| /* |
| * Copyright(c) 2015 - 2017 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <rdma/ib_mad.h> |
| #include <rdma/ib_user_verbs.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/utsname.h> |
| #include <linux/rculist.h> |
| #include <linux/mm.h> |
| #include <linux/vmalloc.h> |
| #include <rdma/opa_addr.h> |
| |
| #include "hfi.h" |
| #include "common.h" |
| #include "device.h" |
| #include "trace.h" |
| #include "qp.h" |
| #include "verbs_txreq.h" |
| #include "debugfs.h" |
| #include "vnic.h" |
| |
| static unsigned int hfi1_lkey_table_size = 16; |
| module_param_named(lkey_table_size, hfi1_lkey_table_size, uint, |
| S_IRUGO); |
| MODULE_PARM_DESC(lkey_table_size, |
| "LKEY table size in bits (2^n, 1 <= n <= 23)"); |
| |
| static unsigned int hfi1_max_pds = 0xFFFF; |
| module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_pds, |
| "Maximum number of protection domains to support"); |
| |
| static unsigned int hfi1_max_ahs = 0xFFFF; |
| module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support"); |
| |
| unsigned int hfi1_max_cqes = 0x2FFFFF; |
| module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_cqes, |
| "Maximum number of completion queue entries to support"); |
| |
| unsigned int hfi1_max_cqs = 0x1FFFF; |
| module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support"); |
| |
| unsigned int hfi1_max_qp_wrs = 0x3FFF; |
| module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support"); |
| |
| unsigned int hfi1_max_qps = 32768; |
| module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support"); |
| |
| unsigned int hfi1_max_sges = 0x60; |
| module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support"); |
| |
| unsigned int hfi1_max_mcast_grps = 16384; |
| module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_mcast_grps, |
| "Maximum number of multicast groups to support"); |
| |
| unsigned int hfi1_max_mcast_qp_attached = 16; |
| module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached, |
| uint, S_IRUGO); |
| MODULE_PARM_DESC(max_mcast_qp_attached, |
| "Maximum number of attached QPs to support"); |
| |
| unsigned int hfi1_max_srqs = 1024; |
| module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support"); |
| |
| unsigned int hfi1_max_srq_sges = 128; |
| module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support"); |
| |
| unsigned int hfi1_max_srq_wrs = 0x1FFFF; |
| module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO); |
| MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support"); |
| |
| unsigned short piothreshold = 256; |
| module_param(piothreshold, ushort, S_IRUGO); |
| MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio"); |
| |
| #define COPY_CACHELESS 1 |
| #define COPY_ADAPTIVE 2 |
| static unsigned int sge_copy_mode; |
| module_param(sge_copy_mode, uint, S_IRUGO); |
| MODULE_PARM_DESC(sge_copy_mode, |
| "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS"); |
| |
| static void verbs_sdma_complete( |
| struct sdma_txreq *cookie, |
| int status); |
| |
| static int pio_wait(struct rvt_qp *qp, |
| struct send_context *sc, |
| struct hfi1_pkt_state *ps, |
| u32 flag); |
| |
| /* Length of buffer to create verbs txreq cache name */ |
| #define TXREQ_NAME_LEN 24 |
| |
| static uint wss_threshold; |
| module_param(wss_threshold, uint, S_IRUGO); |
| MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy"); |
| static uint wss_clean_period = 256; |
| module_param(wss_clean_period, uint, S_IRUGO); |
| MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned"); |
| |
| /* memory working set size */ |
| struct hfi1_wss { |
| unsigned long *entries; |
| atomic_t total_count; |
| atomic_t clean_counter; |
| atomic_t clean_entry; |
| |
| int threshold; |
| int num_entries; |
| long pages_mask; |
| }; |
| |
