|  | /* | 
|  | *  linux/kernel/exit.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/iocontext.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/taskstats_kern.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/futex.h> | 
|  | #include <linux/pipe_fs_i.h> | 
|  | #include <linux/audit.h> /* for audit_free() */ | 
|  | #include <linux/resource.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/task_io_accounting_ops.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/fs_struct.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <trace/events/sched.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include "cred-internals.h" | 
|  |  | 
|  | static void exit_mm(struct task_struct * tsk); | 
|  |  | 
|  | static void __unhash_process(struct task_struct *p) | 
|  | { | 
|  | nr_threads--; | 
|  | detach_pid(p, PIDTYPE_PID); | 
|  | if (thread_group_leader(p)) { | 
|  | detach_pid(p, PIDTYPE_PGID); | 
|  | detach_pid(p, PIDTYPE_SID); | 
|  |  | 
|  | list_del_rcu(&p->tasks); | 
|  | list_del_init(&p->sibling); | 
|  | __get_cpu_var(process_counts)--; | 
|  | } | 
|  | list_del_rcu(&p->thread_group); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function expects the tasklist_lock write-locked. | 
|  | */ | 
|  | static void __exit_signal(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | BUG_ON(!sig); | 
|  | BUG_ON(!atomic_read(&sig->count)); | 
|  |  | 
|  | sighand = rcu_dereference(tsk->sighand); | 
|  | spin_lock(&sighand->siglock); | 
|  |  | 
|  | posix_cpu_timers_exit(tsk); | 
|  | if (atomic_dec_and_test(&sig->count)) | 
|  | posix_cpu_timers_exit_group(tsk); | 
|  | else { | 
|  | /* | 
|  | * If there is any task waiting for the group exit | 
|  | * then notify it: | 
|  | */ | 
|  | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) | 
|  | wake_up_process(sig->group_exit_task); | 
|  |  | 
|  | if (tsk == sig->curr_target) | 
|  | sig->curr_target = next_thread(tsk); | 
|  | /* | 
|  | * Accumulate here the counters for all threads but the | 
|  | * group leader as they die, so they can be added into | 
|  | * the process-wide totals when those are taken. | 
|  | * The group leader stays around as a zombie as long | 
|  | * as there are other threads.  When it gets reaped, | 
|  | * the exit.c code will add its counts into these totals. | 
|  | * We won't ever get here for the group leader, since it | 
|  | * will have been the last reference on the signal_struct. | 
|  | */ | 
|  | sig->utime = cputime_add(sig->utime, tsk->utime); | 
|  | sig->stime = cputime_add(sig->stime, tsk->stime); | 
|  | sig->gtime = cputime_add(sig->gtime, tsk->gtime); | 
|  | sig->min_flt += tsk->min_flt; | 
|  | sig->maj_flt += tsk->maj_flt; | 
|  | sig->nvcsw += tsk->nvcsw; | 
|  | sig->nivcsw += tsk->nivcsw; | 
|  | sig->inblock += task_io_get_inblock(tsk); | 
|  | sig->oublock += task_io_get_oublock(tsk); | 
|  | task_io_accounting_add(&sig->ioac, &tsk->ioac); | 
|  | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | 
|  | sig = NULL; /* Marker for below. */ | 
|  | } | 
|  |  | 
|  | __unhash_process(tsk); | 
|  |  | 
|  | /* | 
|  | * Do this under ->siglock, we can race with another thread | 
|  | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | 
|  | */ | 
|  | flush_sigqueue(&tsk->pending); | 
|  |  | 
|  | tsk->signal = NULL; | 
|  | tsk->sighand = NULL; | 
|  | spin_unlock(&sighand->siglock); | 
|  |  | 
|  | __cleanup_sighand(sighand); | 
|  | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 
|  | if (sig) { | 
|  | flush_sigqueue(&sig->shared_pending); | 
|  | taskstats_tgid_free(sig); | 
|  | /* | 
|  | * Make sure ->signal can't go away under rq->lock, | 
|  | * see account_group_exec_runtime(). | 
|  | */ | 
|  | task_rq_unlock_wait(tsk); | 
|  | __cleanup_signal(sig); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void delayed_put_task_struct(struct rcu_head *rhp) | 
|  | { | 
|  | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 
|  |  | 
|  | #ifdef CONFIG_PERF_EVENTS | 
|  | WARN_ON_ONCE(tsk->perf_event_ctxp); | 
|  | #endif | 
|  | trace_sched_process_free(tsk); | 
|  | put_task_struct(tsk); | 
|  | } | 
|  |  | 
|  |  | 
|  | void release_task(struct task_struct * p) | 
|  | { | 
|  | struct task_struct *leader; | 
|  | int zap_leader; | 
|  | repeat: | 
|  | tracehook_prepare_release_task(p); | 
|  | /* don't need to get the RCU readlock here - the process is dead and | 
|  | * can't be modifying its own credentials */ | 
|  | atomic_dec(&__task_cred(p)->user->processes); | 
|  |  | 
|  | proc_flush_task(p); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | tracehook_finish_release_task(p); | 
|  | __exit_signal(p); | 
|  |  | 
|  | /* | 
|  | * If we are the last non-leader member of the thread | 
|  | * group, and the leader is zombie, then notify the | 
|  | * group leader's parent process. (if it wants notification.) | 
|  | */ | 
|  | zap_leader = 0; | 
|  | leader = p->group_leader; | 
|  | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | 
|  | BUG_ON(task_detached(leader)); | 
|  | do_notify_parent(leader, leader->exit_signal); | 
|  | /* | 
|  | * If we were the last child thread and the leader has | 
|  | * exited already, and the leader's parent ignores SIGCHLD, | 
|  | * then we are the one who should release the leader. | 
|  | * | 
|  | * do_notify_parent() will have marked it self-reaping in | 
|  | * that case. | 
|  | */ | 
|  | zap_leader = task_detached(leader); | 
|  |  | 
|  | /* | 
|  | * This maintains the invariant that release_task() | 
|  | * only runs on a task in EXIT_DEAD, just for sanity. | 
|  | */ | 
|  | if (zap_leader) | 
|  | leader->exit_state = EXIT_DEAD; | 
|  | } | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | release_thread(p); | 
|  | call_rcu(&p->rcu, delayed_put_task_struct); | 
|  |  | 
|  | p = leader; | 
|  | if (unlikely(zap_leader)) | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This checks not only the pgrp, but falls back on the pid if no | 
|  | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | 
|  | * without this... | 
|  | * | 
|  | * The caller must hold rcu lock or the tasklist lock. | 
|  | */ | 
|  | struct pid *session_of_pgrp(struct pid *pgrp) | 
|  | { | 
|  | struct task_struct *p; | 
|  | struct pid *sid = NULL; | 
|  |  | 
|  | p = pid_task(pgrp, PIDTYPE_PGID); | 
|  | if (p == NULL) | 
