| /* |
| * Copyright(c) 2007 Atheros Corporation. All rights reserved. |
| * |
| * Derived from Intel e1000 driver |
| * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 |
| * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/mii.h> |
| #include <linux/crc32.h> |
| |
| #include "atl1e.h" |
| |
| /* |
| * check_eeprom_exist |
| * return 0 if eeprom exist |
| */ |
| int atl1e_check_eeprom_exist(struct atl1e_hw *hw) |
| { |
| u32 value; |
| |
| value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL); |
| if (value & SPI_FLASH_CTRL_EN_VPD) { |
| value &= ~SPI_FLASH_CTRL_EN_VPD; |
| AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); |
| } |
| value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST); |
| return ((value & 0xFF00) == 0x6C00) ? 0 : 1; |
| } |
| |
| void atl1e_hw_set_mac_addr(struct atl1e_hw *hw) |
| { |
| u32 value; |
| /* |
| * 00-0B-6A-F6-00-DC |
| * 0: 6AF600DC 1: 000B |
| * low dword |
| */ |
| value = (((u32)hw->mac_addr[2]) << 24) | |
| (((u32)hw->mac_addr[3]) << 16) | |
| (((u32)hw->mac_addr[4]) << 8) | |
| (((u32)hw->mac_addr[5])) ; |
| AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); |
| /* hight dword */ |
| value = (((u32)hw->mac_addr[0]) << 8) | |
| (((u32)hw->mac_addr[1])) ; |
| AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); |
| } |
| |
| /* |
| * atl1e_get_permanent_address |
| * return 0 if get valid mac address, |
| */ |
| static int atl1e_get_permanent_address(struct atl1e_hw *hw) |
| { |
| u32 addr[2]; |
| u32 i; |
| u32 twsi_ctrl_data; |
| u8 eth_addr[ETH_ALEN]; |
| |
| if (is_valid_ether_addr(hw->perm_mac_addr)) |
| return 0; |
| |
| /* init */ |
| addr[0] = addr[1] = 0; |
| |
| if (!atl1e_check_eeprom_exist(hw)) { |
| /* eeprom exist */ |
| twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); |
| twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; |
| AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); |
| for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { |
| msleep(10); |
| twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); |
| if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) |
| break; |
| } |
| if (i >= AT_TWSI_EEPROM_TIMEOUT) |
| return AT_ERR_TIMEOUT; |
| } |
| |
| /* maybe MAC-address is from BIOS */ |
| addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR); |
| addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4); |
| *(u32 *) ð_addr[2] = swab32(addr[0]); |
| *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); |
| |
| if (is_valid_ether_addr(eth_addr)) { |
| memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); |
| return 0; |
| } |
| |
| return AT_ERR_EEPROM; |
| } |
| |
| bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value) |
| { |
| return true; |
| } |
| |
| bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value) |
| { |
| int i; |
| u32 control; |
| |
| if (offset & 3) |
| return false; /* address do not align */ |
| |
| AT_WRITE_REG(hw, REG_VPD_DATA, 0); |
| control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; |
| AT_WRITE_REG(hw, REG_VPD_CAP, control); |
| |
| for (i = 0; i < 10; i++) { |
| msleep(2); |
| control = AT_READ_REG(hw, REG_VPD_CAP); |
| if (control & VPD_CAP_VPD_FLAG) |
| break; |
| } |
| if (control & VPD_CAP_VPD_FLAG) { |
| *p_value = AT_READ_REG(hw, REG_VPD_DATA); |
| return true; |
| } |
| return false; /* timeout */ |
| } |
| |
| void atl1e_force_ps(struct atl1e_hw *hw) |
| { |
| AT_WRITE_REGW(hw, REG_GPHY_CTRL, |
| GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); |
| } |
| |
| /* |
| * Reads the adapter's MAC address from the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| */ |
| int atl1e_read_mac_addr(struct atl1e_hw *hw) |
| { |
| int err = 0; |
| |
| err = atl1e_get_permanent_address(hw); |
| if (err) |
| return AT_ERR_EEPROM; |
| memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); |
| return 0; |
| } |
| |
| /* |
| * atl1e_hash_mc_addr |
| * purpose |
| * set hash value for a multicast address |
| */ |
| u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr) |
| { |
| u32 crc32; |
| u32 value = 0; |
| int i; |
| |
| crc32 = ether_crc_le(6, mc_addr); |