| static struct hfi1_wss wss; |
| |
| int hfi1_wss_init(void) |
| { |
| long llc_size; |
| long llc_bits; |
| long table_size; |
| long table_bits; |
| |
| /* check for a valid percent range - default to 80 if none or invalid */ |
| if (wss_threshold < 1 || wss_threshold > 100) |
| wss_threshold = 80; |
| /* reject a wildly large period */ |
| if (wss_clean_period > 1000000) |
| wss_clean_period = 256; |
| /* reject a zero period */ |
| if (wss_clean_period == 0) |
| wss_clean_period = 1; |
| |
| /* |
| * Calculate the table size - the next power of 2 larger than the |
| * LLC size. LLC size is in KiB. |
| */ |
| llc_size = wss_llc_size() * 1024; |
| table_size = roundup_pow_of_two(llc_size); |
| |
| /* one bit per page in rounded up table */ |
| llc_bits = llc_size / PAGE_SIZE; |
| table_bits = table_size / PAGE_SIZE; |
| wss.pages_mask = table_bits - 1; |
| wss.num_entries = table_bits / BITS_PER_LONG; |
| |
| wss.threshold = (llc_bits * wss_threshold) / 100; |
| if (wss.threshold == 0) |
| wss.threshold = 1; |
| |
| atomic_set(&wss.clean_counter, wss_clean_period); |
| |
| wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries), |
| GFP_KERNEL); |
| if (!wss.entries) { |
| hfi1_wss_exit(); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| void hfi1_wss_exit(void) |
| { |
| /* coded to handle partially initialized and repeat callers */ |
| kfree(wss.entries); |
| wss.entries = NULL; |
| } |
| |
| /* |
| * Advance the clean counter. When the clean period has expired, |
| * clean an entry. |
| * |
| * This is implemented in atomics to avoid locking. Because multiple |
| * variables are involved, it can be racy which can lead to slightly |
| * inaccurate information. Since this is only a heuristic, this is |
| * OK. Any innaccuracies will clean themselves out as the counter |
| * advances. That said, it is unlikely the entry clean operation will |
| * race - the next possible racer will not start until the next clean |
| * period. |
| * |
| * The clean counter is implemented as a decrement to zero. When zero |
| * is reached an entry is cleaned. |
| */ |
| static void wss_advance_clean_counter(void) |
| { |
| int entry; |
| int weight; |
| unsigned long bits; |
| |
| /* become the cleaner if we decrement the counter to zero */ |
| if (atomic_dec_and_test(&wss.clean_counter)) { |
| /* |
| * Set, not add, the clean period. This avoids an issue |
| * where the counter could decrement below the clean period. |
| * Doing a set can result in lost decrements, slowing the |
| * clean advance. Since this a heuristic, this possible |
| * slowdown is OK. |
| * |
| * An alternative is to loop, advancing the counter by a |
| * clean period until the result is > 0. However, this could |
| * lead to several threads keeping another in the clean loop. |
| * This could be mitigated by limiting the number of times |
| * we stay in the loop. |
| */ |
| atomic_set(&wss.clean_counter, wss_clean_period); |
| |
| /* |
| * Uniquely grab the entry to clean and move to next. |
| * The current entry is always the lower bits of |
| * wss.clean_entry. The table size, wss.num_entries, |
| * is always a power-of-2. |
| */ |
| entry = (atomic_inc_return(&wss.clean_entry) - 1) |
| & (wss.num_entries - 1); |
| |
| /* clear the entry and count the bits */ |
| bits = xchg(&wss.entries[entry], 0); |
| weight = hweight64((u64)bits); |
| /* only adjust the contended total count if needed */ |
| if (weight) |
| atomic_sub(weight, &wss.total_count); |
| } |
| } |
| |
| /* |
| * Insert the given address into the working set array. |
| */ |
| static void wss_insert(void *address) |
| { |
| u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask; |
| u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ |
| u32 nr = page & (BITS_PER_LONG - 1); |
| |