|  | p = pid_task(pgrp, PIDTYPE_PID); | 
|  | if (p != NULL) | 
|  | sid = task_session(p); | 
|  |  | 
|  | return sid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a process group is "orphaned", according to the POSIX | 
|  | * definition in 2.2.2.52.  Orphaned process groups are not to be affected | 
|  | * by terminal-generated stop signals.  Newly orphaned process groups are | 
|  | * to receive a SIGHUP and a SIGCONT. | 
|  | * | 
|  | * "I ask you, have you ever known what it is to be an orphan?" | 
|  | */ | 
|  | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | if ((p == ignored_task) || | 
|  | (p->exit_state && thread_group_empty(p)) || | 
|  | is_global_init(p->real_parent)) | 
|  | continue; | 
|  |  | 
|  | if (task_pgrp(p->real_parent) != pgrp && | 
|  | task_session(p->real_parent) == task_session(p)) | 
|  | return 0; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int is_current_pgrp_orphaned(void) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int has_stopped_jobs(struct pid *pgrp) | 
|  | { | 
|  | int retval = 0; | 
|  | struct task_struct *p; | 
|  |  | 
|  | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
|  | if (!task_is_stopped(p)) | 
|  | continue; | 
|  | retval = 1; | 
|  | break; | 
|  | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if any process groups have become orphaned as | 
|  | * a result of our exiting, and if they have any stopped jobs, | 
|  | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | 
|  | */ | 
|  | static void | 
|  | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | 
|  | { | 
|  | struct pid *pgrp = task_pgrp(tsk); | 
|  | struct task_struct *ignored_task = tsk; | 
|  |  | 
|  | if (!parent) | 
|  | /* exit: our father is in a different pgrp than | 
|  | * we are and we were the only connection outside. | 
|  | */ | 
|  | parent = tsk->real_parent; | 
|  | else | 
|  | /* reparent: our child is in a different pgrp than | 
|  | * we are, and it was the only connection outside. | 
|  | */ | 
|  | ignored_task = NULL; | 
|  |  | 
|  | if (task_pgrp(parent) != pgrp && | 
|  | task_session(parent) == task_session(tsk) && | 
|  | will_become_orphaned_pgrp(pgrp, ignored_task) && | 
|  | has_stopped_jobs(pgrp)) { | 
|  | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | 
|  | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd | 
|  | * | 
|  | * If a kernel thread is launched as a result of a system call, or if | 
|  | * it ever exits, it should generally reparent itself to kthreadd so it | 
|  | * isn't in the way of other processes and is correctly cleaned up on exit. | 
|  | * | 
|  | * The various task state such as scheduling policy and priority may have | 
|  | * been inherited from a user process, so we reset them to sane values here. | 
|  | * | 
|  | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. | 
|  | */ | 
|  | static void reparent_to_kthreadd(void) | 
|  | { | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | ptrace_unlink(current); | 
|  | /* Reparent to init */ | 
|  | current->real_parent = current->parent = kthreadd_task; | 
|  | list_move_tail(¤t->sibling, ¤t->real_parent->children); | 
|  |  | 
|  | /* Set the exit signal to SIGCHLD so we signal init on exit */ | 
|  | current->exit_signal = SIGCHLD; | 
|  |  | 
|  | if (task_nice(current) < 0) | 
|  | set_user_nice(current, 0); | 
|  | /* cpus_allowed? */ | 
|  | /* rt_priority? */ | 
|  | /* signals? */ | 
|  | memcpy(current->signal->rlim, init_task.signal->rlim, | 
|  | sizeof(current->signal->rlim)); | 
|  |  | 
|  | atomic_inc(&init_cred.usage); | 
|  | commit_creds(&init_cred); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | void __set_special_pids(struct pid *pid) | 
|  | { | 
|  | struct task_struct *curr = current->group_leader; | 
|  |  | 
|  | if (task_session(curr) != pid) | 
|  | change_pid(curr, PIDTYPE_SID, pid); | 
|  |  | 
|  | if (task_pgrp(curr) != pid) | 
|  | change_pid(curr, PIDTYPE_PGID, pid); | 
|  | } | 
|  |  | 
|  | static void set_special_pids(struct pid *pid) | 
|  | { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | __set_special_pids(pid); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let kernel threads use this to say that they allow a certain signal. | 
|  | * Must not be used if kthread was cloned with CLONE_SIGHAND. | 
|  | */ | 
|  | int allow_signal(int sig) | 
|  | { | 
|  | if (!valid_signal(sig) || sig < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | /* This is only needed for daemonize()'ed kthreads */ | 
|  | sigdelset(¤t->blocked, sig); | 
|  | /* | 
|  | * Kernel threads handle their own signals. Let the signal code | 
|  | * know it'll be handled, so that they don't get converted to | 
|  | * SIGKILL or just silently dropped. | 
|  | */ | 
|  | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(allow_signal); | 
|  |  | 
|  | int disallow_signal(int sig) | 
|  | { | 
|  | if (!valid_signal(sig) || sig < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(disallow_signal); | 
|  |  | 
|  | /* | 
|  | *	Put all the gunge required to become a kernel thread without | 
|  | *	attached user resources in one place where it belongs. | 
|  | */ | 
|  |  | 
|  | void daemonize(const char *name, ...) | 
|  | { | 
|  | va_list args; | 
|  | sigset_t blocked; | 
|  |  | 
|  | va_start(args, name); | 
|  | vsnprintf(current->comm, sizeof(current->comm), name, args); | 
|  | va_end(args); | 
|  |  | 
|  | /* | 
|  | * If we were started as result of loading a module, close all of the | 
|  | * user space pages.  We don't need them, and if we didn't close them | 
|  | * they would be locked into memory. | 
|  | */ | 
|  | exit_mm(current); | 
|  | /* | 
|  | * We don't want to have TIF_FREEZE set if the system-wide hibernation | 
|  | * or suspend transition begins right now. | 
|  | */ | 
|  | current->flags |= (PF_NOFREEZE | PF_KTHREAD); | 
|  |  | 
|  | if (current->nsproxy != &init_nsproxy) { | 
|  | get_nsproxy(&init_nsproxy); | 
|  | switch_task_namespaces(current, &init_nsproxy); | 
|  | } | 
|  | set_special_pids(&init_struct_pid); | 
|  | proc_clear_tty(current); | 
|  |  | 
|  | /* Block and flush all signals */ | 
|  | sigfillset(&blocked); | 
|  | sigprocmask(SIG_BLOCK, &blocked, NULL); | 
|  | flush_signals(current); | 
|  |  | 
|  | /* Become as one with the init task */ | 
|  |  | 