| for (i = 0; i < 32; i++) |
| value |= (((crc32 >> i) & 1) << (31 - i)); |
| |
| return value; |
| } |
| |
| /* |
| * Sets the bit in the multicast table corresponding to the hash value. |
| * hw - Struct containing variables accessed by shared code |
| * hash_value - Multicast address hash value |
| */ |
| void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value) |
| { |
| u32 hash_bit, hash_reg; |
| u32 mta; |
| |
| /* |
| * The HASH Table is a register array of 2 32-bit registers. |
| * It is treated like an array of 64 bits. We want to set |
| * bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The register is determined by the |
| * upper 7 bits of the hash value and the bit within that |
| * register are determined by the lower 5 bits of the value. |
| */ |
| hash_reg = (hash_value >> 31) & 0x1; |
| hash_bit = (hash_value >> 26) & 0x1F; |
| |
| mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); |
| |
| mta |= (1 << hash_bit); |
| |
| AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); |
| } |
| /* |
| * Reads the value from a PHY register |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to read |
| */ |
| int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data) |
| { |
| u32 val; |
| int i; |
| |
| val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | |
| MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | |
| MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; |
| |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| |
| wmb(); |
| |
| for (i = 0; i < MDIO_WAIT_TIMES; i++) { |
| udelay(2); |
| val = AT_READ_REG(hw, REG_MDIO_CTRL); |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| break; |
| wmb(); |
| } |
| if (!(val & (MDIO_START | MDIO_BUSY))) { |
| *phy_data = (u16)val; |
| return 0; |
| } |
| |
| return AT_ERR_PHY; |
| } |
| |
| /* |
| * Writes a value to a PHY register |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to write |
| * data - data to write to the PHY |
| */ |
| int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data) |
| { |
| int i; |
| u32 val; |
| |
| val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | |
| (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | |
| MDIO_SUP_PREAMBLE | |
| MDIO_START | |
| MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; |
| |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| wmb(); |
| |
| for (i = 0; i < MDIO_WAIT_TIMES; i++) { |
| udelay(2); |
| val = AT_READ_REG(hw, REG_MDIO_CTRL); |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| break; |
| wmb(); |
| } |
| |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| return 0; |
| |
| return AT_ERR_PHY; |
| } |
| |
| /* |
| * atl1e_init_pcie - init PCIE module |
| */ |
| static void atl1e_init_pcie(struct atl1e_hw *hw) |
| { |
| u32 value; |
| /* comment 2lines below to save more power when sususpend |
| value = LTSSM_TEST_MODE_DEF; |
| AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); |
| */ |
| |
| /* pcie flow control mode change */ |
| value = AT_READ_REG(hw, 0x1008); |
| value |= 0x8000; |
| AT_WRITE_REG(hw, 0x1008, value); |
| } |
| /* |
| * Configures PHY autoneg and flow control advertisement settings |
| * |
| * hw - Struct containing variables accessed by shared code |
| */ |
| static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw) |
| { |
| s32 ret_val; |
| u16 mii_autoneg_adv_reg; |
| u16 mii_1000t_ctrl_reg; |
| |
| if (0 != hw->mii_autoneg_adv_reg) |
| return 0; |
| /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */ |
| mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; |
| mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK; |
| |
| /* |
| * Need to parse autoneg_advertised and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* |
| * First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~ADVERTISE_ALL; |
| mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK; |
| |
| /* |
| * Need to parse MediaType and setup the |
| * appropriate PHY registers. |
| */ |
| switch (hw->media_type) { |
| case MEDIA_TYPE_AUTO_SENSOR: |
| mii_autoneg_adv_reg |= ADVERTISE_ALL; |
| hw->autoneg_advertised = ADVERTISE_ALL; |