| if (!test_and_set_bit(nr, &wss.entries[entry])) |
| atomic_inc(&wss.total_count); |
| |
| wss_advance_clean_counter(); |
| } |
| |
| /* |
| * Is the working set larger than the threshold? |
| */ |
| static inline bool wss_exceeds_threshold(void) |
| { |
| return atomic_read(&wss.total_count) >= wss.threshold; |
| } |
| |
| /* |
| * Translate ib_wr_opcode into ib_wc_opcode. |
| */ |
| const enum ib_wc_opcode ib_hfi1_wc_opcode[] = { |
| [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE, |
| [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE, |
| [IB_WR_SEND] = IB_WC_SEND, |
| [IB_WR_SEND_WITH_IMM] = IB_WC_SEND, |
| [IB_WR_RDMA_READ] = IB_WC_RDMA_READ, |
| [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP, |
| [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD, |
| [IB_WR_SEND_WITH_INV] = IB_WC_SEND, |
| [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV, |
| [IB_WR_REG_MR] = IB_WC_REG_MR |
| }; |
| |
| /* |
| * Length of header by opcode, 0 --> not supported |
| */ |
| const u8 hdr_len_by_opcode[256] = { |
| /* RC */ |
| [IB_OPCODE_RC_SEND_FIRST] = 12 + 8, |
| [IB_OPCODE_RC_SEND_MIDDLE] = 12 + 8, |
| [IB_OPCODE_RC_SEND_LAST] = 12 + 8, |
| [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_SEND_ONLY] = 12 + 8, |
| [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_WRITE_FIRST] = 12 + 8 + 16, |
| [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = 12 + 8, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST] = 12 + 8, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY] = 12 + 8 + 16, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, |
| [IB_OPCODE_RC_RDMA_READ_REQUEST] = 12 + 8 + 16, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = 12 + 8, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = 12 + 8 + 4, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = 12 + 8 + 4, |
| [IB_OPCODE_RC_ACKNOWLEDGE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = 12 + 8 + 4 + 8, |
| [IB_OPCODE_RC_COMPARE_SWAP] = 12 + 8 + 28, |
| [IB_OPCODE_RC_FETCH_ADD] = 12 + 8 + 28, |
| [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = 12 + 8 + 4, |
| [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = 12 + 8 + 4, |
| /* UC */ |
| [IB_OPCODE_UC_SEND_FIRST] = 12 + 8, |
| [IB_OPCODE_UC_SEND_MIDDLE] = 12 + 8, |
| [IB_OPCODE_UC_SEND_LAST] = 12 + 8, |
| [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_UC_SEND_ONLY] = 12 + 8, |
| [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_UC_RDMA_WRITE_FIRST] = 12 + 8 + 16, |
| [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = 12 + 8, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST] = 12 + 8, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY] = 12 + 8 + 16, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20, |
| /* UD */ |
| [IB_OPCODE_UD_SEND_ONLY] = 12 + 8 + 8, |
| [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = 12 + 8 + 12 |
| }; |
| |
| static const opcode_handler opcode_handler_tbl[256] = { |
| /* RC */ |
| [IB_OPCODE_RC_SEND_FIRST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_MIDDLE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_LAST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_ONLY] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_FIRST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_MIDDLE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_REQUEST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_ACKNOWLEDGE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_COMPARE_SWAP] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_FETCH_ADD] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE] = &hfi1_rc_rcv, |
| [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE] = &hfi1_rc_rcv, |
| /* UC */ |
