| /* | 
 |  * page.c - buffer/page management specific to NILFS | 
 |  * | 
 |  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  * | 
 |  * Written by Ryusuke Konishi <ryusuke@osrg.net>, | 
 |  *            Seiji Kihara <kihara@osrg.net>. | 
 |  */ | 
 |  | 
 | #include <linux/pagemap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/list.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/gfp.h> | 
 | #include "nilfs.h" | 
 | #include "page.h" | 
 | #include "mdt.h" | 
 |  | 
 |  | 
 | #define NILFS_BUFFER_INHERENT_BITS  \ | 
 | 	((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ | 
 | 	 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated)) | 
 |  | 
 | static struct buffer_head * | 
 | __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, | 
 | 		       int blkbits, unsigned long b_state) | 
 |  | 
 | { | 
 | 	unsigned long first_block; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		create_empty_buffers(page, 1 << blkbits, b_state); | 
 |  | 
 | 	first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits); | 
 | 	bh = nilfs_page_get_nth_block(page, block - first_block); | 
 |  | 
 | 	touch_buffer(bh); | 
 | 	wait_on_buffer(bh); | 
 | 	return bh; | 
 | } | 
 |  | 
 | /* | 
 |  * Since the page cache of B-tree node pages or data page cache of pseudo | 
 |  * inodes does not have a valid mapping->host pointer, calling | 
 |  * mark_buffer_dirty() for their buffers causes a NULL pointer dereference; | 
 |  * it calls __mark_inode_dirty(NULL) through __set_page_dirty(). | 
 |  * To avoid this problem, the old style mark_buffer_dirty() is used instead. | 
 |  */ | 
 | void nilfs_mark_buffer_dirty(struct buffer_head *bh) | 
 | { | 
 | 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) | 
 | 		__set_page_dirty_nobuffers(bh->b_page); | 
 | } | 
 |  | 
 | struct buffer_head *nilfs_grab_buffer(struct inode *inode, | 
 | 				      struct address_space *mapping, | 
 | 				      unsigned long blkoff, | 
 | 				      unsigned long b_state) | 
 | { | 
 | 	int blkbits = inode->i_blkbits; | 
 | 	pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits); | 
 | 	struct page *page, *opage; | 
 | 	struct buffer_head *bh, *obh; | 
 |  | 
 | 	page = grab_cache_page(mapping, index); | 
 | 	if (unlikely(!page)) | 
 | 		return NULL; | 
 |  | 
 | 	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); | 
 | 	if (unlikely(!bh)) { | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		return NULL; | 
 | 	} | 
 | 	if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) { | 
 | 		/* | 
 | 		 * Shadow page cache uses assoc_mapping to point its original | 
 | 		 * page cache.  The following code tries the original cache | 
 | 		 * if the given cache is a shadow and it didn't hit. | 
 | 		 */ | 
 | 		opage = find_lock_page(mapping->assoc_mapping, index); | 
 | 		if (!opage) | 
 | 			return bh; | 
 |  | 
 | 		obh = __nilfs_get_page_block(opage, blkoff, index, blkbits, | 
 | 					     b_state); | 
 | 		if (buffer_uptodate(obh)) { | 
 | 			nilfs_copy_buffer(bh, obh); | 
 | 			if (buffer_dirty(obh)) { | 
 | 				nilfs_mark_buffer_dirty(bh); | 
 | 				if (!buffer_nilfs_node(bh) && NILFS_MDT(inode)) | 
 | 					nilfs_mdt_mark_dirty(inode); | 
 | 			} | 
 | 		} | 
 | 		brelse(obh); | 
 | 		unlock_page(opage); | 
 | 		page_cache_release(opage); | 
 | 	} | 
 | 	return bh; | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_forget_buffer - discard dirty state | 
 |  * @inode: owner inode of the buffer | 
 |  * @bh: buffer head of the buffer to be discarded | 
 |  */ | 
 | void nilfs_forget_buffer(struct buffer_head *bh) | 
 | { | 
 | 	struct page *page = bh->b_page; | 
 |  | 
 | 	lock_buffer(bh); | 
 | 	clear_buffer_nilfs_volatile(bh); | 
 | 	clear_buffer_dirty(bh); | 
 | 	if (nilfs_page_buffers_clean(page)) | 
 | 		__nilfs_clear_page_dirty(page); | 
 |  | 
 | 	clear_buffer_uptodate(bh); | 
 | 	clear_buffer_mapped(bh); | 
 | 	bh->b_blocknr = -1; | 
 | 	ClearPageUptodate(page); | 
 | 	ClearPageMappedToDisk(page); | 
 | 	unlock_buffer(bh); | 