|  | daemonize_fs_struct(); | 
|  | exit_files(current); | 
|  | current->files = init_task.files; | 
|  | atomic_inc(¤t->files->count); | 
|  |  | 
|  | reparent_to_kthreadd(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(daemonize); | 
|  |  | 
|  | static void close_files(struct files_struct * files) | 
|  | { | 
|  | int i, j; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | j = 0; | 
|  |  | 
|  | /* | 
|  | * It is safe to dereference the fd table without RCU or | 
|  | * ->file_lock because this is the last reference to the | 
|  | * files structure. | 
|  | */ | 
|  | fdt = files_fdtable(files); | 
|  | for (;;) { | 
|  | unsigned long set; | 
|  | i = j * __NFDBITS; | 
|  | if (i >= fdt->max_fds) | 
|  | break; | 
|  | set = fdt->open_fds->fds_bits[j++]; | 
|  | while (set) { | 
|  | if (set & 1) { | 
|  | struct file * file = xchg(&fdt->fd[i], NULL); | 
|  | if (file) { | 
|  | filp_close(file, files); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | i++; | 
|  | set >>= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct files_struct *get_files_struct(struct task_struct *task) | 
|  | { | 
|  | struct files_struct *files; | 
|  |  | 
|  | task_lock(task); | 
|  | files = task->files; | 
|  | if (files) | 
|  | atomic_inc(&files->count); | 
|  | task_unlock(task); | 
|  |  | 
|  | return files; | 
|  | } | 
|  |  | 
|  | void put_files_struct(struct files_struct *files) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | if (atomic_dec_and_test(&files->count)) { | 
|  | close_files(files); | 
|  | /* | 
|  | * Free the fd and fdset arrays if we expanded them. | 
|  | * If the fdtable was embedded, pass files for freeing | 
|  | * at the end of the RCU grace period. Otherwise, | 
|  | * you can free files immediately. | 
|  | */ | 
|  | fdt = files_fdtable(files); | 
|  | if (fdt != &files->fdtab) | 
|  | kmem_cache_free(files_cachep, files); | 
|  | free_fdtable(fdt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void reset_files_struct(struct files_struct *files) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct files_struct *old; | 
|  |  | 
|  | old = tsk->files; | 
|  | task_lock(tsk); | 
|  | tsk->files = files; | 
|  | task_unlock(tsk); | 
|  | put_files_struct(old); | 
|  | } | 
|  |  | 
|  | void exit_files(struct task_struct *tsk) | 
|  | { | 
|  | struct files_struct * files = tsk->files; | 
|  |  | 
|  | if (files) { | 
|  | task_lock(tsk); | 
|  | tsk->files = NULL; | 
|  | task_unlock(tsk); | 
|  | put_files_struct(files); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MM_OWNER | 
|  | /* | 
|  | * Task p is exiting and it owned mm, lets find a new owner for it | 
|  | */ | 
|  | static inline int | 
|  | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) | 
|  | { | 
|  | /* | 
|  | * If there are other users of the mm and the owner (us) is exiting | 
|  | * we need to find a new owner to take on the responsibility. | 
|  | */ | 
|  | if (atomic_read(&mm->mm_users) <= 1) | 
|  | return 0; | 
|  | if (mm->owner != p) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void mm_update_next_owner(struct mm_struct *mm) | 
|  | { | 
|  | struct task_struct *c, *g, *p = current; | 
|  |  | 
|  | retry: | 
|  | if (!mm_need_new_owner(mm, p)) | 
|  | return; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | /* | 
|  | * Search in the children | 
|  | */ | 
|  | list_for_each_entry(c, &p->children, sibling) { | 
|  | if (c->mm == mm) | 
|  | goto assign_new_owner; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search in the siblings | 
|  | */ | 
|  | list_for_each_entry(c, &p->real_parent->children, sibling) { | 
|  | if (c->mm == mm) | 
|  | goto assign_new_owner; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search through everything else. We should not get | 
|  | * here often | 
|  | */ | 
|  | do_each_thread(g, c) { | 
|  | if (c->mm == mm) | 
|  | goto assign_new_owner; | 
|  | } while_each_thread(g, c); | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  | /* | 
|  | * We found no owner yet mm_users > 1: this implies that we are | 
|  | * most likely racing with swapoff (try_to_unuse()) or /proc or | 
|  | * ptrace or page migration (get_task_mm()).  Mark owner as NULL. | 
|  | */ | 
|  | mm->owner = NULL; | 
|  | return; | 
|  |  | 
|  | assign_new_owner: | 
|  | BUG_ON(c == p); | 
|  | get_task_struct(c); | 
|  | /* | 
|  | * The task_lock protects c->mm from changing. | 
|  | * We always want mm->owner->mm == mm | 
|  | */ | 
|  | task_lock(c); | 
|  | /* | 
|  | * Delay read_unlock() till we have the task_lock() | 
|  | * to ensure that c does not slip away underneath us | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  | if (c->mm != mm) { | 
|  | task_unlock(c); | 
|  | put_task_struct(c); | 
|  | goto retry; | 
|  | } | 
|  | mm->owner = c; | 
|  | task_unlock(c); | 
|  | put_task_struct(c); | 
|  | } | 
|  | #endif /* CONFIG_MM_OWNER */ | 
|  |  | 
|  | /* | 
|  | * Turn us into a lazy TLB process if we | 
|  | * aren't already.. | 
|  | */ | 
|  | static void exit_mm(struct task_struct * tsk) | 
|  | { | 
|  | struct mm_struct *mm = tsk->mm; | 
|  | struct core_state *core_state; | 
|  |  | 
|  | mm_release(tsk, mm); | 
|  | if (!mm) | 
|  | return; | 
|  | /* | 
|  | * Serialize with any possible pending coredump. | 
|  | * We must hold mmap_sem around checking core_state | 
|  | * and clearing tsk->mm.  The core-inducing thread | 
|  | * will increment ->nr_threads for each thread in the | 
|  | * group with ->mm != NULL. | 
|  | */ | 
|  | down_read(&mm->mmap_sem); | 
|  | core_state = mm->core_state; | 
|  | if (core_state) { | 
|  | struct core_thread self; | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | self.task = tsk; | 
|  | self.next = xchg(&core_state->dumper.next, &self); | 
|  | /* | 
|  | * Implies mb(), the result of xchg() must be visible | 
|  | * to core_state->dumper. | 
|  | */ | 
|  | if (atomic_dec_and_test(&core_state->nr_threads)) | 
|  | complete(&core_state->startup); | 
|  |  | 
|  | for (;;) { | 
|  | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | 
|  | if (!self.task) /* see coredump_finish() */ | 
|  | break; | 
|  | schedule(); | 
|  | } | 
|  | __set_task_state(tsk, TASK_RUNNING); | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  | atomic_inc(&mm->mm_count); | 
|  | BUG_ON(mm != tsk->active_mm); | 