| [IB_OPCODE_UC_SEND_FIRST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_MIDDLE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_LAST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_ONLY] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_FIRST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_MIDDLE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY] = &hfi1_uc_rcv, |
| [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv, |
| /* UD */ |
| [IB_OPCODE_UD_SEND_ONLY] = &hfi1_ud_rcv, |
| [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE] = &hfi1_ud_rcv, |
| /* CNP */ |
| [IB_OPCODE_CNP] = &hfi1_cnp_rcv |
| }; |
| |
| #define OPMASK 0x1f |
| |
| static const u32 pio_opmask[BIT(3)] = { |
| /* RC */ |
| [IB_OPCODE_RC >> 5] = |
| BIT(RC_OP(SEND_ONLY) & OPMASK) | |
| BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | |
| BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) | |
| BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) | |
| BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) | |
| BIT(RC_OP(ACKNOWLEDGE) & OPMASK) | |
| BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) | |
| BIT(RC_OP(COMPARE_SWAP) & OPMASK) | |
| BIT(RC_OP(FETCH_ADD) & OPMASK), |
| /* UC */ |
| [IB_OPCODE_UC >> 5] = |
| BIT(UC_OP(SEND_ONLY) & OPMASK) | |
| BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) | |
| BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) | |
| BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK), |
| }; |
| |
| /* |
| * System image GUID. |
| */ |
| __be64 ib_hfi1_sys_image_guid; |
| |
| /** |
| * hfi1_copy_sge - copy data to SGE memory |
| * @ss: the SGE state |
| * @data: the data to copy |
| * @length: the length of the data |
| * @release: boolean to release MR |
| * @copy_last: do a separate copy of the last 8 bytes |
| */ |
| void hfi1_copy_sge( |
| struct rvt_sge_state *ss, |
| void *data, u32 length, |
| bool release, |
| bool copy_last) |
| { |
| struct rvt_sge *sge = &ss->sge; |
| int i; |
| bool in_last = false; |
| bool cacheless_copy = false; |
| |
| if (sge_copy_mode == COPY_CACHELESS) { |
| cacheless_copy = length >= PAGE_SIZE; |
| } else if (sge_copy_mode == COPY_ADAPTIVE) { |
| if (length >= PAGE_SIZE) { |
| /* |
| * NOTE: this *assumes*: |
| * o The first vaddr is the dest. |
| * o If multiple pages, then vaddr is sequential. |
| */ |
| wss_insert(sge->vaddr); |
| if (length >= (2 * PAGE_SIZE)) |
| wss_insert(sge->vaddr + PAGE_SIZE); |
| |
| cacheless_copy = wss_exceeds_threshold(); |
| } else { |
| wss_advance_clean_counter(); |
| } |
| } |
| if (copy_last) { |
| if (length > 8) { |
| length -= 8; |
| } else { |
| copy_last = false; |
| in_last = true; |
| } |
| } |
| |
| again: |
| while (length) { |
| u32 len = rvt_get_sge_length(sge, length); |
| |
| WARN_ON_ONCE(len == 0); |
| if (unlikely(in_last)) { |
| /* enforce byte transfer ordering */ |
| for (i = 0; i < len; i++) |
| ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; |
| } else if (cacheless_copy) { |
| cacheless_memcpy(sge->vaddr, data, len); |
| } else { |
| memcpy(sge->vaddr, data, len); |
| } |
| rvt_update_sge(ss, len, release); |
| data += len; |
| length -= len; |
| } |
| |
| if (copy_last) { |
| copy_last = false; |
| in_last = true; |
| length = 8; |
| goto again; |
| } |
| } |
| |
| /* |
| * Make sure the QP is ready and able to accept the given opcode. |
| */ |
| static inline opcode_handler qp_ok(struct hfi1_packet *packet) |
| { |
| if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK)) |
| return NULL; |
| if (((packet->opcode & RVT_OPCODE_QP_MASK) == |
| packet->qp->allowed_ops) || |
| (packet->opcode == IB_OPCODE_CNP)) |
| return opcode_handler_tbl[packet->opcode]; |
| |
| return NULL; |
| } |
| |
| static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc) |
| { |
| #ifdef CONFIG_FAULT_INJECTION |
| if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) |