 | 	brelse(bh); | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_copy_buffer -- copy buffer data and flags | 
 |  * @dbh: destination buffer | 
 |  * @sbh: source buffer | 
 |  */ | 
 | void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) | 
 | { | 
 | 	void *kaddr0, *kaddr1; | 
 | 	unsigned long bits; | 
 | 	struct page *spage = sbh->b_page, *dpage = dbh->b_page; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	kaddr0 = kmap_atomic(spage, KM_USER0); | 
 | 	kaddr1 = kmap_atomic(dpage, KM_USER1); | 
 | 	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); | 
 | 	kunmap_atomic(kaddr1, KM_USER1); | 
 | 	kunmap_atomic(kaddr0, KM_USER0); | 
 |  | 
 | 	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; | 
 | 	dbh->b_blocknr = sbh->b_blocknr; | 
 | 	dbh->b_bdev = sbh->b_bdev; | 
 |  | 
 | 	bh = dbh; | 
 | 	bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); | 
 | 	while ((bh = bh->b_this_page) != dbh) { | 
 | 		lock_buffer(bh); | 
 | 		bits &= bh->b_state; | 
 | 		unlock_buffer(bh); | 
 | 	} | 
 | 	if (bits & (1UL << BH_Uptodate)) | 
 | 		SetPageUptodate(dpage); | 
 | 	else | 
 | 		ClearPageUptodate(dpage); | 
 | 	if (bits & (1UL << BH_Mapped)) | 
 | 		SetPageMappedToDisk(dpage); | 
 | 	else | 
 | 		ClearPageMappedToDisk(dpage); | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_page_buffers_clean - check if a page has dirty buffers or not. | 
 |  * @page: page to be checked | 
 |  * | 
 |  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. | 
 |  * Otherwise, it returns non-zero value. | 
 |  */ | 
 | int nilfs_page_buffers_clean(struct page *page) | 
 | { | 
 | 	struct buffer_head *bh, *head; | 
 |  | 
 | 	bh = head = page_buffers(page); | 
 | 	do { | 
 | 		if (buffer_dirty(bh)) | 
 | 			return 0; | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh != head); | 
 | 	return 1; | 
 | } | 
 |  | 
 | void nilfs_page_bug(struct page *page) | 
 | { | 
 | 	struct address_space *m; | 
 | 	unsigned long ino = 0; | 
 |  | 
 | 	if (unlikely(!page)) { | 
 | 		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	m = page->mapping; | 
 | 	if (m) { | 
 | 		struct inode *inode = NILFS_AS_I(m); | 
 | 		if (inode != NULL) | 
 | 			ino = inode->i_ino; | 
 | 	} | 
 | 	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " | 
 | 	       "mapping=%p ino=%lu\n", | 
 | 	       page, atomic_read(&page->_count), | 
 | 	       (unsigned long long)page->index, page->flags, m, ino); | 
 |  | 
 | 	if (page_has_buffers(page)) { | 
 | 		struct buffer_head *bh, *head; | 
 | 		int i = 0; | 
 |  | 
 | 		bh = head = page_buffers(page); | 
 | 		do { | 
 | 			printk(KERN_CRIT | 
 | 			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", | 
 | 			       i++, bh, atomic_read(&bh->b_count), | 
 | 			       (unsigned long long)bh->b_blocknr, bh->b_state); | 
 | 			bh = bh->b_this_page; | 
 | 		} while (bh != head); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_alloc_private_page - allocate a private page with buffer heads | 
 |  * | 
 |  * Return Value: On success, a pointer to the allocated page is returned. | 
 |  * On error, NULL is returned. | 
 |  */ | 
 | struct page *nilfs_alloc_private_page(struct block_device *bdev, int size, | 
 | 				      unsigned long state) | 
 | { | 
 | 	struct buffer_head *bh, *head, *tail; | 
 | 	struct page *page; | 
 |  | 
 | 	page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */ | 
 | 	if (unlikely(!page)) | 
 | 		return NULL; | 
 |  | 
 | 	lock_page(page); | 
 | 	head = alloc_page_buffers(page, size, 0); | 
 | 	if (unlikely(!head)) { | 
 | 		unlock_page(page); | 
 | 		__free_page(page); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	bh = head; | 
 | 	do { | 
 | 		bh->b_state = (1UL << BH_NILFS_Allocated) | state; | 
 | 		tail = bh; | 
 | 		bh->b_bdev = bdev; | 
 | 		bh = bh->b_this_page; | 
 | 	} while (bh); | 
 |  | 
 | 	tail->b_this_page = head; | 
 | 	attach_page_buffers(page, head); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | void nilfs_free_private_page(struct page *page) | 
 | { | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	BUG_ON(page->mapping); | 
 |  | 
 | 	if (page_has_buffers(page) && !try_to_free_buffers(page)) | 
 | 		NILFS_PAGE_BUG(page, "failed to free page"); | 
 |  | 
 | 	unlock_page(page); | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_copy_page -- copy the page with buffers | 
 |  * @dst: destination page | 
 |  * @src: source page | 
 |  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. | 
 |  * | 
 |  * This function is for both data pages and btnode pages.  The dirty flag | 
 |  * should be treated by caller.  The page must not be under i/o. | 
 |  * Both src and dst page must be locked | 
 |  */ | 
 | static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) | 
 | { | 
 | 	struct buffer_head *dbh, *dbufs, *sbh, *sbufs; | 
 | 	unsigned long mask = NILFS_BUFFER_INHERENT_BITS; | 
 |  | 
 | 	BUG_ON(PageWriteback(dst)); | 
 |  | 
 | 	sbh = sbufs = page_buffers(src); | 
 | 	if (!page_has_buffers(dst)) | 
 | 		create_empty_buffers(dst, sbh->b_size, 0); | 
 |  | 
 | 	if (copy_dirty) | 
 | 		mask |= (1UL << BH_Dirty); | 
 |  | 
 | 	dbh = dbufs = page_buffers(dst); | 
 | 	do { | 
 | 		lock_buffer(sbh); | 
 | 		lock_buffer(dbh); | 
 | 		dbh->b_state = sbh->b_state & mask; | 
 | 		dbh->b_blocknr = sbh->b_blocknr; | 
 | 		dbh->b_bdev = sbh->b_bdev; | 
 | 		sbh = sbh->b_this_page; | 
 | 		dbh = dbh->b_this_page; | 
 | 	} while (dbh != dbufs); | 
 |  | 
 | 	copy_highpage(dst, src); | 
 |  | 
 | 	if (PageUptodate(src) && !PageUptodate(dst)) | 
 | 		SetPageUptodate(dst); | 
 | 	else if (!PageUptodate(src) && PageUptodate(dst)) | 
 | 		ClearPageUptodate(dst); | 
 | 	if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) | 
 | 		SetPageMappedToDisk(dst); | 
 | 	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) | 
 | 		ClearPageMappedToDisk(dst); | 
 |  | 
 | 	do { | 
 | 		unlock_buffer(sbh); | 
 | 		unlock_buffer(dbh); | 
 | 		sbh = sbh->b_this_page; | 
 | 		dbh = dbh->b_this_page; | 
 | 	} while (dbh != dbufs); | 
 | } | 
 |  | 
 | int nilfs_copy_dirty_pages(struct address_space *dmap, | 
 | 			   struct address_space *smap) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	unsigned int i; | 
 | 	pgoff_t index = 0; | 
 | 	int err = 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | repeat: | 
 | 	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, | 
 | 				PAGEVEC_SIZE)) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 		struct page *page = pvec.pages[i], *dpage; | 
 |  | 
 | 		lock_page(page); | 
 | 		if (unlikely(!PageDirty(page))) | 
 | 			NILFS_PAGE_BUG(page, "inconsistent dirty state"); | 
 |  | 
 | 		dpage = grab_cache_page(dmap, page->index); | 
 | 		if (unlikely(!dpage)) { | 
 | 			/* No empty page is added to the page cache */ | 
 | 			err = -ENOMEM; | 
 | 			unlock_page(page); | 
 | 			break; | 
 | 		} | 
 | 		if (unlikely(!page_has_buffers(page))) | 
 | 			NILFS_PAGE_BUG(page, | 
 | 				       "found empty page in dat page cache"); | 
 |  | 
 | 		nilfs_copy_page(dpage, page, 1); | 
 | 		__set_page_dirty_nobuffers(dpage); | 
 |  | 
 | 		unlock_page(dpage); | 
 | 		page_cache_release(dpage); | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	pagevec_release(&pvec); | 
 | 	cond_resched(); | 
 |  | 
 | 	if (likely(!err)) | 
 | 		goto repeat; | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache | 
 |  * @dmap: destination page cache | 
 |  * @smap: source page cache | 
 |  * | 
 |  * No pages must no be added to the cache during this process. | 
 |  * This must be ensured by the caller. | 
 |  */ | 
 | void nilfs_copy_back_pages(struct address_space *dmap, | 
 | 			   struct address_space *smap) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	unsigned int i, n; | 
 | 	pgoff_t index = 0; | 
 | 	int err; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | repeat: | 
 | 	n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); | 
 | 	if (!n) | 
 | 		return; | 
 | 	index = pvec.pages[n - 1]->index + 1; | 
 |  | 