|  | /* more a memory barrier than a real lock */ | 
|  | task_lock(tsk); | 
|  | tsk->mm = NULL; | 
|  | up_read(&mm->mmap_sem); | 
|  | enter_lazy_tlb(mm, current); | 
|  | /* We don't want this task to be frozen prematurely */ | 
|  | clear_freeze_flag(tsk); | 
|  | task_unlock(tsk); | 
|  | mm_update_next_owner(mm); | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we die, we re-parent all our children. | 
|  | * Try to give them to another thread in our thread | 
|  | * group, and if no such member exists, give it to | 
|  | * the child reaper process (ie "init") in our pid | 
|  | * space. | 
|  | */ | 
|  | static struct task_struct *find_new_reaper(struct task_struct *father) | 
|  | { | 
|  | struct pid_namespace *pid_ns = task_active_pid_ns(father); | 
|  | struct task_struct *thread; | 
|  |  | 
|  | thread = father; | 
|  | while_each_thread(father, thread) { | 
|  | if (thread->flags & PF_EXITING) | 
|  | continue; | 
|  | if (unlikely(pid_ns->child_reaper == father)) | 
|  | pid_ns->child_reaper = thread; | 
|  | return thread; | 
|  | } | 
|  |  | 
|  | if (unlikely(pid_ns->child_reaper == father)) { | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | if (unlikely(pid_ns == &init_pid_ns)) | 
|  | panic("Attempted to kill init!"); | 
|  |  | 
|  | zap_pid_ns_processes(pid_ns); | 
|  | write_lock_irq(&tasklist_lock); | 
|  | /* | 
|  | * We can not clear ->child_reaper or leave it alone. | 
|  | * There may by stealth EXIT_DEAD tasks on ->children, | 
|  | * forget_original_parent() must move them somewhere. | 
|  | */ | 
|  | pid_ns->child_reaper = init_pid_ns.child_reaper; | 
|  | } | 
|  |  | 
|  | return pid_ns->child_reaper; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Any that need to be release_task'd are put on the @dead list. | 
|  | */ | 
|  | static void reparent_leader(struct task_struct *father, struct task_struct *p, | 
|  | struct list_head *dead) | 
|  | { | 
|  | list_move_tail(&p->sibling, &p->real_parent->children); | 
|  |  | 
|  | if (task_detached(p)) | 
|  | return; | 
|  | /* | 
|  | * If this is a threaded reparent there is no need to | 
|  | * notify anyone anything has happened. | 
|  | */ | 
|  | if (same_thread_group(p->real_parent, father)) | 
|  | return; | 
|  |  | 
|  | /* We don't want people slaying init.  */ | 
|  | p->exit_signal = SIGCHLD; | 
|  |  | 
|  | /* If it has exited notify the new parent about this child's death. */ | 
|  | if (!task_ptrace(p) && | 
|  | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { | 
|  | do_notify_parent(p, p->exit_signal); | 
|  | if (task_detached(p)) { | 
|  | p->exit_state = EXIT_DEAD; | 
|  | list_move_tail(&p->sibling, dead); | 
|  | } | 
|  | } | 
|  |  | 
|  | kill_orphaned_pgrp(p, father); | 
|  | } | 
|  |  | 
|  | static void forget_original_parent(struct task_struct *father) | 
|  | { | 
|  | struct task_struct *p, *n, *reaper; | 
|  | LIST_HEAD(dead_children); | 
|  |  | 
|  | exit_ptrace(father); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | reaper = find_new_reaper(father); | 
|  |  | 
|  | list_for_each_entry_safe(p, n, &father->children, sibling) { | 
|  | struct task_struct *t = p; | 
|  | do { | 
|  | t->real_parent = reaper; | 
|  | if (t->parent == father) { | 
|  | BUG_ON(task_ptrace(t)); | 
|  | t->parent = t->real_parent; | 
|  | } | 
|  | if (t->pdeath_signal) | 
|  | group_send_sig_info(t->pdeath_signal, | 
|  | SEND_SIG_NOINFO, t); | 
|  | } while_each_thread(p, t); | 
|  | reparent_leader(father, p, &dead_children); | 
|  | } | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | BUG_ON(!list_empty(&father->children)); | 
|  |  | 
|  | list_for_each_entry_safe(p, n, &dead_children, sibling) { | 
|  | list_del_init(&p->sibling); | 
|  | release_task(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send signals to all our closest relatives so that they know | 
|  | * to properly mourn us.. | 
|  | */ | 
|  | static void exit_notify(struct task_struct *tsk, int group_dead) | 
|  | { | 
|  | int signal; | 
|  | void *cookie; | 
|  |  | 
|  | /* | 
|  | * This does two things: | 
|  | * | 
|  | * A.  Make init inherit all the child processes | 
|  | * B.  Check to see if any process groups have become orphaned | 
|  | *	as a result of our exiting, and if they have any stopped | 
|  | *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2) | 
|  | */ | 
|  | forget_original_parent(tsk); | 
|  | exit_task_namespaces(tsk); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | if (group_dead) | 
|  | kill_orphaned_pgrp(tsk->group_leader, NULL); | 
|  |  | 
|  | /* Let father know we died | 
|  | * | 
|  | * Thread signals are configurable, but you aren't going to use | 
|  | * that to send signals to arbitary processes. | 
|  | * That stops right now. | 
|  | * | 
|  | * If the parent exec id doesn't match the exec id we saved | 
|  | * when we started then we know the parent has changed security | 
|  | * domain. | 
|  | * | 
|  | * If our self_exec id doesn't match our parent_exec_id then | 
|  | * we have changed execution domain as these two values started | 
|  | * the same after a fork. | 
|  | */ | 
|  | if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && | 
|  | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || | 
|  | tsk->self_exec_id != tsk->parent_exec_id)) | 
|  | tsk->exit_signal = SIGCHLD; | 
|  |  | 
|  | signal = tracehook_notify_death(tsk, &cookie, group_dead); | 
|  | if (signal >= 0) | 
|  | signal = do_notify_parent(tsk, signal); | 
|  |  | 
|  | tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; | 
|  |  | 
|  | /* mt-exec, de_thread() is waiting for us */ | 
|  | if (thread_group_leader(tsk) && | 
|  | tsk->signal->group_exit_task && | 
|  | tsk->signal->notify_count < 0) | 
|  | wake_up_process(tsk->signal->group_exit_task); | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | tracehook_report_death(tsk, signal, cookie, group_dead); | 
|  |  | 
|  | /* If the process is dead, release it - nobody will wait for it */ | 
|  | if (signal == DEATH_REAP) | 
|  | release_task(tsk); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | static void check_stack_usage(void) | 
|  | { | 
|  | static DEFINE_SPINLOCK(low_water_lock); | 
|  | static int lowest_to_date = THREAD_SIZE; | 
|  | unsigned long free; | 
|  |  | 
|  | free = stack_not_used(current); | 
