qm_info->qm_pq_params[curr_queue++]; |
| |
| if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE || |
| p_hwfn->hw_info.personality == QED_PCI_ETH) { |
| params->vport_id = vport_id; |
| params->tc_id = p_hwfn->hw_info.non_offload_tc; |
| params->wrr_group = 1; |
| } else { |
| params->vport_id = vport_id; |
| params->tc_id = p_hwfn->hw_info.offload_tc; |
| params->wrr_group = 1; |
| } |
| } |
| |
| /* Then init pure-LB PQ */ |
| qm_info->pure_lb_pq = curr_queue; |
| qm_info->qm_pq_params[curr_queue].vport_id = |
| (u8) RESC_START(p_hwfn, QED_VPORT); |
| qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC; |
| qm_info->qm_pq_params[curr_queue].wrr_group = 1; |
| curr_queue++; |
| |
| qm_info->offload_pq = 0; |
| if (init_rdma_offload_pq) { |
| qm_info->offload_pq = curr_queue; |
| qm_info->qm_pq_params[curr_queue].vport_id = vport_id; |
| qm_info->qm_pq_params[curr_queue].tc_id = |
| p_hwfn->hw_info.offload_tc; |
| qm_info->qm_pq_params[curr_queue].wrr_group = 1; |
| curr_queue++; |
| } |
| |
| if (init_pure_ack_pq) { |
| qm_info->pure_ack_pq = curr_queue; |
| qm_info->qm_pq_params[curr_queue].vport_id = vport_id; |
| qm_info->qm_pq_params[curr_queue].tc_id = |
| p_hwfn->hw_info.offload_tc; |
| qm_info->qm_pq_params[curr_queue].wrr_group = 1; |
| curr_queue++; |
| } |
| |
| if (init_ooo_pq) { |
| qm_info->ooo_pq = curr_queue; |
| qm_info->qm_pq_params[curr_queue].vport_id = vport_id; |
| qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC; |
| qm_info->qm_pq_params[curr_queue].wrr_group = 1; |
| curr_queue++; |
| } |
| |
| /* Then init per-VF PQs */ |
| vf_offset = curr_queue; |
| for (i = 0; i < num_vfs; i++) { |
| /* First vport is used by the PF */ |
| qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1; |
| qm_info->qm_pq_params[curr_queue].tc_id = |
| p_hwfn->hw_info.non_offload_tc; |
| qm_info->qm_pq_params[curr_queue].wrr_group = 1; |
| qm_info->qm_pq_params[curr_queue].rl_valid = 1; |
| curr_queue++; |
| } |
| |
| qm_info->vf_queues_offset = vf_offset; |
| qm_info->num_pqs = num_pqs; |
| qm_info->num_vports = num_vports; |
| |
| /* Initialize qm port parameters */ |
| num_ports = p_hwfn->cdev->num_ports_in_engines; |
| for (i = 0; i < num_ports; i++) { |
| p_qm_port = &qm_info->qm_port_params[i]; |
| p_qm_port->active = 1; |
| if (num_ports == 4) |
| p_qm_port->active_phys_tcs = 0x7; |
| else |
| p_qm_port->active_phys_tcs = 0x9f; |
| p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; |
| p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; |
| } |
| |
| qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS; |
| |
| qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ); |
| |
| qm_info->num_vf_pqs = num_vfs; |
| qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); |
| |
| for (i = 0; i < qm_info->num_vports; i++) |
| qm_info->qm_vport_params[i].vport_wfq = 1; |
| |
| qm_info->vport_rl_en = 1; |
| qm_info->vport_wfq_en = 1; |
| qm_info->pf_rl = pf_rl; |
| qm_info->pf_wfq = pf_wfq; |
| |
| return 0; |
| |
| alloc_err: |
| qed_qm_info_free(p_hwfn); |
| return -ENOMEM; |
| } |
| |
| /* This function reconfigures the QM pf on the fly. |
| * For this purpose we: |
| * 1. reconfigure the QM database |
| * 2. set new values to runtime arrat |
| * 3. send an sdm_qm_cmd through the rbc interface to stop the QM |
| * 4. activate init tool in QM_PF stage |
| * 5. send an sdm_qm_cmd through rbc interface to release the QM |
| */ |
| int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| bool b_rc; |
| int rc; |
| |
| /* qm_info is allocated in qed_init_qm_info() which is already called |
| * from qed_resc_alloc() or previous call of qed_qm_reconf(). |
| * The allocated size may change each init, so we free it before next |
| * allocation. |
| */ |
| qed_qm_info_free(p_hwfn); |
| |
| /* initialize qed's qm data structure */ |
| rc = qed_init_qm_info(p_hwfn, false); |
| if (rc) |
| return rc; |
| |
| /* stop PF's qm queues */ |
| spin_lock_bh(&qm_lock); |
| b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, |
| qm_info->start_pq, qm_info->num_pqs); |
| spin_unlock_bh(&qm_lock); |
| if (!b_rc) |
| return -EINVAL; |
| |
| /* clear the QM_PF runtime phase leftovers from previous init */ |
| qed_init_clear_rt_data(p_hwfn); |
| |
| /* prepare QM portion of runtime array */ |
| qed_qm_init_pf(p_hwfn); |
| |
| /* activate init tool on runtime array */ |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, |
| p_hwfn->hw_info.hw_mode); |
| if (rc) |
| return rc; |
| |
| /* start PF's qm queues */ |
| spin_lock_bh(&qm_lock); |
| b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, |
| qm_info->start_pq, qm_info->num_pqs); |
| spin_unlock_bh(&qm_lock); |
| if (!b_rc) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int qed_resc_alloc(struct qed_dev *cdev) |
| { |
| #ifdef CONFIG_QED_LL2 |
| struct qed_ll2_info *p_ll2_info; |
| #endif |
| struct qed_consq *p_consq; |
| struct qed_eq *p_eq; |
| int i, rc = 0; |
| |
| if (IS_VF(cdev)) |
| return rc; |
| |
| cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); |
| if (!cdev->fw_data) |
| return -ENOMEM; |
| |
| /* Allocate Memory for the Queue->CID mapping */ |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| int tx_size = sizeof(struct qed_hw_cid_data) * |
| RESC_NUM(p_hwfn, QED_L2_QUEUE); |
| int rx_size = sizeof(struct qed_hw_cid_data) * |
| RESC_NUM(p_hwfn, QED_L2_QUEUE); |
| |
| p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL); |
| if (!p_hwfn->p_tx_cids) |
| goto alloc_no_mem; |
| |
| p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL); |
| if (!p_hwfn->p_rx_cids) |
| goto alloc_no_mem; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| u32 n_eqes, num_cons; |
| |
| /* First allocate the context manager structure */ |
| rc = qed_cxt_mngr_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* Set the HW cid/tid numbers (in the contest manager) |
| * Must be done prior to any further computations. |
| */ |
| rc = qed_cxt_set_pf_params(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* Prepare and process QM requirements */ |
| rc = qed_init_qm_info(p_hwfn, true); |
| if (rc) |
| goto alloc_err; |
| |
| /* Compute the ILT client partition */ |
| rc = qed_cxt_cfg_ilt_compute(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* CID map / ILT shadow table / T2 |
| * The talbes sizes are determined by the computations above |
| */ |
| rc = qed_cxt_tables_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* SPQ, must follow ILT because initializes SPQ context */ |
| rc = qed_spq_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* SP status block allocation */ |
| p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, |
| RESERVED_PTT_DPC); |
| |
| rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) |
| goto alloc_err; |
| |
| rc = qed_iov_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* EQ */ |
| n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); |
| if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) { |
| num_cons = qed_cxt_get_proto_cid_count(p_hwfn, |
| PROTOCOLID_ROCE, |
| NULL) * 2; |
| n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; |
| } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { |
| num_cons = |
| qed_cxt_get_proto_cid_count(p_hwfn, |
| PROTOCOLID_ISCSI, |
| NULL); |
| n_eqes += 2 * num_cons; |
| } |
| |
| if (n_eqes > 0xFFFF) { |
| DP_ERR(p_hwfn, |
| "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", |
| n_eqes, 0xFFFF); |
| rc = -EINVAL; |
| goto alloc_err; |
| } |
| |
| p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes); |
| if (!p_eq) |
| goto alloc_no_mem; |
| p_hwfn->p_eq = p_eq; |
| |
| p_consq = qed_consq_alloc(p_hwfn); |
| if (!p_consq) |
| goto alloc_no_mem; |
| p_hwfn->p_consq = p_consq; |
| |
| #ifdef CONFIG_QED_LL2 |
| if (p_hwfn->using_ll2) { |
| p_ll2_info = qed_ll2_alloc(p_hwfn); |
| if (!p_ll2_info) |
| goto alloc_no_mem; |
| p_hwfn->p_ll2_info = p_ll2_info; |
| } |
| #endif |
| |
| /* DMA info initialization */ |
| rc = qed_dmae_info_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| |
| /* DCBX initialization */ |
| rc = qed_dcbx_info_alloc(p_hwfn); |
| if (rc) |
| goto alloc_err; |
| } |
| |
| cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); |
| if (!cdev->reset_stats) |
| goto alloc_no_mem; |
| |
| return 0; |
| |
| alloc_no_mem: |
| rc = -ENOMEM; |
| alloc_err: |
| qed_resc_free(cdev); |
| return rc; |
| } |
| |
| void qed_resc_setup(struct qed_dev *cdev) |
| { |
| int i; |
| |
| if (IS_VF(cdev)) |
| return; |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| qed_cxt_mngr_setup(p_hwfn); |
| qed_spq_setup(p_hwfn); |
| qed_eq_setup(p_hwfn, p_hwfn->p_eq); |
| qed_consq_setup(p_hwfn, p_hwfn->p_consq); |
| |
| /* Read shadow of current MFW mailbox */ |
| qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); |
| memcpy(p_hwfn->mcp_info->mfw_mb_shadow, |
| p_hwfn->mcp_info->mfw_mb_cur, |
| p_hwfn->mcp_info->mfw_mb_length); |
| |
| qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); |
| |
| qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt); |
| #ifdef CONFIG_QED_LL2 |
| if (p_hwfn->using_ll2) |
| qed_ll2_setup(p_hwfn, p_hwfn->p_ll2_info); |
| #endif |
| } |
| } |
| |
| #define FINAL_CLEANUP_POLL_CNT (100) |
| #define FINAL_CLEANUP_POLL_TIME (10) |
| int qed_final_cleanup(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 id, bool is_vf) |
| { |
| u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; |
| int rc = -EBUSY; |
| |
| addr = GTT_BAR0_MAP_REG_USDM_RAM + |
| USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); |
| |
| if (is_vf) |
| id += 0x10; |
| |
| command |= X_FINAL_CLEANUP_AGG_INT << |
| SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; |
| command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; |
| command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; |
| command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; |
| |
| /* Make sure notification is not set before initiating final cleanup */ |
| if (REG_RD(p_hwfn, addr)) { |
| DP_NOTICE(p_hwfn, |
| "Unexpected; Found final cleanup notification before initiating final cleanup\n"); |
| REG_WR(p_hwfn, addr, 0); |
| } |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_IOV, |
| "Sending final cleanup for PFVF[%d] [Command %08x\n]", |
| id, command); |
| |
| qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); |
| |
| /* Poll until completion */ |
| while (!REG_RD(p_hwfn, addr) && count--) |
| msleep(FINAL_CLEANUP_POLL_TIME); |
| |
| if (REG_RD(p_hwfn, addr)) |
| rc = 0; |
| else |
| DP_NOTICE(p_hwfn, |
| "Failed to receive FW final cleanup notification\n"); |
| |
| /* Cleanup afterwards */ |
| REG_WR(p_hwfn, addr, 0); |
| |
| return rc; |
| } |
| |
| static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn) |
| { |
| int hw_mode = 0; |
| |
| hw_mode = (1 << MODE_BB_B0); |
| |
| switch (p_hwfn->cdev->num_ports_in_engines) { |
| case 1: |
| hw_mode |= 1 << MODE_PORTS_PER_ENG_1; |
| break; |
| case 2: |
| hw_mode |= 1 << MODE_PORTS_PER_ENG_2; |
| break; |
| case 4: |
| hw_mode |= 1 << MODE_PORTS_PER_ENG_4; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", |
| p_hwfn->cdev->num_ports_in_engines); |
| return; |
| } |
| |
| switch (p_hwfn->cdev->mf_mode) { |
| case QED_MF_DEFAULT: |
| case QED_MF_NPAR: |
| hw_mode |= 1 << MODE_MF_SI; |
| break; |
| case QED_MF_OVLAN: |
| hw_mode |= 1 << MODE_MF_SD; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n"); |
| hw_mode |= 1 << MODE_MF_SI; |
| } |
| |
| hw_mode |= 1 << MODE_ASIC; |
| |
| if (p_hwfn->cdev->num_hwfns > 1) |
| hw_mode |= 1 << MODE_100G; |
| |
| p_hwfn->hw_info.hw_mode = hw_mode; |
| |
| DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), |
| "Configuring function for hw_mode: 0x%08x\n", |
| p_hwfn->hw_info.hw_mode); |
| } |
| |
| /* Init run time data for all PFs on an engine. */ |
| static void qed_init_cau_rt_data(struct qed_dev *cdev) |
| { |
| u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; |
| int i, sb_id; |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_igu_info *p_igu_info; |
| struct qed_igu_block *p_block; |
| struct cau_sb_entry sb_entry; |
| |
| p_igu_info = p_hwfn->hw_info.p_igu_info; |
| |
| for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev); |
| sb_id++) { |
| p_block = &p_igu_info->igu_map.igu_blocks[sb_id]; |
| if (!p_block->is_pf) |
| continue; |
| |
| qed_init_cau_sb_entry(p_hwfn, &sb_entry, |
| p_block->function_id, 0, 0); |
| STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry); |
| } |
| } |
| } |
| |
| static int qed_hw_init_common(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, int hw_mode) |
| { |
| struct qed_qm_info *qm_info = &p_hwfn->qm_info; |
| struct qed_qm_common_rt_init_params params; |
| struct qed_dev *cdev = p_hwfn->cdev; |
| u16 num_pfs, pf_id; |
| u32 concrete_fid; |
| int rc = 0; |
| u8 vf_id; |
| |
| qed_init_cau_rt_data(cdev); |
| |
| /* Program GTT windows */ |
| qed_gtt_init(p_hwfn); |
| |
| if (p_hwfn->mcp_info) { |
| if (p_hwfn->mcp_info->func_info.bandwidth_max) |
| qm_info->pf_rl_en = 1; |
| if (p_hwfn->mcp_info->func_info.bandwidth_min) |
| qm_info->pf_wfq_en = 1; |
| } |
| |
| memset(¶ms, 0, sizeof(params)); |
| params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines; |
| params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; |
| params.pf_rl_en = qm_info->pf_rl_en; |
| params.pf_wfq_en = qm_info->pf_wfq_en; |
| params.vport_rl_en = qm_info->vport_rl_en; |
| params.vport_wfq_en = qm_info->vport_wfq_en; |
| params.port_params = qm_info->qm_port_params; |
| |
| qed_qm_common_rt_init(p_hwfn, ¶ms); |
| |
| qed_cxt_hw_init_common(p_hwfn); |
| |
| /* Close gate from NIG to BRB/Storm; By default they are open, but |
| * we close them to prevent NIG from passing data to reset blocks. |
| * Should have been done in the ENGINE phase, but init-tool lacks |
| * proper port-pretend capabilities. |
| */ |
| qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0); |
| qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0); |
| qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1); |
| qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0); |
| qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0); |
| qed_port_unpretend(p_hwfn, p_ptt); |
| |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); |
| if (rc) |
| return rc; |
| |
| qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); |
| qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); |
| |
| if (QED_IS_BB(p_hwfn->cdev)) { |
| num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); |
| for (pf_id = 0; pf_id < num_pfs; pf_id++) { |
| qed_fid_pretend(p_hwfn, p_ptt, pf_id); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); |
| } |
| /* pretend to original PF */ |
| qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); |
| } |
| |
| for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) { |
| concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); |
| qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); |
| qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); |
| qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); |
| qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); |
| qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); |
| } |
| /* pretend to original PF */ |
| qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); |
| |
| return rc; |
| } |
| |
| static int |
| qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) |
| { |
| u32 dpi_page_size_1, dpi_page_size_2, dpi_page_size; |
| u32 dpi_bit_shift, dpi_count; |
| u32 min_dpis; |
| |
| /* Calculate DPI size */ |
| dpi_page_size_1 = QED_WID_SIZE * n_cpus; |
| dpi_page_size_2 = max_t(u32, QED_WID_SIZE, PAGE_SIZE); |
| dpi_page_size = max_t(u32, dpi_page_size_1, dpi_page_size_2); |
| dpi_page_size = roundup_pow_of_two(dpi_page_size); |
| dpi_bit_shift = ilog2(dpi_page_size / 4096); |
| |
| dpi_count = pwm_region_size / dpi_page_size; |
| |
| min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; |
| min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); |
| |
| p_hwfn->dpi_size = dpi_page_size; |
| p_hwfn->dpi_count = dpi_count; |
| |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); |
| |
| if (dpi_count < min_dpis) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| enum QED_ROCE_EDPM_MODE { |
| QED_ROCE_EDPM_MODE_ENABLE = 0, |
| QED_ROCE_EDPM_MODE_FORCE_ON = 1, |
| QED_ROCE_EDPM_MODE_DISABLE = 2, |
| }; |
| |
| static int |
| qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 pwm_regsize, norm_regsize; |
| u32 non_pwm_conn, min_addr_reg1; |
| u32 db_bar_size, n_cpus; |
| u32 roce_edpm_mode; |
| u32 pf_dems_shift; |
| int rc = 0; |
| u8 cond; |
| |
| db_bar_size = qed_hw_bar_size(p_hwfn, BAR_ID_1); |
| if (p_hwfn->cdev->num_hwfns > 1) |
| db_bar_size /= 2; |
| |
| /* Calculate doorbell regions */ |
| non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + |
| qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, |
| NULL) + |
| qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, |
| NULL); |
| norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, 4096); |
| min_addr_reg1 = norm_regsize / 4096; |
| pwm_regsize = db_bar_size - norm_regsize; |
| |
| /* Check that the normal and PWM sizes are valid */ |
| if (db_bar_size < norm_regsize) { |
| DP_ERR(p_hwfn->cdev, |
| "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", |
| db_bar_size, norm_regsize); |
| return -EINVAL; |
| } |
| |
| if (pwm_regsize < QED_MIN_PWM_REGION) { |
| DP_ERR(p_hwfn->cdev, |
| "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", |
| pwm_regsize, |
| QED_MIN_PWM_REGION, db_bar_size, norm_regsize); |
| return -EINVAL; |
| } |
| |
| /* Calculate number of DPIs */ |
| roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; |
| if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || |
| ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { |
| /* Either EDPM is mandatory, or we are attempting to allocate a |
| * WID per CPU. |
| */ |
| n_cpus = num_active_cpus(); |
| rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); |
| } |
| |
| cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || |
| (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); |
| if (cond || p_hwfn->dcbx_no_edpm) { |
| /* Either EDPM is disabled from user configuration, or it is |
| * disabled via DCBx, or it is not mandatory and we failed to |
| * allocated a WID per CPU. |
| */ |
| n_cpus = 1; |
| rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); |
| |
| if (cond) |
| qed_rdma_dpm_bar(p_hwfn, p_ptt); |
| } |
| |
| DP_INFO(p_hwfn, |
| "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s\n", |
| norm_regsize, |
| pwm_regsize, |
| p_hwfn->dpi_size, |
| p_hwfn->dpi_count, |
| ((p_hwfn->dcbx_no_edpm) || (p_hwfn->db_bar_no_edpm)) ? |
| "disabled" : "enabled"); |
| |
| if (rc) { |
| DP_ERR(p_hwfn, |
| "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", |
| p_hwfn->dpi_count, |
| p_hwfn->pf_params.rdma_pf_params.min_dpis); |
| return -EINVAL; |
| } |
| |
| p_hwfn->dpi_start_offset = norm_regsize; |
| |
| /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ |
| pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); |
| qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); |
| |
| return 0; |
| } |
| |
| static int qed_hw_init_port(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, int hw_mode) |
| { |
| return qed_init_run(p_hwfn, p_ptt, PHASE_PORT, |
| p_hwfn->port_id, hw_mode); |
| } |
| |
| static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_tunn_start_params *p_tunn, |
| int hw_mode, |
| bool b_hw_start, |
| enum qed_int_mode int_mode, |
| bool allow_npar_tx_switch) |
| { |
| u8 rel_pf_id = p_hwfn->rel_pf_id; |
| int rc = 0; |
| |
| if (p_hwfn->mcp_info) { |
| struct qed_mcp_function_info *p_info; |
| |
| p_info = &p_hwfn->mcp_info->func_info; |
| if (p_info->bandwidth_min) |
| p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; |
| |
| /* Update rate limit once we'll actually have a link */ |
| p_hwfn->qm_info.pf_rl = 100000; |
| } |
| |
| qed_cxt_hw_init_pf(p_hwfn); |
| |
| qed_int_igu_init_rt(p_hwfn); |
| |
| /* Set VLAN in NIG if needed */ |
| if (hw_mode & BIT(MODE_MF_SD)) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); |
| STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); |
| STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, |
| p_hwfn->hw_info.ovlan); |
| } |
| |
| /* Enable classification by MAC if needed */ |
| if (hw_mode & BIT(MODE_MF_SI)) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "Configuring TAGMAC_CLS_TYPE\n"); |
| STORE_RT_REG(p_hwfn, |
| NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); |
| } |
| |
| /* Protocl Configuration */ |
| STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, |
| (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); |
| STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0); |
| STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); |
| |
| /* Cleanup chip from previous driver if such remains exist */ |
| rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); |
| if (rc) |
| return rc; |
| |
| /* PF Init sequence */ |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); |
| if (rc) |
| return rc; |
| |
| /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ |
| rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); |
| if (rc) |
| return rc; |
| |
| /* Pure runtime initializations - directly to the HW */ |
| qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); |
| |
| rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| |
| if (b_hw_start) { |
| /* enable interrupts */ |
| qed_int_igu_enable(p_hwfn, p_ptt, int_mode); |
| |
| /* send function start command */ |
| rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode, |
| allow_npar_tx_switch); |
| if (rc) |
| DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); |
| } |
| return rc; |
| } |
| |
| static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u8 enable) |
| { |
| u32 delay_idx = 0, val, set_val = enable ? 1 : 0; |
| |
| /* Change PF in PXP */ |
| qed_wr(p_hwfn, p_ptt, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); |
| |
| /* wait until value is set - try for 1 second every 50us */ |
| for (delay_idx = 0; delay_idx < 20000; delay_idx++) { |
| val = qed_rd(p_hwfn, p_ptt, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); |
| if (val == set_val) |
| break; |
| |
| usleep_range(50, 60); |
| } |
| |
| if (val != set_val) { |
| DP_NOTICE(p_hwfn, |
| "PFID_ENABLE_MASTER wasn't changed after a second\n"); |
| return -EAGAIN; |
| } |
| |
| return 0; |
| } |
| |
| static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_main_ptt) |
| { |
| /* Read shadow of current MFW mailbox */ |
| qed_mcp_read_mb(p_hwfn, p_main_ptt); |
| memcpy(p_hwfn->mcp_info->mfw_mb_shadow, |
| p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); |
| } |
| |
| int qed_hw_init(struct qed_dev *cdev, |
| struct qed_tunn_start_params *p_tunn, |
| bool b_hw_start, |
| enum qed_int_mode int_mode, |
| bool allow_npar_tx_switch, |
| const u8 *bin_fw_data) |
| { |
| u32 load_code, param; |
| int rc, mfw_rc, i; |
| |
| if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { |
| DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); |
| return -EINVAL; |
| } |
| |
| if (IS_PF(cdev)) { |
| rc = qed_init_fw_data(cdev, bin_fw_data); |
| if (rc) |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| if (IS_VF(cdev)) { |
| p_hwfn->b_int_enabled = 1; |
| continue; |
| } |
| |
| /* Enable DMAE in PXP */ |
| rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); |
| |
| qed_calc_hw_mode(p_hwfn); |
| |
| rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n"); |
| return rc; |
| } |
| |
| qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SP, |
| "Load request was sent. Resp:0x%x, Load code: 0x%x\n", |
| rc, load_code); |
| |
| p_hwfn->first_on_engine = (load_code == |
| FW_MSG_CODE_DRV_LOAD_ENGINE); |
| |
| switch (load_code) { |
| case FW_MSG_CODE_DRV_LOAD_ENGINE: |
| rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, |
| p_hwfn->hw_info.hw_mode); |
| if (rc) |
| break; |
| /* Fall into */ |
| case FW_MSG_CODE_DRV_LOAD_PORT: |
| rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, |
| p_hwfn->hw_info.hw_mode); |
| if (rc) |
| break; |
| |
| /* Fall into */ |
| case FW_MSG_CODE_DRV_LOAD_FUNCTION: |
| rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, |
| p_tunn, p_hwfn->hw_info.hw_mode, |
| b_hw_start, int_mode, |
| allow_npar_tx_switch); |
| break; |
| default: |
| rc = -EINVAL; |
| break; |
| } |
| |
| if (rc) |
| DP_NOTICE(p_hwfn, |
| "init phase failed for loadcode 0x%x (rc %d)\n", |
| load_code, rc); |
| |
| /* ACK mfw regardless of success or failure of initialization */ |
| mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_LOAD_DONE, |
| 0, &load_code, ¶m); |
| if (rc) |
| return rc; |
| if (mfw_rc) { |
| DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); |
| return mfw_rc; |
| } |
| |
| /* send DCBX attention request command */ |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_DCB, |
| "sending phony dcbx set command to trigger DCBx attention handling\n"); |
| mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_SET_DCBX, |
| 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, |
| &load_code, ¶m); |
| if (mfw_rc) { |
| DP_NOTICE(p_hwfn, |
| "Failed to send DCBX attention request\n"); |
| return mfw_rc; |
| } |
| |
| p_hwfn->hw_init_done = true; |
| } |
| |
| return 0; |
| } |
| |
| #define QED_HW_STOP_RETRY_LIMIT (10) |
| static void qed_hw_timers_stop(struct qed_dev *cdev, |
| struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| int i; |
| |
| /* close timers */ |
| qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); |
| qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); |
| |
| for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { |
| if ((!qed_rd(p_hwfn, p_ptt, |
| TM_REG_PF_SCAN_ACTIVE_CONN)) && |
| (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) |
| break; |
| |
| /* Dependent on number of connection/tasks, possibly |
| * 1ms sleep is required between polls |
| */ |
| usleep_range(1000, 2000); |
| } |
| |
| if (i < QED_HW_STOP_RETRY_LIMIT) |
| return; |
| |
| DP_NOTICE(p_hwfn, |
| "Timers linear scans are not over [Connection %02x Tasks %02x]\n", |
| (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), |
| (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); |
| } |
| |
| void qed_hw_timers_stop_all(struct qed_dev *cdev) |
| { |
| int j; |
| |
| for_each_hwfn(cdev, j) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; |
| struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; |
| |
| qed_hw_timers_stop(cdev, p_hwfn, p_ptt); |
| } |
| } |
| |
| int qed_hw_stop(struct qed_dev *cdev) |
| { |
| int rc = 0, t_rc; |
| int j; |
| |
| for_each_hwfn(cdev, j) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; |
| struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); |
| |
| if (IS_VF(cdev)) { |
| qed_vf_pf_int_cleanup(p_hwfn); |
| continue; |