 | 	for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 		struct page *page = pvec.pages[i], *dpage; | 
 | 		pgoff_t offset = page->index; | 
 |  | 
 | 		lock_page(page); | 
 | 		dpage = find_lock_page(dmap, offset); | 
 | 		if (dpage) { | 
 | 			/* override existing page on the destination cache */ | 
 | 			WARN_ON(PageDirty(dpage)); | 
 | 			nilfs_copy_page(dpage, page, 0); | 
 | 			unlock_page(dpage); | 
 | 			page_cache_release(dpage); | 
 | 		} else { | 
 | 			struct page *page2; | 
 |  | 
 | 			/* move the page to the destination cache */ | 
 | 			spin_lock_irq(&smap->tree_lock); | 
 | 			page2 = radix_tree_delete(&smap->page_tree, offset); | 
 | 			WARN_ON(page2 != page); | 
 |  | 
 | 			smap->nrpages--; | 
 | 			spin_unlock_irq(&smap->tree_lock); | 
 |  | 
 | 			spin_lock_irq(&dmap->tree_lock); | 
 | 			err = radix_tree_insert(&dmap->page_tree, offset, page); | 
 | 			if (unlikely(err < 0)) { | 
 | 				WARN_ON(err == -EEXIST); | 
 | 				page->mapping = NULL; | 
 | 				page_cache_release(page); /* for cache */ | 
 | 			} else { | 
 | 				page->mapping = dmap; | 
 | 				dmap->nrpages++; | 
 | 				if (PageDirty(page)) | 
 | 					radix_tree_tag_set(&dmap->page_tree, | 
 | 							   offset, | 
 | 							   PAGECACHE_TAG_DIRTY); | 
 | 			} | 
 | 			spin_unlock_irq(&dmap->tree_lock); | 
 | 		} | 
 | 		unlock_page(page); | 
 | 	} | 
 | 	pagevec_release(&pvec); | 
 | 	cond_resched(); | 
 |  | 
 | 	goto repeat; | 
 | } | 
 |  | 
 | void nilfs_clear_dirty_pages(struct address_space *mapping) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	unsigned int i; | 
 | 	pgoff_t index = 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 |  | 
 | 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, | 
 | 				  PAGEVEC_SIZE)) { | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			struct buffer_head *bh, *head; | 
 |  | 
 | 			lock_page(page); | 
 | 			ClearPageUptodate(page); | 
 | 			ClearPageMappedToDisk(page); | 
 | 			bh = head = page_buffers(page); | 
 | 			do { | 
 | 				lock_buffer(bh); | 
 | 				clear_buffer_dirty(bh); | 
 | 				clear_buffer_nilfs_volatile(bh); | 
 | 				clear_buffer_uptodate(bh); | 
 | 				clear_buffer_mapped(bh); | 
 | 				unlock_buffer(bh); | 
 | 				bh = bh->b_this_page; | 
 | 			} while (bh != head); | 
 |  | 
 | 			__nilfs_clear_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | } | 
 |  | 
 | unsigned nilfs_page_count_clean_buffers(struct page *page, | 
 | 					unsigned from, unsigned to) | 
 | { | 
 | 	unsigned block_start, block_end; | 
 | 	struct buffer_head *bh, *head; | 
 | 	unsigned nc = 0; | 
 |  | 
 | 	for (bh = head = page_buffers(page), block_start = 0; | 
 | 	     bh != head || !block_start; | 
 | 	     block_start = block_end, bh = bh->b_this_page) { | 
 | 		block_end = block_start + bh->b_size; | 
 | 		if (block_end > from && block_start < to && !buffer_dirty(bh)) | 
 | 			nc++; | 
 | 	} | 
 | 	return nc; | 
 | } | 
 |  | 
 | /* | 
 |  * NILFS2 needs clear_page_dirty() in the following two cases: | 
 |  * | 
 |  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears | 
 |  *    page dirty flags when it copies back pages from the shadow cache | 
 |  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache | 
 |  *    (dat->{i_mapping,i_btnode_cache}). | 
 |  * | 
 |  * 2) Some B-tree operations like insertion or deletion may dispose buffers | 
 |  *    in dirty state, and this needs to cancel the dirty state of their pages. | 
 |  */ | 
 | int __nilfs_clear_page_dirty(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 |  | 
 | 	if (mapping) { | 
 | 		spin_lock_irq(&mapping->tree_lock); | 
 | 		if (test_bit(PG_dirty, &page->flags)) { | 
 | 			radix_tree_tag_clear(&mapping->page_tree, | 
 | 					     page_index(page), | 
 | 					     PAGECACHE_TAG_DIRTY); | 
 | 			spin_unlock_irq(&mapping->tree_lock); | 
 | 			return clear_page_dirty_for_io(page); | 
 | 		} | 
 | 		spin_unlock_irq(&mapping->tree_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	return TestClearPageDirty(page); | 
 | } |