|  | scale=0 | 
|  |  | 
|  | define gcd(a,b) { | 
|  | auto t; | 
|  | while (b) { | 
|  | t = b; | 
|  | b = a % b; | 
|  | a = t; | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /* Division by reciprocal multiplication. */ | 
|  | define fmul(b,n,d) { | 
|  | return (2^b*n+d-1)/d; | 
|  | } | 
|  |  | 
|  | /* Adjustment factor when a ceiling value is used.  Use as: | 
|  | (imul * n) + (fmulxx * n + fadjxx) >> xx) */ | 
|  | define fadj(b,n,d) { | 
|  | auto v; | 
|  | d = d/gcd(n,d); | 
|  | v = 2^b*(d-1)/d; | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Compute the appropriate mul/adj values as well as a shift count, | 
|  | which brings the mul value into the range 2^b-1 <= x < 2^b.  Such | 
|  | a shift value will be correct in the signed integer range and off | 
|  | by at most one in the upper half of the unsigned range. */ | 
|  | define fmuls(b,n,d) { | 
|  | auto s, m; | 
|  | for (s = 0; 1; s++) { | 
|  | m = fmul(s,n,d); | 
|  | if (m >= 2^(b-1)) | 
|  | return s; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | define timeconst(hz) { | 
|  | print "/* Automatically generated by kernel/time/timeconst.bc */\n" | 
|  | print "/* Time conversion constants for HZ == ", hz, " */\n" | 
|  | print "\n" | 
|  |  | 
|  | print "#ifndef KERNEL_TIMECONST_H\n" | 
|  | print "#define KERNEL_TIMECONST_H\n\n" | 
|  |  | 
|  | print "#include <linux/param.h>\n" | 
|  | print "#include <linux/types.h>\n\n" | 
|  |  | 
|  | print "#if HZ != ", hz, "\n" | 
|  | print "#error \qinclude/generated/timeconst.h has the wrong HZ value!\q\n" | 
|  | print "#endif\n\n" | 
|  |  | 
|  | if (hz < 2) { | 
|  | print "#error Totally bogus HZ value!\n" | 
|  | } else { | 
|  | s=fmuls(32,1000,hz) | 
|  | obase=16 | 
|  | print "#define HZ_TO_MSEC_MUL32\tU64_C(0x", fmul(s,1000,hz), ")\n" | 
|  | print "#define HZ_TO_MSEC_ADJ32\tU64_C(0x", fadj(s,1000,hz), ")\n" | 
|  | obase=10 | 
|  | print "#define HZ_TO_MSEC_SHR32\t", s, "\n" | 
|  |  | 
|  | s=fmuls(32,hz,1000) | 
|  | obase=16 | 
|  | print "#define MSEC_TO_HZ_MUL32\tU64_C(0x", fmul(s,hz,1000), ")\n" | 
|  | print "#define MSEC_TO_HZ_ADJ32\tU64_C(0x", fadj(s,hz,1000), ")\n" | 
|  | obase=10 | 
|  | print "#define MSEC_TO_HZ_SHR32\t", s, "\n" | 
|  |  | 
|  | obase=10 | 
|  | cd=gcd(hz,1000) | 
|  | print "#define HZ_TO_MSEC_NUM\t\t", 1000/cd, "\n" | 
|  | print "#define HZ_TO_MSEC_DEN\t\t", hz/cd, "\n" | 
|  | print "#define MSEC_TO_HZ_NUM\t\t", hz/cd, "\n" | 
|  | print "#define MSEC_TO_HZ_DEN\t\t", 1000/cd, "\n" | 
|  | print "\n" | 
|  |  | 
|  | s=fmuls(32,1000000,hz) | 
|  | obase=16 | 
|  | print "#define HZ_TO_USEC_MUL32\tU64_C(0x", fmul(s,1000000,hz), ")\n" | 
|  | print "#define HZ_TO_USEC_ADJ32\tU64_C(0x", fadj(s,1000000,hz), ")\n" | 
|  | obase=10 | 
|  | print "#define HZ_TO_USEC_SHR32\t", s, "\n" | 
|  |  | 
|  | s=fmuls(32,hz,1000000) | 
|  | obase=16 | 
|  | print "#define USEC_TO_HZ_MUL32\tU64_C(0x", fmul(s,hz,1000000), ")\n" | 
|  | print "#define USEC_TO_HZ_ADJ32\tU64_C(0x", fadj(s,hz,1000000), ")\n" | 
|  | obase=10 | 
|  | print "#define USEC_TO_HZ_SHR32\t", s, "\n" | 
|  |  | 
|  | obase=10 | 
|  | cd=gcd(hz,1000000) | 
|  | print "#define HZ_TO_USEC_NUM\t\t", 1000000/cd, "\n" | 
|  | print "#define HZ_TO_USEC_DEN\t\t", hz/cd, "\n" | 
|  | print "#define USEC_TO_HZ_NUM\t\t", hz/cd, "\n" | 
|  | print "#define USEC_TO_HZ_DEN\t\t", 1000000/cd, "\n" | 
|  | print "\n" | 
|  |  | 
|  | print "#endif /* KERNEL_TIMECONST_H */\n" | 
|  | } | 
|  | halt | 
|  | } | 
|  |  | 
|  | hz = read(); | 
|  | timeconst(hz) |