| } |
| |
| /* mark the hw as uninitialized... */ |
| p_hwfn->hw_init_done = false; |
| |
| rc = qed_sp_pf_stop(p_hwfn); |
| if (rc) |
| DP_NOTICE(p_hwfn, |
| "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n"); |
| |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); |
| |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); |
| |
| qed_hw_timers_stop(cdev, p_hwfn, p_ptt); |
| |
| /* Disable Attention Generation */ |
| qed_int_igu_disable_int(p_hwfn, p_ptt); |
| |
| qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); |
| qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); |
| |
| qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); |
| |
| /* Need to wait 1ms to guarantee SBs are cleared */ |
| usleep_range(1000, 2000); |
| } |
| |
| if (IS_PF(cdev)) { |
| /* Disable DMAE in PXP - in CMT, this should only be done for |
| * first hw-function, and only after all transactions have |
| * stopped for all active hw-functions. |
| */ |
| t_rc = qed_change_pci_hwfn(&cdev->hwfns[0], |
| cdev->hwfns[0].p_main_ptt, false); |
| if (t_rc != 0) |
| rc = t_rc; |
| } |
| |
| return rc; |
| } |
| |
| void qed_hw_stop_fastpath(struct qed_dev *cdev) |
| { |
| int j; |
| |
| for_each_hwfn(cdev, j) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; |
| struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; |
| |
| if (IS_VF(cdev)) { |
| qed_vf_pf_int_cleanup(p_hwfn); |
| continue; |
| } |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); |
| |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); |
| |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); |
| |
| qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); |
| |
| /* Need to wait 1ms to guarantee SBs are cleared */ |
| usleep_range(1000, 2000); |
| } |
| } |
| |
| void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) |
| { |
| if (IS_VF(p_hwfn->cdev)) |
| return; |
| |
| /* Re-open incoming traffic */ |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); |
| } |
| |
| static int qed_reg_assert(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u32 reg, bool expected) |
| { |
| u32 assert_val = qed_rd(p_hwfn, p_ptt, reg); |
| |
| if (assert_val != expected) { |
| DP_NOTICE(p_hwfn, "Value at address 0x%08x != 0x%08x\n", |
| reg, expected); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int qed_hw_reset(struct qed_dev *cdev) |
| { |
| int rc = 0; |
| u32 unload_resp, unload_param; |
| int i; |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| if (IS_VF(cdev)) { |
| rc = qed_vf_pf_reset(p_hwfn); |
| if (rc) |
| return rc; |
| continue; |
| } |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n"); |
| |
| /* Check for incorrect states */ |
| qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt, |
| QM_REG_USG_CNT_PF_TX, 0); |
| qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt, |
| QM_REG_USG_CNT_PF_OTHER, 0); |
| |
| /* Disable PF in HW blocks */ |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| TCFC_REG_STRONG_ENABLE_PF, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| CCFC_REG_STRONG_ENABLE_PF, 0); |
| |
| /* Send unload command to MCP */ |
| rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_UNLOAD_REQ, |
| DRV_MB_PARAM_UNLOAD_WOL_MCP, |
| &unload_resp, &unload_param); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n"); |
| unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE; |
| } |
| |
| rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, |
| DRV_MSG_CODE_UNLOAD_DONE, |
| 0, &unload_resp, &unload_param); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n"); |
| return rc; |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ |
| static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) |
| { |
| qed_ptt_pool_free(p_hwfn); |
| kfree(p_hwfn->hw_info.p_igu_info); |
| } |
| |
| /* Setup bar access */ |
| static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) |
| { |
| /* clear indirect access */ |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0); |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0); |
| |
| /* Clean Previous errors if such exist */ |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); |
| |
| /* enable internal target-read */ |
| qed_wr(p_hwfn, p_hwfn->p_main_ptt, |
| PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); |
| } |
| |
| static void get_function_id(struct qed_hwfn *p_hwfn) |
| { |
| /* ME Register */ |
| p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn, |
| PXP_PF_ME_OPAQUE_ADDR); |
| |
| p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); |
| |
| p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; |
| p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, |
| PXP_CONCRETE_FID_PFID); |
| p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, |
| PXP_CONCRETE_FID_PORT); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, |
| "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", |
| p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); |
| } |
| |
| static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) |
| { |
| u32 *feat_num = p_hwfn->hw_info.feat_num; |
| int num_features = 1; |
| |
| if (IS_ENABLED(CONFIG_QED_RDMA) && |
| p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) { |
| /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide |
| * the status blocks equally between L2 / RoCE but with |
| * consideration as to how many l2 queues / cnqs we have. |
| */ |
| num_features++; |
| |
| feat_num[QED_RDMA_CNQ] = |
| min_t(u32, RESC_NUM(p_hwfn, QED_SB) / num_features, |
| RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); |
| } |
| |
| feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) / |
| num_features, |
| RESC_NUM(p_hwfn, QED_L2_QUEUE)); |
| DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, |
| "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n", |
| feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB), |
| num_features); |
| } |
| |
| static int qed_hw_get_resc(struct qed_hwfn *p_hwfn) |
| { |
| u8 enabled_func_idx = p_hwfn->enabled_func_idx; |
| u32 *resc_start = p_hwfn->hw_info.resc_start; |
| u8 num_funcs = p_hwfn->num_funcs_on_engine; |
| u32 *resc_num = p_hwfn->hw_info.resc_num; |
| struct qed_sb_cnt_info sb_cnt_info; |
| int i, max_vf_vlan_filters; |
| |
| memset(&sb_cnt_info, 0, sizeof(sb_cnt_info)); |
| |
| #ifdef CONFIG_QED_SRIOV |
| max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS; |
| #else |
| max_vf_vlan_filters = 0; |
| #endif |
| |
| qed_int_get_num_sbs(p_hwfn, &sb_cnt_info); |
| |
| resc_num[QED_SB] = min_t(u32, |
| (MAX_SB_PER_PATH_BB / num_funcs), |
| sb_cnt_info.sb_cnt); |
| resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs; |
| resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs; |
| resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs; |
| resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs; |
| resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]); |
| resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs; |
| resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) / |
| num_funcs; |
| resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs; |
| resc_num[QED_LL2_QUEUE] = MAX_NUM_LL2_RX_QUEUES / num_funcs; |
| resc_num[QED_RDMA_CNQ_RAM] = NUM_OF_CMDQS_CQS / num_funcs; |
| resc_num[QED_RDMA_STATS_QUEUE] = RDMA_NUM_STATISTIC_COUNTERS_BB / |
| num_funcs; |
| |
| for (i = 0; i < QED_MAX_RESC; i++) |
| resc_start[i] = resc_num[i] * enabled_func_idx; |
| |
| /* Sanity for ILT */ |
| if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) { |
| DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", |
| RESC_START(p_hwfn, QED_ILT), |
| RESC_END(p_hwfn, QED_ILT) - 1); |
| return -EINVAL; |
| } |
| |
| qed_hw_set_feat(p_hwfn); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, |
| "The numbers for each resource are:\n" |
| "SB = %d start = %d\n" |
| "L2_QUEUE = %d start = %d\n" |
| "VPORT = %d start = %d\n" |
| "PQ = %d start = %d\n" |
| "RL = %d start = %d\n" |
| "MAC = %d start = %d\n" |
| "VLAN = %d start = %d\n" |
| "ILT = %d start = %d\n" |
| "LL2_QUEUE = %d start = %d\n", |
| p_hwfn->hw_info.resc_num[QED_SB], |
| p_hwfn->hw_info.resc_start[QED_SB], |
| p_hwfn->hw_info.resc_num[QED_L2_QUEUE], |
| p_hwfn->hw_info.resc_start[QED_L2_QUEUE], |
| p_hwfn->hw_info.resc_num[QED_VPORT], |
| p_hwfn->hw_info.resc_start[QED_VPORT], |
| p_hwfn->hw_info.resc_num[QED_PQ], |
| p_hwfn->hw_info.resc_start[QED_PQ], |
| p_hwfn->hw_info.resc_num[QED_RL], |
| p_hwfn->hw_info.resc_start[QED_RL], |
| p_hwfn->hw_info.resc_num[QED_MAC], |
| p_hwfn->hw_info.resc_start[QED_MAC], |
| p_hwfn->hw_info.resc_num[QED_VLAN], |
| p_hwfn->hw_info.resc_start[QED_VLAN], |
| p_hwfn->hw_info.resc_num[QED_ILT], |
| p_hwfn->hw_info.resc_start[QED_ILT], |
| RESC_NUM(p_hwfn, QED_LL2_QUEUE), |
| RESC_START(p_hwfn, QED_LL2_QUEUE)); |
| |
| return 0; |
| } |
| |
| static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; |
| u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; |
| struct qed_mcp_link_params *link; |