| if (hw->nic_type == athr_l1e) { |
| mii_1000t_ctrl_reg |= ADVERTISE_1000FULL; |
| hw->autoneg_advertised |= ADVERTISE_1000_FULL; |
| } |
| break; |
| |
| case MEDIA_TYPE_100M_FULL: |
| mii_autoneg_adv_reg |= ADVERTISE_100FULL; |
| hw->autoneg_advertised = ADVERTISE_100_FULL; |
| break; |
| |
| case MEDIA_TYPE_100M_HALF: |
| mii_autoneg_adv_reg |= ADVERTISE_100_HALF; |
| hw->autoneg_advertised = ADVERTISE_100_HALF; |
| break; |
| |
| case MEDIA_TYPE_10M_FULL: |
| mii_autoneg_adv_reg |= ADVERTISE_10_FULL; |
| hw->autoneg_advertised = ADVERTISE_10_FULL; |
| break; |
| |
| default: |
| mii_autoneg_adv_reg |= ADVERTISE_10_HALF; |
| hw->autoneg_advertised = ADVERTISE_10_HALF; |
| break; |
| } |
| |
| /* flow control fixed to enable all */ |
| mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP); |
| |
| hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; |
| hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; |
| |
| ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { |
| ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000, |
| mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Resets the PHY and make all config validate |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets bit 15 and 12 of the MII control regiser (for F001 bug) |
| */ |
| int atl1e_phy_commit(struct atl1e_hw *hw) |
| { |
| struct atl1e_adapter *adapter = hw->adapter; |
| int ret_val; |
| u16 phy_data; |
| |
| phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART; |
| |
| ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data); |
| if (ret_val) { |
| u32 val; |
| int i; |
| /************************************** |
| * pcie serdes link may be down ! |
| **************************************/ |
| for (i = 0; i < 25; i++) { |
| msleep(1); |
| val = AT_READ_REG(hw, REG_MDIO_CTRL); |
| if (!(val & (MDIO_START | MDIO_BUSY))) |
| break; |
| } |
| |
| if (0 != (val & (MDIO_START | MDIO_BUSY))) { |
| netdev_err(adapter->netdev, |
| "pcie linkdown at least for 25ms\n"); |
| return ret_val; |
| } |
| |
| netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i); |
| } |
| return 0; |
| } |
| |
| int atl1e_phy_init(struct atl1e_hw *hw) |
| { |
| struct atl1e_adapter *adapter = hw->adapter; |
| s32 ret_val; |
| u16 phy_val; |
| |
| if (hw->phy_configured) { |
| if (hw->re_autoneg) { |
| hw->re_autoneg = false; |
| return atl1e_restart_autoneg(hw); |
| } |
| return 0; |
| } |
| |
| /* RESET GPHY Core */ |
| AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT); |
| msleep(2); |
| AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT | |
| GPHY_CTRL_EXT_RESET); |
| msleep(2); |
| |
| /* patches */ |
| /* p1. eable hibernation mode */ |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB); |
| if (ret_val) |
| return ret_val; |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00); |
| if (ret_val) |
| return ret_val; |
| /* p2. set Class A/B for all modes */ |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0); |
| if (ret_val) |
| return ret_val; |
| phy_val = 0x02ef; |
| /* remove Class AB */ |
| /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */ |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val); |
| if (ret_val) |
| return ret_val; |
| /* p3. 10B ??? */ |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12); |
| if (ret_val) |
| return ret_val; |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04); |
| if (ret_val) |
| return ret_val; |
| /* p4. 1000T power */ |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4); |
| if (ret_val) |
| return ret_val; |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5); |
| if (ret_val) |
| return ret_val; |
| ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46); |
| if (ret_val) |
| return ret_val; |
| |
| msleep(1); |
| |
| /*Enable PHY LinkChange Interrupt */ |
| ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00); |
| if (ret_val) { |
| netdev_err(adapter->netdev, |
| "Error enable PHY linkChange Interrupt\n"); |
| return ret_val; |
| } |
| /* setup AutoNeg parameters */ |
| ret_val = atl1e_phy_setup_autoneg_adv(hw); |
| if (ret_val) { |
| netdev_err(adapter->netdev, |