| /* |
| * In order to drop non-IB traffic we |
| * set PbcInsertHrc to NONE (0x2). |
| * The packet will still be delivered |
| * to the receiving node but a |
| * KHdrHCRCErr (KDETH packet with a bad |
| * HCRC) will be triggered and the |
| * packet will not be delivered to the |
| * correct context. |
| */ |
| pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT; |
| else |
| /* |
| * In order to drop regular verbs |
| * traffic we set the PbcTestEbp |
| * flag. The packet will still be |
| * delivered to the receiving node but |
| * a 'late ebp error' will be |
| * triggered and will be dropped. |
| */ |
| pbc |= PBC_TEST_EBP; |
| #endif |
| return pbc; |
| } |
| |
| static int hfi1_do_pkey_check(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| struct hfi1_pportdata *ppd = rcd->ppd; |
| struct hfi1_16b_header *hdr = packet->hdr; |
| u16 pkey; |
| |
| /* Pkey check needed only for bypass packets */ |
| if (packet->etype != RHF_RCV_TYPE_BYPASS) |
| return 0; |
| |
| /* Perform pkey check */ |
| pkey = hfi1_16B_get_pkey(hdr); |
| return ingress_pkey_check(ppd, pkey, packet->sc, |
| packet->qp->s_pkey_index, |
| packet->slid, true); |
| } |
| |
| static inline void hfi1_handle_packet(struct hfi1_packet *packet, |
| bool is_mcast) |
| { |
| u32 qp_num; |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| struct hfi1_pportdata *ppd = rcd->ppd; |
| struct hfi1_ibport *ibp = rcd_to_iport(rcd); |
| struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi; |
| opcode_handler packet_handler; |
| unsigned long flags; |
| |
| inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]); |
| |
| if (unlikely(is_mcast)) { |
| struct rvt_mcast *mcast; |
| struct rvt_mcast_qp *p; |
| |
| if (!packet->grh) |
| goto drop; |
| mcast = rvt_mcast_find(&ibp->rvp, |
| &packet->grh->dgid, |
| opa_get_lid(packet->dlid, 9B)); |
| if (!mcast) |
| goto drop; |
| list_for_each_entry_rcu(p, &mcast->qp_list, list) { |
| packet->qp = p->qp; |
| if (hfi1_do_pkey_check(packet)) |
| goto drop; |
| spin_lock_irqsave(&packet->qp->r_lock, flags); |
| packet_handler = qp_ok(packet); |
| if (likely(packet_handler)) |
| packet_handler(packet); |
| else |
| ibp->rvp.n_pkt_drops++; |
| spin_unlock_irqrestore(&packet->qp->r_lock, flags); |
| } |
| /* |
| * Notify rvt_multicast_detach() if it is waiting for us |
| * to finish. |
| */ |
| if (atomic_dec_return(&mcast->refcount) <= 1) |
| wake_up(&mcast->wait); |
| } else { |
| /* Get the destination QP number. */ |
| qp_num = ib_bth_get_qpn(packet->ohdr); |
| rcu_read_lock(); |
| packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); |
| if (!packet->qp) |
| goto unlock_drop; |
| |
| if (hfi1_do_pkey_check(packet)) |
| goto unlock_drop; |
| |
| if (unlikely(hfi1_dbg_fault_opcode(packet->qp, packet->opcode, |
| true))) |
| goto unlock_drop; |
| |
| spin_lock_irqsave(&packet->qp->r_lock, flags); |
| packet_handler = qp_ok(packet); |
| if (likely(packet_handler)) |
| packet_handler(packet); |
| else |
| ibp->rvp.n_pkt_drops++; |
| spin_unlock_irqrestore(&packet->qp->r_lock, flags); |
| rcu_read_unlock(); |
| } |
| return; |
| unlock_drop: |
| rcu_read_unlock(); |
| drop: |
| ibp->rvp.n_pkt_drops++; |
| } |
| |
| /** |
| * hfi1_ib_rcv - process an incoming packet |
| * @packet: data packet information |
| * |
| * This is called to process an incoming packet at interrupt level. |
| */ |
| void hfi1_ib_rcv(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| |
| trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf))); |
| hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); |
| } |
| |
| void hfi1_16B_rcv(struct hfi1_packet *packet) |
| { |
| struct hfi1_ctxtdata *rcd = packet->rcd; |
| |
| trace_input_ibhdr(rcd->dd, packet, false); |
| hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid)); |