| |
| /* Read global nvm_cfg address */ |
| nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); |
| |
| /* Verify MCP has initialized it */ |
| if (!nvm_cfg_addr) { |
| DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); |
| return -EINVAL; |
| } |
| |
| /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ |
| nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); |
| |
| addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, glob) + |
| offsetof(struct nvm_cfg1_glob, core_cfg); |
| |
| core_cfg = qed_rd(p_hwfn, p_ptt, addr); |
| |
| switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> |
| NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; |
| break; |
| case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: |
| p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); |
| break; |
| } |
| |
| /* Read default link configuration */ |
| link = &p_hwfn->mcp_info->link_input; |
| port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); |
| link_temp = qed_rd(p_hwfn, p_ptt, |
| port_cfg_addr + |
| offsetof(struct nvm_cfg1_port, speed_cap_mask)); |
| link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; |
| link->speed.advertised_speeds = link_temp; |
| |
| link_temp = link->speed.advertised_speeds; |
| p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp; |
| |
| link_temp = qed_rd(p_hwfn, p_ptt, |
| port_cfg_addr + |
| offsetof(struct nvm_cfg1_port, link_settings)); |
| switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> |
| NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: |
| link->speed.autoneg = true; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: |
| link->speed.forced_speed = 1000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: |
| link->speed.forced_speed = 10000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: |
| link->speed.forced_speed = 25000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: |
| link->speed.forced_speed = 40000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: |
| link->speed.forced_speed = 50000; |
| break; |
| case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: |
| link->speed.forced_speed = 100000; |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); |
| } |
| |
| link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; |
| link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; |
| link->pause.autoneg = !!(link_temp & |
| NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); |
| link->pause.forced_rx = !!(link_temp & |
| NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); |
| link->pause.forced_tx = !!(link_temp & |
| NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); |
| link->loopback_mode = 0; |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n", |
| link->speed.forced_speed, link->speed.advertised_speeds, |
| link->speed.autoneg, link->pause.autoneg); |
| |
| /* Read Multi-function information from shmem */ |
| addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, glob) + |
| offsetof(struct nvm_cfg1_glob, generic_cont0); |
| |
| generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); |
| |
| mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> |
| NVM_CFG1_GLOB_MF_MODE_OFFSET; |
| |
| switch (mf_mode) { |
| case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: |
| p_hwfn->cdev->mf_mode = QED_MF_OVLAN; |
| break; |
| case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: |
| p_hwfn->cdev->mf_mode = QED_MF_NPAR; |
| break; |
| case NVM_CFG1_GLOB_MF_MODE_DEFAULT: |
| p_hwfn->cdev->mf_mode = QED_MF_DEFAULT; |
| break; |
| } |
| DP_INFO(p_hwfn, "Multi function mode is %08x\n", |
| p_hwfn->cdev->mf_mode); |
| |
| /* Read Multi-function information from shmem */ |
| addr = MCP_REG_SCRATCH + nvm_cfg1_offset + |
| offsetof(struct nvm_cfg1, glob) + |
| offsetof(struct nvm_cfg1_glob, device_capabilities); |
| |
| device_capabilities = qed_rd(p_hwfn, p_ptt, addr); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) |
| __set_bit(QED_DEV_CAP_ETH, |
| &p_hwfn->hw_info.device_capabilities); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) |
| __set_bit(QED_DEV_CAP_ISCSI, |
| &p_hwfn->hw_info.device_capabilities); |
| if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) |
| __set_bit(QED_DEV_CAP_ROCE, |
| &p_hwfn->hw_info.device_capabilities); |
| |
| return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); |
| } |
| |
| static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; |
| u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; |
| |
| num_funcs = MAX_NUM_PFS_BB; |
| |
| /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values |
| * in the other bits are selected. |
| * Bits 1-15 are for functions 1-15, respectively, and their value is |
| * '0' only for enabled functions (function 0 always exists and |
| * enabled). |
| * In case of CMT, only the "even" functions are enabled, and thus the |
| * number of functions for both hwfns is learnt from the same bits. |
| */ |
| reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); |
| |
| if (reg_function_hide & 0x1) { |
| if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) { |
| num_funcs = 0; |
| eng_mask = 0xaaaa; |
| } else { |
| num_funcs = 1; |
| eng_mask = 0x5554; |
| } |
| |
| /* Get the number of the enabled functions on the engine */ |
| tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; |
| while (tmp) { |
| if (tmp & 0x1) |
| num_funcs++; |
| tmp >>= 0x1; |
| } |
| |
| /* Get the PF index within the enabled functions */ |
| low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; |
| tmp = reg_function_hide & eng_mask & low_pfs_mask; |
| while (tmp) { |
| if (tmp & 0x1) |
| enabled_func_idx--; |
| tmp >>= 0x1; |
| } |
| } |
| |
| p_hwfn->num_funcs_on_engine = num_funcs; |
| p_hwfn->enabled_func_idx = enabled_func_idx; |
| |
| DP_VERBOSE(p_hwfn, |
| NETIF_MSG_PROBE, |
| "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", |
| p_hwfn->rel_pf_id, |
| p_hwfn->abs_pf_id, |
| p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); |
| } |
| |
| static int |
| qed_get_hw_info(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| enum qed_pci_personality personality) |
| { |
| u32 port_mode; |
| int rc; |
| |
| /* Since all information is common, only first hwfns should do this */ |
| if (IS_LEAD_HWFN(p_hwfn)) { |
| rc = qed_iov_hw_info(p_hwfn); |
| if (rc) |
| return rc; |
| } |
| |
| /* Read the port mode */ |
| port_mode = qed_rd(p_hwfn, p_ptt, |
| CNIG_REG_NW_PORT_MODE_BB_B0); |
| |
| if (port_mode < 3) { |
| p_hwfn->cdev->num_ports_in_engines = 1; |
| } else if (port_mode <= 5) { |
| p_hwfn->cdev->num_ports_in_engines = 2; |
| } else { |
| DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", |
| p_hwfn->cdev->num_ports_in_engines); |
| |
| /* Default num_ports_in_engines to something */ |
| p_hwfn->cdev->num_ports_in_engines = 1; |
| } |
| |
| qed_hw_get_nvm_info(p_hwfn, p_ptt); |
| |
| rc = qed_int_igu_read_cam(p_hwfn, p_ptt); |
| if (rc) |
| return rc; |
| |
| if (qed_mcp_is_init(p_hwfn)) |
| ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, |
| p_hwfn->mcp_info->func_info.mac); |
| else |
| eth_random_addr(p_hwfn->hw_info.hw_mac_addr); |
| |
| if (qed_mcp_is_init(p_hwfn)) { |
| if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) |
| p_hwfn->hw_info.ovlan = |
| p_hwfn->mcp_info->func_info.ovlan; |
| |
| qed_mcp_cmd_port_init(p_hwfn, p_ptt); |
| } |
| |
| if (qed_mcp_is_init(p_hwfn)) { |
| enum qed_pci_personality protocol; |
| |
| protocol = p_hwfn->mcp_info->func_info.protocol; |
| p_hwfn->hw_info.personality = protocol; |
| } |
| |
| qed_get_num_funcs(p_hwfn, p_ptt); |
| |
| return qed_hw_get_resc(p_hwfn); |
| } |
| |
| static int qed_get_dev_info(struct qed_dev *cdev) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| u32 tmp; |
| |
| /* Read Vendor Id / Device Id */ |
| pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); |
| pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); |
| |
| cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt, |
| MISCS_REG_CHIP_NUM); |
| cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt, |
| MISCS_REG_CHIP_REV); |
| MASK_FIELD(CHIP_REV, cdev->chip_rev); |
| |
| cdev->type = QED_DEV_TYPE_BB; |
| /* Learn number of HW-functions */ |
| tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt, |
| MISCS_REG_CMT_ENABLED_FOR_PAIR); |
| |
| if (tmp & (1 << p_hwfn->rel_pf_id)) { |
| DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); |
| cdev->num_hwfns = 2; |
| } else { |
| cdev->num_hwfns = 1; |
| } |
| |
| cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt, |
| MISCS_REG_CHIP_TEST_REG) >> 4; |
| MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); |
| cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt, |
| MISCS_REG_CHIP_METAL); |
| MASK_FIELD(CHIP_METAL, cdev->chip_metal); |
| |
| DP_INFO(cdev->hwfns, |
| "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", |
| cdev->chip_num, cdev->chip_rev, |
| cdev->chip_bond_id, cdev->chip_metal); |
| |