|  |  | 
|  | if (free >= lowest_to_date) | 
|  | return; | 
|  |  | 
|  | spin_lock(&low_water_lock); | 
|  | if (free < lowest_to_date) { | 
|  | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " | 
|  | "left\n", | 
|  | current->comm, free); | 
|  | lowest_to_date = free; | 
|  | } | 
|  | spin_unlock(&low_water_lock); | 
|  | } | 
|  | #else | 
|  | static inline void check_stack_usage(void) {} | 
|  | #endif | 
|  |  | 
|  | NORET_TYPE void do_exit(long code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | int group_dead; | 
|  |  | 
|  | profile_task_exit(tsk); | 
|  |  | 
|  | WARN_ON(atomic_read(&tsk->fs_excl)); | 
|  |  | 
|  | if (unlikely(in_interrupt())) | 
|  | panic("Aiee, killing interrupt handler!"); | 
|  | if (unlikely(!tsk->pid)) | 
|  | panic("Attempted to kill the idle task!"); | 
|  |  | 
|  | tracehook_report_exit(&code); | 
|  |  | 
|  | validate_creds_for_do_exit(tsk); | 
|  |  | 
|  | /* | 
|  | * We're taking recursive faults here in do_exit. Safest is to just | 
|  | * leave this task alone and wait for reboot. | 
|  | */ | 
|  | if (unlikely(tsk->flags & PF_EXITING)) { | 
|  | printk(KERN_ALERT | 
|  | "Fixing recursive fault but reboot is needed!\n"); | 
|  | /* | 
|  | * We can do this unlocked here. The futex code uses | 
|  | * this flag just to verify whether the pi state | 
|  | * cleanup has been done or not. In the worst case it | 
|  | * loops once more. We pretend that the cleanup was | 
|  | * done as there is no way to return. Either the | 
|  | * OWNER_DIED bit is set by now or we push the blocked | 
|  | * task into the wait for ever nirwana as well. | 
|  | */ | 
|  | tsk->flags |= PF_EXITPIDONE; | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | exit_irq_thread(); | 
|  |  | 
|  | exit_signals(tsk);  /* sets PF_EXITING */ | 
|  | /* | 
|  | * tsk->flags are checked in the futex code to protect against | 
|  | * an exiting task cleaning up the robust pi futexes. | 
|  | */ | 
|  | smp_mb(); | 
|  | raw_spin_unlock_wait(&tsk->pi_lock); | 
|  |  | 
|  | if (unlikely(in_atomic())) | 
|  | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | 
|  | current->comm, task_pid_nr(current), | 
|  | preempt_count()); | 
|  |  | 
|  | acct_update_integrals(tsk); | 
|  |  | 
|  | group_dead = atomic_dec_and_test(&tsk->signal->live); | 
|  | if (group_dead) { | 
|  | hrtimer_cancel(&tsk->signal->real_timer); | 
|  | exit_itimers(tsk->signal); | 
|  | if (tsk->mm) | 
|  | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | 
|  | } | 
|  | acct_collect(code, group_dead); | 
|  | if (group_dead) | 
|  | tty_audit_exit(); | 
|  | if (unlikely(tsk->audit_context)) | 
|  | audit_free(tsk); | 
|  |  | 
|  | tsk->exit_code = code; | 
|  | taskstats_exit(tsk, group_dead); | 
|  |  | 
|  | exit_mm(tsk); | 
|  |  | 
|  | if (group_dead) | 
|  | acct_process(); | 
|  | trace_sched_process_exit(tsk); | 
|  |  | 
|  | exit_sem(tsk); | 
|  | exit_files(tsk); | 
|  | exit_fs(tsk); | 
|  | check_stack_usage(); | 
|  | exit_thread(); | 
|  | cgroup_exit(tsk, 1); | 
|  |  | 
|  | if (group_dead) | 
|  | disassociate_ctty(1); | 
|  |  | 
|  | module_put(task_thread_info(tsk)->exec_domain->module); | 
|  |  | 
|  | proc_exit_connector(tsk); | 
|  |  | 
|  | /* | 
|  | * FIXME: do that only when needed, using sched_exit tracepoint | 
|  | */ | 
|  | flush_ptrace_hw_breakpoint(tsk); | 
|  | /* | 
|  | * Flush inherited counters to the parent - before the parent | 
|  | * gets woken up by child-exit notifications. | 
|  | */ | 
|  | perf_event_exit_task(tsk); | 
|  |  | 
|  | exit_notify(tsk, group_dead); | 
|  | #ifdef CONFIG_NUMA | 
|  | mpol_put(tsk->mempolicy); | 
|  | tsk->mempolicy = NULL; | 
|  | #endif | 
|  | #ifdef CONFIG_FUTEX | 
|  | if (unlikely(current->pi_state_cache)) | 
|  | kfree(current->pi_state_cache); | 
|  | #endif | 
|  | /* | 
|  | * Make sure we are holding no locks: | 
|  | */ | 
|  | debug_check_no_locks_held(tsk); | 
|  | /* | 
|  | * We can do this unlocked here. The futex code uses this flag | 
|  | * just to verify whether the pi state cleanup has been done | 
|  | * or not. In the worst case it loops once more. | 
|  | */ | 
|  | tsk->flags |= PF_EXITPIDONE; | 
|  |  | 
|  | if (tsk->io_context) | 
|  | exit_io_context(tsk); | 
|  |  | 
|  | if (tsk->splice_pipe) | 
|  | __free_pipe_info(tsk->splice_pipe); | 
|  |  | 
|  | validate_creds_for_do_exit(tsk); | 
|  |  | 
|  | preempt_disable(); | 
|  | exit_rcu(); | 
|  | /* causes final put_task_struct in finish_task_switch(). */ | 
|  | tsk->state = TASK_DEAD; | 
|  | schedule(); | 
|  | BUG(); | 
|  | /* Avoid "noreturn function does return".  */ | 
|  | for (;;) | 
|  | cpu_relax();	/* For when BUG is null */ | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(do_exit); | 
|  |  | 
|  | NORET_TYPE void complete_and_exit(struct completion *comp, long code) | 
|  | { | 
|  | if (comp) | 
|  | complete(comp); | 
|  |  | 
|  | do_exit(code); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(complete_and_exit); | 
|  |  | 
|  | SYSCALL_DEFINE1(exit, int, error_code) | 
|  | { | 
|  | do_exit((error_code&0xff)<<8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take down every thread in the group.  This is called by fatal signals | 
|  | * as well as by sys_exit_group (below). | 
|  | */ | 
|  | NORET_TYPE void | 
|  | do_group_exit(int exit_code) | 
|  | { | 
|  | struct signal_struct *sig = current->signal; | 
|  |  | 
|  | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | 
|  |  | 
|  | if (signal_group_exit(sig)) | 
|  | exit_code = sig->group_exit_code; | 
|  | else if (!thread_group_empty(current)) { | 
|  | struct sighand_struct *const sighand = current->sighand; | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | if (signal_group_exit(sig)) | 
|  | /* Another thread got here before we took the lock.  */ | 
|  | exit_code = sig->group_exit_code; | 
|  | else { | 
|  | sig->group_exit_code = exit_code; | 
|  | sig->flags = SIGNAL_GROUP_EXIT; | 
|  | zap_other_threads(current); | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | } | 
|  |  | 
|  | do_exit(exit_code); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this kills every thread in the thread group. Note that any externally | 
|  | * wait4()-ing process will get the correct exit code - even if this | 
|  | * thread is not the thread group leader. | 