| } |
| |
| /* |
| * This is called from a timer to check for QPs |
| * which need kernel memory in order to send a packet. |
| */ |
| static void mem_timer(unsigned long data) |
| { |
| struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data; |
| struct list_head *list = &dev->memwait; |
| struct rvt_qp *qp = NULL; |
| struct iowait *wait; |
| unsigned long flags; |
| struct hfi1_qp_priv *priv; |
| |
| write_seqlock_irqsave(&dev->iowait_lock, flags); |
| if (!list_empty(list)) { |
| wait = list_first_entry(list, struct iowait, list); |
| qp = iowait_to_qp(wait); |
| priv = qp->priv; |
| list_del_init(&priv->s_iowait.list); |
| priv->s_iowait.lock = NULL; |
| /* refcount held until actual wake up */ |
| if (!list_empty(list)) |
| mod_timer(&dev->mem_timer, jiffies + 1); |
| } |
| write_sequnlock_irqrestore(&dev->iowait_lock, flags); |
| |
| if (qp) |
| hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM); |
| } |
| |
| /* |
| * This is called with progress side lock held. |
| */ |
| /* New API */ |
| static void verbs_sdma_complete( |
| struct sdma_txreq *cookie, |
| int status) |
| { |
| struct verbs_txreq *tx = |
| container_of(cookie, struct verbs_txreq, txreq); |
| struct rvt_qp *qp = tx->qp; |
| |
| spin_lock(&qp->s_lock); |
| if (tx->wqe) { |
| hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS); |
| } else if (qp->ibqp.qp_type == IB_QPT_RC) { |
| struct hfi1_opa_header *hdr; |
| |
| hdr = &tx->phdr.hdr; |
| hfi1_rc_send_complete(qp, hdr); |
| } |
| spin_unlock(&qp->s_lock); |
| |
| hfi1_put_txreq(tx); |
| } |
| |
| static int wait_kmem(struct hfi1_ibdev *dev, |
| struct rvt_qp *qp, |
| struct hfi1_pkt_state *ps) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { |
| write_seqlock(&dev->iowait_lock); |
| list_add_tail(&ps->s_txreq->txreq.list, |
| &priv->s_iowait.tx_head); |
| if (list_empty(&priv->s_iowait.list)) { |
| if (list_empty(&dev->memwait)) |
| mod_timer(&dev->mem_timer, jiffies + 1); |
| qp->s_flags |= RVT_S_WAIT_KMEM; |
| list_add_tail(&priv->s_iowait.list, &dev->memwait); |
| priv->s_iowait.lock = &dev->iowait_lock; |
| trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM); |
| rvt_get_qp(qp); |
| } |
| write_sequnlock(&dev->iowait_lock); |
| qp->s_flags &= ~RVT_S_BUSY; |
| ret = -EBUSY; |
| } |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| |
| return ret; |
| } |
| |
| /* |
| * This routine calls txadds for each sg entry. |
| * |
| * Add failures will revert the sge cursor |
| */ |
| static noinline int build_verbs_ulp_payload( |
| struct sdma_engine *sde, |
| u32 length, |
| struct verbs_txreq *tx) |
| { |
| struct rvt_sge_state *ss = tx->ss; |
| struct rvt_sge *sg_list = ss->sg_list; |
| struct rvt_sge sge = ss->sge; |
| u8 num_sge = ss->num_sge; |
| u32 len; |
| int ret = 0; |
| |
| while (length) { |
| len = ss->sge.length; |
| if (len > length) |
| len = length; |
| if (len > ss->sge.sge_length) |
| len = ss->sge.sge_length; |
| WARN_ON_ONCE(len == 0); |
| ret = sdma_txadd_kvaddr( |
| sde->dd, |
| &tx->txreq, |
| ss->sge.vaddr, |
| len); |
| if (ret) |
| goto bail_txadd; |
| rvt_update_sge(ss, len, false); |
| length -= len; |
| } |
| return ret; |
| bail_txadd: |
| /* unwind cursor */ |
| ss->sge = sge; |
| ss->num_sge = num_sge; |
| ss->sg_list = sg_list; |
| return ret; |
| } |
| |
| /* |
| * Build the number of DMA descriptors needed to send length bytes of data. |
| * |
| * NOTE: DMA mapping is held in the tx until completed in the ring or |
| * the tx desc is freed without having been submitted to the ring |
| * |
| * This routine ensures all the helper routine calls succeed. |
| */ |
| /* New API */ |
| static int build_verbs_tx_desc( |
| struct sdma_engine *sde, |
| u32 length, |
| struct verbs_txreq *tx, |
| struct hfi1_ahg_info *ahg_info, |