| if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) { |
| DP_NOTICE(cdev->hwfns, |
| "The chip type/rev (BB A0) is not supported!\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, |
| void __iomem *p_regview, |
| void __iomem *p_doorbells, |
| enum qed_pci_personality personality) |
| { |
| int rc = 0; |
| |
| /* Split PCI bars evenly between hwfns */ |
| p_hwfn->regview = p_regview; |
| p_hwfn->doorbells = p_doorbells; |
| |
| if (IS_VF(p_hwfn->cdev)) |
| return qed_vf_hw_prepare(p_hwfn); |
| |
| /* Validate that chip access is feasible */ |
| if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { |
| DP_ERR(p_hwfn, |
| "Reading the ME register returns all Fs; Preventing further chip access\n"); |
| return -EINVAL; |
| } |
| |
| get_function_id(p_hwfn); |
| |
| /* Allocate PTT pool */ |
| rc = qed_ptt_pool_alloc(p_hwfn); |
| if (rc) |
| goto err0; |
| |
| /* Allocate the main PTT */ |
| p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); |
| |
| /* First hwfn learns basic information, e.g., number of hwfns */ |
| if (!p_hwfn->my_id) { |
| rc = qed_get_dev_info(p_hwfn->cdev); |
| if (rc) |
| goto err1; |
| } |
| |
| qed_hw_hwfn_prepare(p_hwfn); |
| |
| /* Initialize MCP structure */ |
| rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); |
| goto err1; |
| } |
| |
| /* Read the device configuration information from the HW and SHMEM */ |
| rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "Failed to get HW information\n"); |
| goto err2; |
| } |
| |
| /* Allocate the init RT array and initialize the init-ops engine */ |
| rc = qed_init_alloc(p_hwfn); |
| if (rc) |
| goto err2; |
| |
| return rc; |
| err2: |
| if (IS_LEAD_HWFN(p_hwfn)) |
| qed_iov_free_hw_info(p_hwfn->cdev); |
| qed_mcp_free(p_hwfn); |
| err1: |
| qed_hw_hwfn_free(p_hwfn); |
| err0: |
| return rc; |
| } |
| |
| int qed_hw_prepare(struct qed_dev *cdev, |
| int personality) |
| { |
| struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); |
| int rc; |
| |
| /* Store the precompiled init data ptrs */ |
| if (IS_PF(cdev)) |
| qed_init_iro_array(cdev); |
| |
| /* Initialize the first hwfn - will learn number of hwfns */ |
| rc = qed_hw_prepare_single(p_hwfn, |
| cdev->regview, |
| cdev->doorbells, personality); |
| if (rc) |
| return rc; |
| |
| personality = p_hwfn->hw_info.personality; |
| |
| /* Initialize the rest of the hwfns */ |
| if (cdev->num_hwfns > 1) { |
| void __iomem *p_regview, *p_doorbell; |
| u8 __iomem *addr; |
| |
| /* adjust bar offset for second engine */ |
| addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2; |
| p_regview = addr; |
| |
| /* adjust doorbell bar offset for second engine */ |
| addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2; |
| p_doorbell = addr; |
| |
| /* prepare second hw function */ |
| rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, |
| p_doorbell, personality); |
| |
| /* in case of error, need to free the previously |
| * initiliazed hwfn 0. |
| */ |
| if (rc) { |
| if (IS_PF(cdev)) { |
| qed_init_free(p_hwfn); |
| qed_mcp_free(p_hwfn); |
| qed_hw_hwfn_free(p_hwfn); |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| void qed_hw_remove(struct qed_dev *cdev) |
| { |
| int i; |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| if (IS_VF(cdev)) { |
| qed_vf_pf_release(p_hwfn); |
| continue; |
| } |
| |
| qed_init_free(p_hwfn); |
| qed_hw_hwfn_free(p_hwfn); |
| qed_mcp_free(p_hwfn); |
| } |
| |
| qed_iov_free_hw_info(cdev); |
| } |
| |
| static void qed_chain_free_next_ptr(struct qed_dev *cdev, |
| struct qed_chain *p_chain) |
| { |
| void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; |
| dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; |
| struct qed_chain_next *p_next; |
| u32 size, i; |
| |
| if (!p_virt) |
| return; |
| |
| size = p_chain->elem_size * p_chain->usable_per_page; |
| |
| for (i = 0; i < p_chain->page_cnt; i++) { |
| if (!p_virt) |
| break; |
| |
| p_next = (struct qed_chain_next *)((u8 *)p_virt + size); |
| p_virt_next = p_next->next_virt; |
| p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); |
| |
| dma_free_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, p_virt, p_phys); |
| |
| p_virt = p_virt_next; |
| p_phys = p_phys_next; |
| } |
| } |
| |
| static void qed_chain_free_single(struct qed_dev *cdev, |
| struct qed_chain *p_chain) |
| { |
| if (!p_chain->p_virt_addr) |
| return; |
| |
| dma_free_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| p_chain->p_virt_addr, p_chain->p_phys_addr); |
| } |
| |
| static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; |
| u32 page_cnt = p_chain->page_cnt, i, pbl_size; |
| u8 *p_pbl_virt = p_chain->pbl.p_virt_table; |
| |
| if (!pp_virt_addr_tbl) |
| return; |
| |
| if (!p_chain->pbl.p_virt_table) |
| goto out; |
| |
| for (i = 0; i < page_cnt; i++) { |
| if (!pp_virt_addr_tbl[i]) |
| break; |
| |
| dma_free_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| pp_virt_addr_tbl[i], |
| *(dma_addr_t *)p_pbl_virt); |
| |
| p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; |
| } |
| |
| pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; |
| dma_free_coherent(&cdev->pdev->dev, |
| pbl_size, |
| p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table); |
| out: |
| vfree(p_chain->pbl.pp_virt_addr_tbl); |
| } |
| |
| void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| switch (p_chain->mode) { |
| case QED_CHAIN_MODE_NEXT_PTR: |
| qed_chain_free_next_ptr(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_SINGLE: |
| qed_chain_free_single(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_PBL: |
| qed_chain_free_pbl(cdev, p_chain); |
| break; |
| } |
| } |
| |
| static int |
| qed_chain_alloc_sanity_check(struct qed_dev *cdev, |
| enum qed_chain_cnt_type cnt_type, |
| size_t elem_size, u32 page_cnt) |
| { |
| u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; |
| |
| /* The actual chain size can be larger than the maximal possible value |
| * after rounding up the requested elements number to pages, and after |
| * taking into acount the unusuable elements (next-ptr elements). |
| * The size of a "u16" chain can be (U16_MAX + 1) since the chain |
| * size/capacity fields are of a u32 type. |
| */ |
| if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && |
| chain_size > 0x10000) || |
| (cnt_type == QED_CHAIN_CNT_TYPE_U32 && |
| chain_size > 0x100000000ULL)) { |
| DP_NOTICE(cdev, |
| "The actual chain size (0x%llx) is larger than the maximal possible value\n", |
| chain_size); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| void *p_virt = NULL, *p_virt_prev = NULL; |
| dma_addr_t p_phys = 0; |
| u32 i; |
| |
| for (i = 0; i < p_chain->page_cnt; i++) { |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| if (i == 0) { |
| qed_chain_init_mem(p_chain, p_virt, p_phys); |
| qed_chain_reset(p_chain); |
| } else { |
| qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, |
| p_virt, p_phys); |
| } |
| |
| p_virt_prev = p_virt; |
| } |
| /* Last page's next element should point to the beginning of the |
| * chain. |
| */ |
| qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, |
| p_chain->p_virt_addr, |
| p_chain->p_phys_addr); |
| |
| return 0; |
| } |
| |
| static int |
| qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| dma_addr_t p_phys = 0; |
| void *p_virt = NULL; |
| |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| qed_chain_init_mem(p_chain, p_virt, p_phys); |
| qed_chain_reset(p_chain); |
| |
| return 0; |
| } |
| |
| static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) |
| { |
| u32 page_cnt = p_chain->page_cnt, size, i; |
| dma_addr_t p_phys = 0, p_pbl_phys = 0; |
| void **pp_virt_addr_tbl = NULL; |
| u8 *p_pbl_virt = NULL; |
| void *p_virt = NULL; |
| |
| size = page_cnt * sizeof(*pp_virt_addr_tbl); |
| pp_virt_addr_tbl = vzalloc(size); |
| if (!pp_virt_addr_tbl) |
| return -ENOMEM; |
| |
| /* The allocation of the PBL table is done with its full size, since it |
| * is expected to be successive. |
| * qed_chain_init_pbl_mem() is called even in a case of an allocation |
| * failure, since pp_virt_addr_tbl was previously allocated, and it |
| * should be saved to allow its freeing during the error flow. |
| */ |
| size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; |
| p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| size, &p_pbl_phys, GFP_KERNEL); |
| qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, |
| pp_virt_addr_tbl); |
| if (!p_pbl_virt) |
| return -ENOMEM; |
| |
| for (i = 0; i < page_cnt; i++) { |
| p_virt = dma_alloc_coherent(&cdev->pdev->dev, |
| QED_CHAIN_PAGE_SIZE, |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| return -ENOMEM; |
| |
| if (i == 0) { |
| qed_chain_init_mem(p_chain, p_virt, p_phys); |
| qed_chain_reset(p_chain); |
| } |
| |
| /* Fill the PBL table with the physical address of the page */ |
| *(dma_addr_t *)p_pbl_virt = p_phys; |
| /* Keep the virtual address of the page */ |
| p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; |
| |