|  | */ | 
|  | SYSCALL_DEFINE1(exit_group, int, error_code) | 
|  | { | 
|  | do_group_exit((error_code & 0xff) << 8); | 
|  | /* NOTREACHED */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct wait_opts { | 
|  | enum pid_type		wo_type; | 
|  | int			wo_flags; | 
|  | struct pid		*wo_pid; | 
|  |  | 
|  | struct siginfo __user	*wo_info; | 
|  | int __user		*wo_stat; | 
|  | struct rusage __user	*wo_rusage; | 
|  |  | 
|  | wait_queue_t		child_wait; | 
|  | int			notask_error; | 
|  | }; | 
|  |  | 
|  | static inline | 
|  | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 
|  | { | 
|  | if (type != PIDTYPE_PID) | 
|  | task = task->group_leader; | 
|  | return task->pids[type].pid; | 
|  | } | 
|  |  | 
|  | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | return	wo->wo_type == PIDTYPE_MAX || | 
|  | task_pid_type(p, wo->wo_type) == wo->wo_pid; | 
|  | } | 
|  |  | 
|  | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | if (!eligible_pid(wo, p)) | 
|  | return 0; | 
|  | /* Wait for all children (clone and not) if __WALL is set; | 
|  | * otherwise, wait for clone children *only* if __WCLONE is | 
|  | * set; otherwise, wait for non-clone children *only*.  (Note: | 
|  | * A "clone" child here is one that reports to its parent | 
|  | * using a signal other than SIGCHLD.) */ | 
|  | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | 
|  | && !(wo->wo_flags & __WALL)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | 
|  | pid_t pid, uid_t uid, int why, int status) | 
|  | { | 
|  | struct siginfo __user *infop; | 
|  | int retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  |  | 
|  | put_task_struct(p); | 
|  | infop = wo->wo_info; | 
|  | if (infop) { | 
|  | if (!retval) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval) | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = put_user(status, &infop->si_status); | 
|  | } | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | unsigned long state; | 
|  | int retval, status, traced; | 
|  | pid_t pid = task_pid_vnr(p); | 
|  | uid_t uid = __task_cred(p)->uid; | 
|  | struct siginfo __user *infop; | 
|  |  | 
|  | if (!likely(wo->wo_flags & WEXITED)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(wo->wo_flags & WNOWAIT)) { | 
|  | int exit_code = p->exit_code; | 
|  | int why, status; | 
|  |  | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  | if ((exit_code & 0x7f) == 0) { | 
|  | why = CLD_EXITED; | 
|  | status = exit_code >> 8; | 
|  | } else { | 
|  | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
|  | status = exit_code & 0x7f; | 
|  | } | 
|  | return wait_noreap_copyout(wo, p, pid, uid, why, status); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to move the task's state to DEAD | 
|  | * only one thread is allowed to do this: | 
|  | */ | 
|  | state = xchg(&p->exit_state, EXIT_DEAD); | 
|  | if (state != EXIT_ZOMBIE) { | 
|  | BUG_ON(state != EXIT_DEAD); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | traced = ptrace_reparented(p); | 
|  | /* | 
|  | * It can be ptraced but not reparented, check | 
|  | * !task_detached() to filter out sub-threads. | 
|  | */ | 
|  | if (likely(!traced) && likely(!task_detached(p))) { | 
|  | struct signal_struct *psig; | 
|  | struct signal_struct *sig; | 
|  | unsigned long maxrss; | 
|  | cputime_t tgutime, tgstime; | 
|  |  | 
|  | /* | 
|  | * The resource counters for the group leader are in its | 
|  | * own task_struct.  Those for dead threads in the group | 
|  | * are in its signal_struct, as are those for the child | 
|  | * processes it has previously reaped.  All these | 
|  | * accumulate in the parent's signal_struct c* fields. | 
|  | * | 
|  | * We don't bother to take a lock here to protect these | 
|  | * p->signal fields, because they are only touched by | 
|  | * __exit_signal, which runs with tasklist_lock | 
|  | * write-locked anyway, and so is excluded here.  We do | 
|  | * need to protect the access to parent->signal fields, | 
|  | * as other threads in the parent group can be right | 
|  | * here reaping other children at the same time. | 
|  | * | 
|  | * We use thread_group_times() to get times for the thread | 
|  | * group, which consolidates times for all threads in the | 
|  | * group including the group leader. | 
|  | */ | 
|  | thread_group_times(p, &tgutime, &tgstime); | 
|  | spin_lock_irq(&p->real_parent->sighand->siglock); | 
|  | psig = p->real_parent->signal; | 
|  | sig = p->signal; | 
|  | psig->cutime = | 
|  | cputime_add(psig->cutime, | 
|  | cputime_add(tgutime, | 
|  | sig->cutime)); | 
|  | psig->cstime = | 
|  | cputime_add(psig->cstime, | 
|  | cputime_add(tgstime, | 
|  | sig->cstime)); | 
|  | psig->cgtime = | 
|  | cputime_add(psig->cgtime, | 
|  | cputime_add(p->gtime, | 
|  | cputime_add(sig->gtime, | 
|  | sig->cgtime))); | 
|  | psig->cmin_flt += | 
|  | p->min_flt + sig->min_flt + sig->cmin_flt; | 
|  | psig->cmaj_flt += | 
|  | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | 
|  | psig->cnvcsw += | 
|  | p->nvcsw + sig->nvcsw + sig->cnvcsw; | 
|  | psig->cnivcsw += | 
|  | p->nivcsw + sig->nivcsw + sig->cnivcsw; | 
|  | psig->cinblock += | 
|  | task_io_get_inblock(p) + | 
|  | sig->inblock + sig->cinblock; | 
|  | psig->coublock += | 
|  | task_io_get_oublock(p) + | 
|  | sig->oublock + sig->coublock; | 
|  | maxrss = max(sig->maxrss, sig->cmaxrss); | 
|  | if (psig->cmaxrss < maxrss) | 
|  | psig->cmaxrss = maxrss; | 
|  | task_io_accounting_add(&psig->ioac, &p->ioac); | 
|  | task_io_accounting_add(&psig->ioac, &sig->ioac); | 
|  | spin_unlock_irq(&p->real_parent->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are sure this task is interesting, and no other | 
|  | * thread can reap it because we set its state to EXIT_DEAD. | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 
|  | ? p->signal->group_exit_code : p->exit_code; | 
|  | if (!retval && wo->wo_stat) | 
|  | retval = put_user(status, wo->wo_stat); | 
|  |  | 
|  | infop = wo->wo_info; | 
|  | if (!retval && infop) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval && infop) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval && infop) { | 
|  | int why; | 
|  |  | 
|  | if ((status & 0x7f) == 0) { | 
|  | why = CLD_EXITED; | 
|  | status >>= 8; | 
|  | } else { | 
|  | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