| u64 pbc) |
| { |
| int ret = 0; |
| struct hfi1_sdma_header *phdr = &tx->phdr; |
| u16 hdrbytes = tx->hdr_dwords << 2; |
| u32 *hdr; |
| u8 extra_bytes = 0; |
| static char trail_buf[12]; /* CRC = 4, LT = 1, Pad = 0 to 7 bytes */ |
| |
| if (tx->phdr.hdr.hdr_type) { |
| /* |
| * hdrbytes accounts for PBC. Need to subtract 8 bytes |
| * before calculating padding. |
| */ |
| extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) + |
| (SIZE_OF_CRC << 2) + SIZE_OF_LT; |
| hdr = (u32 *)&phdr->hdr.opah; |
| } else { |
| hdr = (u32 *)&phdr->hdr.ibh; |
| } |
| if (!ahg_info->ahgcount) { |
| ret = sdma_txinit_ahg( |
| &tx->txreq, |
| ahg_info->tx_flags, |
| hdrbytes + length + |
| extra_bytes, |
| ahg_info->ahgidx, |
| 0, |
| NULL, |
| 0, |
| verbs_sdma_complete); |
| if (ret) |
| goto bail_txadd; |
| phdr->pbc = cpu_to_le64(pbc); |
| ret = sdma_txadd_kvaddr( |
| sde->dd, |
| &tx->txreq, |
| phdr, |
| hdrbytes); |
| if (ret) |
| goto bail_txadd; |
| } else { |
| ret = sdma_txinit_ahg( |
| &tx->txreq, |
| ahg_info->tx_flags, |
| length, |
| ahg_info->ahgidx, |
| ahg_info->ahgcount, |
| ahg_info->ahgdesc, |
| hdrbytes, |
| verbs_sdma_complete); |
| if (ret) |
| goto bail_txadd; |
| } |
| /* add the ulp payload - if any. tx->ss can be NULL for acks */ |
| if (tx->ss) { |
| ret = build_verbs_ulp_payload(sde, length, tx); |
| if (ret) |
| goto bail_txadd; |
| } |
| |
| /* add icrc, lt byte, and padding to flit */ |
| if (extra_bytes != 0) |
| ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq, |
| trail_buf, extra_bytes); |
| |
| bail_txadd: |
| return ret; |
| } |
| |
| int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps, |
| u64 pbc) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct hfi1_ahg_info *ahg_info = priv->s_ahg; |
| u32 hdrwords = qp->s_hdrwords; |
| u32 len = ps->s_txreq->s_cur_size; |
| u32 plen; |
| struct hfi1_ibdev *dev = ps->dev; |
| struct hfi1_pportdata *ppd = ps->ppd; |
| struct verbs_txreq *tx; |
| u8 sc5 = priv->s_sc; |
| int ret; |
| u32 dwords; |
| bool bypass = false; |
| |
| if (ps->s_txreq->phdr.hdr.hdr_type) { |
| u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len); |
| |
| dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) + |
| SIZE_OF_LT) >> 2; |
| bypass = true; |
| } else { |
| dwords = (len + 3) >> 2; |
| } |
| plen = hdrwords + dwords + 2; |
| |
| tx = ps->s_txreq; |
| if (!sdma_txreq_built(&tx->txreq)) { |
| if (likely(pbc == 0)) { |
| u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); |
| |
| /* No vl15 here */ |
| /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ |
| if (ps->s_txreq->phdr.hdr.hdr_type) |
| pbc |= PBC_PACKET_BYPASS | |
| PBC_INSERT_BYPASS_ICRC; |
| else |
| pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); |
| |
| if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode, |
| false))) |
| pbc = hfi1_fault_tx(qp, ps->opcode, pbc); |
| pbc = create_pbc(ppd, |
| pbc, |
| qp->srate_mbps, |
| vl, |
| plen); |
| } |
| tx->wqe = qp->s_wqe; |
| ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc); |
| if (unlikely(ret)) |
| goto bail_build; |
| } |
| ret = sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq, |
| ps->pkts_sent); |
| if (unlikely(ret < 0)) { |
| if (ret == -ECOMM) |
| goto bail_ecomm; |
| return ret; |
| } |
| trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device), |
| &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); |
| return ret; |
| |
| bail_ecomm: |
| /* The current one got "sent" */ |
| return 0; |
| bail_build: |
| ret = wait_kmem(dev, qp, ps); |
| if (!ret) { |
| /* free txreq - bad state */ |
| hfi1_put_txreq(ps->s_txreq); |
| ps->s_txreq = NULL; |
| } |
| return ret; |
| } |
| |
| /* |
| * If we are now in the error state, return zero to flush the |
| * send work request. |
| */ |