| p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| int qed_chain_alloc(struct qed_dev *cdev, |
| enum qed_chain_use_mode intended_use, |
| enum qed_chain_mode mode, |
| enum qed_chain_cnt_type cnt_type, |
| u32 num_elems, size_t elem_size, struct qed_chain *p_chain) |
| { |
| u32 page_cnt; |
| int rc = 0; |
| |
| if (mode == QED_CHAIN_MODE_SINGLE) |
| page_cnt = 1; |
| else |
| page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); |
| |
| rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); |
| if (rc) { |
| DP_NOTICE(cdev, |
| "Cannot allocate a chain with the given arguments:\n"); |
| DP_NOTICE(cdev, |
| "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", |
| intended_use, mode, cnt_type, num_elems, elem_size); |
| return rc; |
| } |
| |
| qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, |
| mode, cnt_type); |
| |
| switch (mode) { |
| case QED_CHAIN_MODE_NEXT_PTR: |
| rc = qed_chain_alloc_next_ptr(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_SINGLE: |
| rc = qed_chain_alloc_single(cdev, p_chain); |
| break; |
| case QED_CHAIN_MODE_PBL: |
| rc = qed_chain_alloc_pbl(cdev, p_chain); |
| break; |
| } |
| if (rc) |
| goto nomem; |
| |
| return 0; |
| |
| nomem: |
| qed_chain_free(cdev, p_chain); |
| return rc; |
| } |
| |
| int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) |
| { |
| if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { |
| u16 min, max; |
| |
| min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); |
| max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); |
| DP_NOTICE(p_hwfn, |
| "l2_queue id [%d] is not valid, available indices [%d - %d]\n", |
| src_id, min, max); |
| |
| return -EINVAL; |
| } |
| |
| *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; |
| |
| return 0; |
| } |
| |
| int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) |
| { |
| if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { |
| u8 min, max; |
| |
| min = (u8)RESC_START(p_hwfn, QED_VPORT); |
| max = min + RESC_NUM(p_hwfn, QED_VPORT); |
| DP_NOTICE(p_hwfn, |
| "vport id [%d] is not valid, available indices [%d - %d]\n", |
| src_id, min, max); |
| |
| return -EINVAL; |
| } |
| |
| *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; |
| |
| return 0; |
| } |
| |
| int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) |
| { |
| if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { |
| u8 min, max; |
| |
| min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); |
| max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); |
| DP_NOTICE(p_hwfn, |
| "rss_eng id [%d] is not valid, available indices [%d - %d]\n", |
| src_id, min, max); |
| |
| return -EINVAL; |
| } |
| |
| *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; |
| |
| return 0; |
| } |
| |
| static void qed_llh_mac_to_filter(u32 *p_high, u32 *p_low, |
| u8 *p_filter) |
| { |
| *p_high = p_filter[1] | (p_filter[0] << 8); |
| *p_low = p_filter[5] | (p_filter[4] << 8) | |
| (p_filter[3] << 16) | (p_filter[2] << 24); |
| } |
| |
| int qed_llh_add_mac_filter(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u8 *p_filter) |
| { |
| u32 high = 0, low = 0, en; |
| int i; |
| |
| if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) |
| return 0; |
| |
| qed_llh_mac_to_filter(&high, &low, p_filter); |
| |
| /* Find a free entry and utilize it */ |
| for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { |
| en = qed_rd(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32)); |
| if (en) |
| continue; |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_VALUE + |
| 2 * i * sizeof(u32), low); |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_VALUE + |
| (2 * i + 1) * sizeof(u32), high); |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_MODE + i * sizeof(u32), 0); |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + |
| i * sizeof(u32), 0); |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 1); |
| break; |
| } |
| if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { |
| DP_NOTICE(p_hwfn, |
| "Failed to find an empty LLH filter to utilize\n"); |
| return -EINVAL; |
| } |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "mac: %pM is added at %d\n", |
| p_filter, i); |
| |
| return 0; |
| } |
| |
| void qed_llh_remove_mac_filter(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u8 *p_filter) |
| { |
| u32 high = 0, low = 0; |
| int i; |
| |
| if (!(IS_MF_SI(p_hwfn) || IS_MF_DEFAULT(p_hwfn))) |
| return; |
| |
| qed_llh_mac_to_filter(&high, &low, p_filter); |
| |
| /* Find the entry and clean it */ |
| for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { |
| if (qed_rd(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_VALUE + |
| 2 * i * sizeof(u32)) != low) |
| continue; |
| if (qed_rd(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_VALUE + |
| (2 * i + 1) * sizeof(u32)) != high) |
| continue; |
| |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_EN + i * sizeof(u32), 0); |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * i * sizeof(u32), 0); |
| qed_wr(p_hwfn, p_ptt, |
| NIG_REG_LLH_FUNC_FILTER_VALUE + |
| (2 * i + 1) * sizeof(u32), 0); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "mac: %pM is removed from %d\n", |
| p_filter, i); |
| break; |
| } |
| if (i >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) |
| DP_NOTICE(p_hwfn, "Tried to remove a non-configured filter\n"); |
| } |
| |
| static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| u32 hw_addr, void *p_eth_qzone, |
| size_t eth_qzone_size, u8 timeset) |
| { |
| struct coalescing_timeset *p_coal_timeset; |
| |
| if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { |
| DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); |
| return -EINVAL; |
| } |
| |
| p_coal_timeset = p_eth_qzone; |
| memset(p_coal_timeset, 0, eth_qzone_size); |
| SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); |
| SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); |
| qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); |
| |
| return 0; |
| } |
| |
| int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| u16 coalesce, u8 qid, u16 sb_id) |
| { |
| struct ustorm_eth_queue_zone eth_qzone; |
| u8 timeset, timer_res; |
| u16 fw_qid = 0; |
| u32 address; |
| int rc; |
| |
| /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ |
| if (coalesce <= 0x7F) { |
| timer_res = 0; |
| } else if (coalesce <= 0xFF) { |
| timer_res = 1; |
| } else if (coalesce <= 0x1FF) { |
| timer_res = 2; |
| } else { |
| DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); |
| return -EINVAL; |
| } |
| timeset = (u8)(coalesce >> timer_res); |
| |
| rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid); |
| if (rc) |
| return rc; |
| |
| rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false); |
| if (rc) |
| goto out; |
| |
| address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid); |
| |
| rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, |
| sizeof(struct ustorm_eth_queue_zone), timeset); |
| if (rc) |
| goto out; |
| |
| p_hwfn->cdev->rx_coalesce_usecs = coalesce; |
| out: |
| return rc; |
| } |
| |
| int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| u16 coalesce, u8 qid, u16 sb_id) |
| { |
| struct xstorm_eth_queue_zone eth_qzone; |
| u8 timeset, timer_res; |
| u16 fw_qid = 0; |
| u32 address; |
| int rc; |
| |
| /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ |
| if (coalesce <= 0x7F) { |
| timer_res = 0; |
| } else if (coalesce <= 0xFF) { |
| timer_res = 1; |
| } else if (coalesce <= 0x1FF) { |
| timer_res = 2; |
| } else { |
| DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); |
| return -EINVAL; |
| } |
| timeset = (u8)(coalesce >> timer_res); |
| |
| rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid); |
| if (rc) |
| return rc; |
| |
| rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true); |
| if (rc) |
| goto out; |
| |
| address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid); |
| |
| rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, |
| sizeof(struct xstorm_eth_queue_zone), timeset); |
| if (rc) |
| goto out; |
| |
| p_hwfn->cdev->tx_coalesce_usecs = coalesce; |
| out: |
| return rc; |
| } |
| |
| /* Calculate final WFQ values for all vports and configure them. |
| * After this configuration each vport will have |
| * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) |
| */ |
| static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 min_pf_rate) |
| { |
| struct init_qm_vport_params *vport_params; |
| int i; |
| |
| vport_params = p_hwfn->qm_info.qm_vport_params; |
| |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { |
| u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; |
| |
| vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / |
| min_pf_rate; |
| qed_init_vport_wfq(p_hwfn, p_ptt, |
| vport_params[i].first_tx_pq_id, |
| vport_params[i].vport_wfq); |
| } |
| } |
| |
| static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, |
| u32 min_pf_rate) |
| |
| { |
| int i; |