|  | status &= 0x7f; | 
|  | } | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(status, &infop->si_status); | 
|  | } | 
|  | if (!retval && infop) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval && infop) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  |  | 
|  | if (traced) { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | /* We dropped tasklist, ptracer could die and untrace */ | 
|  | ptrace_unlink(p); | 
|  | /* | 
|  | * If this is not a detached task, notify the parent. | 
|  | * If it's still not detached after that, don't release | 
|  | * it now. | 
|  | */ | 
|  | if (!task_detached(p)) { | 
|  | do_notify_parent(p, p->exit_signal); | 
|  | if (!task_detached(p)) { | 
|  | p->exit_state = EXIT_ZOMBIE; | 
|  | p = NULL; | 
|  | } | 
|  | } | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  | if (p != NULL) | 
|  | release_task(p); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int *task_stopped_code(struct task_struct *p, bool ptrace) | 
|  | { | 
|  | if (ptrace) { | 
|  | if (task_is_stopped_or_traced(p)) | 
|  | return &p->exit_code; | 
|  | } else { | 
|  | if (p->signal->flags & SIGNAL_STOP_STOPPED) | 
|  | return &p->signal->group_exit_code; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_stopped(struct wait_opts *wo, | 
|  | int ptrace, struct task_struct *p) | 
|  | { | 
|  | struct siginfo __user *infop; | 
|  | int retval, exit_code, *p_code, why; | 
|  | uid_t uid = 0; /* unneeded, required by compiler */ | 
|  | pid_t pid; | 
|  |  | 
|  | /* | 
|  | * Traditionally we see ptrace'd stopped tasks regardless of options. | 
|  | */ | 
|  | if (!ptrace && !(wo->wo_flags & WUNTRACED)) | 
|  | return 0; | 
|  |  | 
|  | exit_code = 0; | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  |  | 
|  | p_code = task_stopped_code(p, ptrace); | 
|  | if (unlikely(!p_code)) | 
|  | goto unlock_sig; | 
|  |  | 
|  | exit_code = *p_code; | 
|  | if (!exit_code) | 
|  | goto unlock_sig; | 
|  |  | 
|  | if (!unlikely(wo->wo_flags & WNOWAIT)) | 
|  | *p_code = 0; | 
|  |  | 
|  | /* don't need the RCU readlock here as we're holding a spinlock */ | 
|  | uid = __task_cred(p)->uid; | 
|  | unlock_sig: | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | if (!exit_code) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Now we are pretty sure this task is interesting. | 
|  | * Make sure it doesn't get reaped out from under us while we | 
|  | * give up the lock and then examine it below.  We don't want to | 
|  | * keep holding onto the tasklist_lock while we call getrusage and | 
|  | * possibly take page faults for user memory. | 
|  | */ | 
|  | get_task_struct(p); | 
|  | pid = task_pid_vnr(p); | 
|  | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (unlikely(wo->wo_flags & WNOWAIT)) | 
|  | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | 
|  |  | 
|  | retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  | if (!retval && wo->wo_stat) | 
|  | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | 
|  |  | 
|  | infop = wo->wo_info; | 
|  | if (!retval && infop) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval && infop) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval && infop) | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval && infop) | 
|  | retval = put_user(exit_code, &infop->si_status); | 
|  | if (!retval && infop) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval && infop) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | put_task_struct(p); | 
|  |  | 
|  | BUG_ON(!retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle do_wait work for one task in a live, non-stopped state. | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | 
|  | { | 
|  | int retval; | 
|  | pid_t pid; | 
|  | uid_t uid; | 
|  |  | 
|  | if (!unlikely(wo->wo_flags & WCONTINUED)) | 
|  | return 0; | 
|  |  | 
|  | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  | /* Re-check with the lock held.  */ | 
|  | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  | if (!unlikely(wo->wo_flags & WNOWAIT)) | 
|  | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | 
|  | uid = __task_cred(p)->uid; | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  |  | 
|  | pid = task_pid_vnr(p); | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (!wo->wo_info) { | 
|  | retval = wo->wo_rusage | 
|  | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | 
|  | put_task_struct(p); | 
|  | if (!retval && wo->wo_stat) | 
|  | retval = put_user(0xffff, wo->wo_stat); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | } else { | 
|  | retval = wait_noreap_copyout(wo, p, pid, uid, | 
|  | CLD_CONTINUED, SIGCONT); | 
|  | BUG_ON(retval == 0); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Consider @p for a wait by @parent. | 
|  | * | 
|  | * -ECHILD should be in ->notask_error before the first call. | 
|  | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 
|  | * Returns zero if the search for a child should continue; | 
|  | * then ->notask_error is 0 if @p is an eligible child, | 
|  | * or another error from security_task_wait(), or still -ECHILD. | 
|  | */ | 
|  | static int wait_consider_task(struct wait_opts *wo, int ptrace, | 
|  | struct task_struct *p) | 
|  | { | 
|  | int ret = eligible_child(wo, p); | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | ret = security_task_wait(p); | 
|  | if (unlikely(ret < 0)) { | 
|  | /* | 
|  | * If we have not yet seen any eligible child, | 
|  | * then let this error code replace -ECHILD. | 
|  | * A permission error will give the user a clue | 
|  | * to look for security policy problems, rather | 
|  | * than for mysterious wait bugs. | 
|  | */ | 
|  | if (wo->notask_error) | 
|  | wo->notask_error = ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (likely(!ptrace) && unlikely(task_ptrace(p))) { | 
|  | /* | 
|  | * This child is hidden by ptrace. | 
|  | * We aren't allowed to see it now, but eventually we will. | 
|  | */ | 
|  | wo->notask_error = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (p->exit_state == EXIT_DEAD) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We don't reap group leaders with subthreads. | 
|  | */ | 
|  | if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) | 
|  | return wait_task_zombie(wo, p); | 
|  |  | 
|  | /* | 