| "Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/ |
| netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n"); |
| ret_val = atl1e_phy_commit(hw); |
| if (ret_val) { |
| netdev_err(adapter->netdev, "Error resetting the phy\n"); |
| return ret_val; |
| } |
| |
| hw->phy_configured = true; |
| |
| return 0; |
| } |
| |
| /* |
| * Reset the transmit and receive units; mask and clear all interrupts. |
| * hw - Struct containing variables accessed by shared code |
| * return : 0 or idle status (if error) |
| */ |
| int atl1e_reset_hw(struct atl1e_hw *hw) |
| { |
| struct atl1e_adapter *adapter = hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| u32 idle_status_data = 0; |
| u16 pci_cfg_cmd_word = 0; |
| int timeout = 0; |
| |
| /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ |
| pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word); |
| if ((pci_cfg_cmd_word & (CMD_IO_SPACE | |
| CMD_MEMORY_SPACE | CMD_BUS_MASTER)) |
| != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) { |
| pci_cfg_cmd_word |= (CMD_IO_SPACE | |
| CMD_MEMORY_SPACE | CMD_BUS_MASTER); |
| pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word); |
| } |
| |
| /* |
| * Issue Soft Reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| AT_WRITE_REG(hw, REG_MASTER_CTRL, |
| MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST); |
| wmb(); |
| msleep(1); |
| |
| /* Wait at least 10ms for All module to be Idle */ |
| for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { |
| idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS); |
| if (idle_status_data == 0) |
| break; |
| msleep(1); |
| cpu_relax(); |
| } |
| |
| if (timeout >= AT_HW_MAX_IDLE_DELAY) { |
| netdev_err(adapter->netdev, |
| "MAC state machine can't be idle since disabled for 10ms second\n"); |
| return AT_ERR_TIMEOUT; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Performs basic configuration of the adapter. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * Assumes that the controller has previously been reset and is in a |
| * post-reset uninitialized state. Initializes multicast table, |
| * and Calls routines to setup link |
| * Leaves the transmit and receive units disabled and uninitialized. |
| */ |
| int atl1e_init_hw(struct atl1e_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| atl1e_init_pcie(hw); |
| |
| /* Zero out the Multicast HASH table */ |
| /* clear the old settings from the multicast hash table */ |
| AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); |
| AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); |
| |
| ret_val = atl1e_phy_init(hw); |
| |
| return ret_val; |
| } |
| |
| /* |
| * Detects the current speed and duplex settings of the hardware. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * speed - Speed of the connection |
| * duplex - Duplex setting of the connection |
| */ |
| int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex) |
| { |
| int err; |
| u16 phy_data; |
| |
| /* Read PHY Specific Status Register (17) */ |
| err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data); |
| if (err) |
| return err; |
| |
| if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED)) |
| return AT_ERR_PHY_RES; |
| |
| switch (phy_data & MII_AT001_PSSR_SPEED) { |
| case MII_AT001_PSSR_1000MBS: |
| *speed = SPEED_1000; |
| break; |
| case MII_AT001_PSSR_100MBS: |
| *speed = SPEED_100; |
| break; |
| case MII_AT001_PSSR_10MBS: |
| *speed = SPEED_10; |
| break; |
| default: |
| return AT_ERR_PHY_SPEED; |
| } |
| |
| if (phy_data & MII_AT001_PSSR_DPLX) |
| *duplex = FULL_DUPLEX; |
| else |
| *duplex = HALF_DUPLEX; |
| |
| return 0; |
| } |
| |
| int atl1e_restart_autoneg(struct atl1e_hw *hw) |
| { |
| int err = 0; |
| |
| err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); |
| if (err) |
| return err; |
| |
| if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { |
| err = atl1e_write_phy_reg(hw, MII_CTRL1000, |
| hw->mii_1000t_ctrl_reg); |
| if (err) |
| return err; |
| } |
| |
| err = atl1e_write_phy_reg(hw, MII_BMCR, |
| BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART); |
| return err; |
| } |
| |