| |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) |
| p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; |
| } |
| |
| static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 min_pf_rate) |
| { |
| struct init_qm_vport_params *vport_params; |
| int i; |
| |
| vport_params = p_hwfn->qm_info.qm_vport_params; |
| |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { |
| qed_init_wfq_default_param(p_hwfn, min_pf_rate); |
| qed_init_vport_wfq(p_hwfn, p_ptt, |
| vport_params[i].first_tx_pq_id, |
| vport_params[i].vport_wfq); |
| } |
| } |
| |
| /* This function performs several validations for WFQ |
| * configuration and required min rate for a given vport |
| * 1. req_rate must be greater than one percent of min_pf_rate. |
| * 2. req_rate should not cause other vports [not configured for WFQ explicitly] |
| * rates to get less than one percent of min_pf_rate. |
| * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. |
| */ |
| static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, |
| u16 vport_id, u32 req_rate, u32 min_pf_rate) |
| { |
| u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; |
| int non_requested_count = 0, req_count = 0, i, num_vports; |
| |
| num_vports = p_hwfn->qm_info.num_vports; |
| |
| /* Accounting for the vports which are configured for WFQ explicitly */ |
| for (i = 0; i < num_vports; i++) { |
| u32 tmp_speed; |
| |
| if ((i != vport_id) && |
| p_hwfn->qm_info.wfq_data[i].configured) { |
| req_count++; |
| tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; |
| total_req_min_rate += tmp_speed; |
| } |
| } |
| |
| /* Include current vport data as well */ |
| req_count++; |
| total_req_min_rate += req_rate; |
| non_requested_count = num_vports - req_count; |
| |
| if (req_rate < min_pf_rate / QED_WFQ_UNIT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", |
| vport_id, req_rate, min_pf_rate); |
| return -EINVAL; |
| } |
| |
| if (num_vports > QED_WFQ_UNIT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Number of vports is greater than %d\n", |
| QED_WFQ_UNIT); |
| return -EINVAL; |
| } |
| |
| if (total_req_min_rate > min_pf_rate) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", |
| total_req_min_rate, min_pf_rate); |
| return -EINVAL; |
| } |
| |
| total_left_rate = min_pf_rate - total_req_min_rate; |
| |
| left_rate_per_vp = total_left_rate / non_requested_count; |
| if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", |
| left_rate_per_vp, min_pf_rate); |
| return -EINVAL; |
| } |
| |
| p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; |
| p_hwfn->qm_info.wfq_data[vport_id].configured = true; |
| |
| for (i = 0; i < num_vports; i++) { |
| if (p_hwfn->qm_info.wfq_data[i].configured) |
| continue; |
| |
| p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; |
| } |
| |
| return 0; |
| } |
| |
| static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 vp_id, u32 rate) |
| { |
| struct qed_mcp_link_state *p_link; |
| int rc = 0; |
| |
| p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; |
| |
| if (!p_link->min_pf_rate) { |
| p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; |
| p_hwfn->qm_info.wfq_data[vp_id].configured = true; |
| return rc; |
| } |
| |
| rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); |
| |
| if (!rc) |
| qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, |
| p_link->min_pf_rate); |
| else |
| DP_NOTICE(p_hwfn, |
| "Validation failed while configuring min rate\n"); |
| |
| return rc; |
| } |
| |
| static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 min_pf_rate) |
| { |
| bool use_wfq = false; |
| int rc = 0; |
| u16 i; |
| |
| /* Validate all pre configured vports for wfq */ |
| for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { |
| u32 rate; |
| |
| if (!p_hwfn->qm_info.wfq_data[i].configured) |
| continue; |
| |
| rate = p_hwfn->qm_info.wfq_data[i].min_speed; |
| use_wfq = true; |
| |
| rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); |
| if (rc) { |
| DP_NOTICE(p_hwfn, |
| "WFQ validation failed while configuring min rate\n"); |
| break; |
| } |
| } |
| |
| if (!rc && use_wfq) |
| qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); |
| else |
| qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); |
| |
| return rc; |
| } |
| |
| /* Main API for qed clients to configure vport min rate. |
| * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] |
| * rate - Speed in Mbps needs to be assigned to a given vport. |
| */ |
| int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) |
| { |
| int i, rc = -EINVAL; |
| |
| /* Currently not supported; Might change in future */ |
| if (cdev->num_hwfns > 1) { |
| DP_NOTICE(cdev, |
| "WFQ configuration is not supported for this device\n"); |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_ptt *p_ptt; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EBUSY; |
| |
| rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); |
| |
| if (rc) { |
| qed_ptt_release(p_hwfn, p_ptt); |
| return rc; |
| } |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| return rc; |
| } |
| |
| /* API to configure WFQ from mcp link change */ |
| void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate) |
| { |
| int i; |
| |
| if (cdev->num_hwfns > 1) { |
| DP_VERBOSE(cdev, |
| NETIF_MSG_LINK, |
| "WFQ configuration is not supported for this device\n"); |
| return; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| |
| __qed_configure_vp_wfq_on_link_change(p_hwfn, |
| p_hwfn->p_dpc_ptt, |
| min_pf_rate); |
| } |
| } |
| |
| int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_mcp_link_state *p_link, |
| u8 max_bw) |
| { |
| int rc = 0; |
| |
| p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; |
| |
| if (!p_link->line_speed && (max_bw != 100)) |
| return rc; |
| |
| p_link->speed = (p_link->line_speed * max_bw) / 100; |
| p_hwfn->qm_info.pf_rl = p_link->speed; |
| |
| /* Since the limiter also affects Tx-switched traffic, we don't want it |
| * to limit such traffic in case there's no actual limit. |
| * In that case, set limit to imaginary high boundary. |
| */ |
| if (max_bw == 100) |
| p_hwfn->qm_info.pf_rl = 100000; |
| |
| rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, |
| p_hwfn->qm_info.pf_rl); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Configured MAX bandwidth to be %08x Mb/sec\n", |
| p_link->speed); |
| |
| return rc; |
| } |
| |
| /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ |
| int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) |
| { |
| int i, rc = -EINVAL; |
| |
| if (max_bw < 1 || max_bw > 100) { |
| DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); |
| struct qed_mcp_link_state *p_link; |
| struct qed_ptt *p_ptt; |
| |
| p_link = &p_lead->mcp_info->link_output; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EBUSY; |
| |
| rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, |
| p_link, max_bw); |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| |
| if (rc) |
| break; |
| } |
| |
| return rc; |
| } |
| |
| int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_mcp_link_state *p_link, |
| u8 min_bw) |
| { |
| int rc = 0; |
| |
| p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; |
| p_hwfn->qm_info.pf_wfq = min_bw; |
| |
| if (!p_link->line_speed) |
| return rc; |
| |
| p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; |
| |
| rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); |
| |
| DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, |
| "Configured MIN bandwidth to be %d Mb/sec\n", |
| p_link->min_pf_rate); |
| |
| return rc; |
| } |
| |
| /* Main API to configure PF min bandwidth where bw range is [1-100] */ |
| int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) |
| { |
| int i, rc = -EINVAL; |
| |
| if (min_bw < 1 || min_bw > 100) { |
| DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); |
| return rc; |
| } |
| |
| for_each_hwfn(cdev, i) { |
| struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; |
| struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); |
| struct qed_mcp_link_state *p_link; |
| struct qed_ptt *p_ptt; |
| |
| p_link = &p_lead->mcp_info->link_output; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) |
| return -EBUSY; |
| |
| rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, |
| p_link, min_bw); |
| if (rc) { |
| qed_ptt_release(p_hwfn, p_ptt); |
| return rc; |
| } |
| |
| if (p_link->min_pf_rate) { |
| u32 min_rate = p_link->min_pf_rate; |
| |
| rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, |
| p_ptt, |
| min_rate); |
| } |
| |
| qed_ptt_release(p_hwfn, p_ptt); |
| } |
| |
| return rc; |
| } |
| |
| void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) |
| { |
| struct qed_mcp_link_state *p_link; |
| |
| p_link = &p_hwfn->mcp_info->link_output; |
| |
| if (p_link->min_pf_rate) |
| qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, |
| p_link->min_pf_rate); |
| |
| memset(p_hwfn->qm_info.wfq_data, 0, |
| sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); |
| } |