|  | * It's stopped or running now, so it might | 
|  | * later continue, exit, or stop again. | 
|  | */ | 
|  | wo->notask_error = 0; | 
|  |  | 
|  | if (task_stopped_code(p, ptrace)) | 
|  | return wait_task_stopped(wo, ptrace, p); | 
|  |  | 
|  | return wait_task_continued(wo, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the work of do_wait() for one thread in the group, @tsk. | 
|  | * | 
|  | * -ECHILD should be in ->notask_error before the first call. | 
|  | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | 
|  | * Returns zero if the search for a child should continue; then | 
|  | * ->notask_error is 0 if there were any eligible children, | 
|  | * or another error from security_task_wait(), or still -ECHILD. | 
|  | */ | 
|  | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | list_for_each_entry(p, &tsk->children, sibling) { | 
|  | int ret = wait_consider_task(wo, 0, p); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | 
|  | { | 
|  | struct task_struct *p; | 
|  |  | 
|  | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 
|  | int ret = wait_consider_task(wo, 1, p); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct wait_opts *wo = container_of(wait, struct wait_opts, | 
|  | child_wait); | 
|  | struct task_struct *p = key; | 
|  |  | 
|  | if (!eligible_pid(wo, p)) | 
|  | return 0; | 
|  |  | 
|  | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | 
|  | return 0; | 
|  |  | 
|  | return default_wake_function(wait, mode, sync, key); | 
|  | } | 
|  |  | 
|  | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | 
|  | { | 
|  | __wake_up_sync_key(&parent->signal->wait_chldexit, | 
|  | TASK_INTERRUPTIBLE, 1, p); | 
|  | } | 
|  |  | 
|  | static long do_wait(struct wait_opts *wo) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | int retval; | 
|  |  | 
|  | trace_sched_process_wait(wo->wo_pid); | 
|  |  | 
|  | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); | 
|  | wo->child_wait.private = current; | 
|  | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 
|  | repeat: | 
|  | /* | 
|  | * If there is nothing that can match our critiera just get out. | 
|  | * We will clear ->notask_error to zero if we see any child that | 
|  | * might later match our criteria, even if we are not able to reap | 
|  | * it yet. | 
|  | */ | 
|  | wo->notask_error = -ECHILD; | 
|  | if ((wo->wo_type < PIDTYPE_MAX) && | 
|  | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | 
|  | goto notask; | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | read_lock(&tasklist_lock); | 
|  | tsk = current; | 
|  | do { | 
|  | retval = do_wait_thread(wo, tsk); | 
|  | if (retval) | 
|  | goto end; | 
|  |  | 
|  | retval = ptrace_do_wait(wo, tsk); | 
|  | if (retval) | 
|  | goto end; | 
|  |  | 
|  | if (wo->wo_flags & __WNOTHREAD) | 
|  | break; | 
|  | } while_each_thread(current, tsk); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | notask: | 
|  | retval = wo->notask_error; | 
|  | if (!retval && !(wo->wo_flags & WNOHANG)) { | 
|  | retval = -ERESTARTSYS; | 
|  | if (!signal_pending(current)) { | 
|  | schedule(); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | end: | 
|  | __set_current_state(TASK_RUNNING); | 
|  | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | 
|  | infop, int, options, struct rusage __user *, ru) | 
|  | { | 
|  | struct wait_opts wo; | 
|  | struct pid *pid = NULL; | 
|  | enum pid_type type; | 
|  | long ret; | 
|  |  | 
|  | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | 
|  | return -EINVAL; | 
|  | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (which) { | 
|  | case P_ALL: | 
|  | type = PIDTYPE_MAX; | 
|  | break; | 
|  | case P_PID: | 
|  | type = PIDTYPE_PID; | 
|  | if (upid <= 0) | 
|  | return -EINVAL; | 
|  | break; | 
|  | case P_PGID: | 
|  | type = PIDTYPE_PGID; | 
|  | if (upid <= 0) | 
|  | return -EINVAL; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (type < PIDTYPE_MAX) | 
|  | pid = find_get_pid(upid); | 
|  |  | 
|  | wo.wo_type	= type; | 
|  | wo.wo_pid	= pid; | 
|  | wo.wo_flags	= options; | 
|  | wo.wo_info	= infop; | 
|  | wo.wo_stat	= NULL; | 
|  | wo.wo_rusage	= ru; | 
|  | ret = do_wait(&wo); | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | } else if (infop) { | 
|  | /* | 
|  | * For a WNOHANG return, clear out all the fields | 
|  | * we would set so the user can easily tell the | 
|  | * difference. | 
|  | */ | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_signo); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_errno); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_code); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_pid); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_uid); | 
|  | if (!ret) | 
|  | ret = put_user(0, &infop->si_status); | 
|  | } | 
|  |  | 
|  | put_pid(pid); | 
|  |  | 
|  | /* avoid REGPARM breakage on x86: */ | 
|  | asmlinkage_protect(5, ret, which, upid, infop, options, ru); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, | 
|  | int, options, struct rusage __user *, ru) | 
|  | { | 
|  | struct wait_opts wo; | 
|  | struct pid *pid = NULL; | 
|  | enum pid_type type; | 
|  | long ret; | 
|  |  | 
|  | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | 
|  | __WNOTHREAD|__WCLONE|__WALL)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (upid == -1) | 
|  | type = PIDTYPE_MAX; | 
|  | else if (upid < 0) { | 
|  | type = PIDTYPE_PGID; | 
|  | pid = find_get_pid(-upid); | 
|  | } else if (upid == 0) { | 
|  | type = PIDTYPE_PGID; | 
|  | pid = get_task_pid(current, PIDTYPE_PGID); | 
|  | } else /* upid > 0 */ { | 
|  | type = PIDTYPE_PID; | 
|  | pid = find_get_pid(upid); | 
|  | } | 
|  |  | 
|  | wo.wo_type	= type; | 
|  | wo.wo_pid	= pid; | 
|  | wo.wo_flags	= options | WEXITED; | 
|  | wo.wo_info	= NULL; | 
|  | wo.wo_stat	= stat_addr; | 
|  | wo.wo_rusage	= ru; | 
|  | ret = do_wait(&wo); | 
|  | put_pid(pid); | 
|  |  | 
|  | /* avoid REGPARM breakage on x86: */ | 
|  | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_WAITPID | 
|  |  | 
|  | /* | 
|  | * sys_waitpid() remains for compatibility. waitpid() should be | 
|  | * implemented by calling sys_wait4() from libc.a. | 
|  | */ | 
|  | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) | 
|  | { | 
|  | return sys_wait4(pid, stat_addr, options, NULL); | 
|  | } | 
|  |  | 
|  | #endif |