| static int pio_wait(struct rvt_qp *qp, |
| struct send_context *sc, |
| struct hfi1_pkt_state *ps, |
| u32 flag) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct hfi1_devdata *dd = sc->dd; |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* |
| * Note that as soon as want_buffer() is called and |
| * possibly before it returns, sc_piobufavail() |
| * could be called. Therefore, put QP on the I/O wait list before |
| * enabling the PIO avail interrupt. |
| */ |
| spin_lock_irqsave(&qp->s_lock, flags); |
| if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) { |
| write_seqlock(&dev->iowait_lock); |
| list_add_tail(&ps->s_txreq->txreq.list, |
| &priv->s_iowait.tx_head); |
| if (list_empty(&priv->s_iowait.list)) { |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| int was_empty; |
| |
| dev->n_piowait += !!(flag & RVT_S_WAIT_PIO); |
| dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN); |
| qp->s_flags |= flag; |
| was_empty = list_empty(&sc->piowait); |
| iowait_queue(ps->pkts_sent, &priv->s_iowait, |
| &sc->piowait); |
| priv->s_iowait.lock = &dev->iowait_lock; |
| trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO); |
| rvt_get_qp(qp); |
| /* counting: only call wantpiobuf_intr if first user */ |
| if (was_empty) |
| hfi1_sc_wantpiobuf_intr(sc, 1); |
| } |
| write_sequnlock(&dev->iowait_lock); |
| qp->s_flags &= ~RVT_S_BUSY; |
| ret = -EBUSY; |
| } |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| return ret; |
| } |
| |
| static void verbs_pio_complete(void *arg, int code) |
| { |
| struct rvt_qp *qp = (struct rvt_qp *)arg; |
| struct hfi1_qp_priv *priv = qp->priv; |
| |
| if (iowait_pio_dec(&priv->s_iowait)) |
| iowait_drain_wakeup(&priv->s_iowait); |
| } |
| |
| int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps, |
| u64 pbc) |
| { |
| struct hfi1_qp_priv *priv = qp->priv; |
| u32 hdrwords = qp->s_hdrwords; |
| struct rvt_sge_state *ss = ps->s_txreq->ss; |
| u32 len = ps->s_txreq->s_cur_size; |
| u32 dwords; |
| u32 plen; |
| struct hfi1_pportdata *ppd = ps->ppd; |
| u32 *hdr; |
| u8 sc5; |
| unsigned long flags = 0; |
| struct send_context *sc; |
| struct pio_buf *pbuf; |
| int wc_status = IB_WC_SUCCESS; |
| int ret = 0; |
| pio_release_cb cb = NULL; |
| u32 lrh0_16b; |
| bool bypass = false; |
| u8 extra_bytes = 0; |
| |
| if (ps->s_txreq->phdr.hdr.hdr_type) { |
| u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len); |
| |
| extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT; |
| dwords = (len + extra_bytes) >> 2; |
| hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah; |
| lrh0_16b = ps->s_txreq->phdr.hdr.opah.lrh[0]; |
| bypass = true; |
| } else { |
| dwords = (len + 3) >> 2; |
| hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh; |
| } |
| plen = hdrwords + dwords + 2; |
| |
| /* only RC/UC use complete */ |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_RC: |
| case IB_QPT_UC: |
| cb = verbs_pio_complete; |
| break; |
| default: |
| break; |
| } |
| |
| /* vl15 special case taken care of in ud.c */ |
| sc5 = priv->s_sc; |
| sc = ps->s_txreq->psc; |
| |
| if (likely(pbc == 0)) { |
| u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5); |
| |
| /* set PBC_DC_INFO bit (aka SC[4]) in pbc */ |
| if (ps->s_txreq->phdr.hdr.hdr_type) |
| pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; |
| else |
| pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT); |
| if (unlikely(hfi1_dbg_fault_opcode(qp, ps->opcode, false))) |
| pbc = hfi1_fault_tx(qp, ps->opcode, pbc); |
| pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen); |
| } |
| if (cb) |
| iowait_pio_inc(&priv->s_iowait); |
| pbuf = sc_buffer_alloc(sc, plen, cb, qp); |
| if (unlikely(!pbuf)) { |
| if (cb) |
| verbs_pio_complete(qp, 0); |
| if (ppd->host_link_state != HLS_UP_ACTIVE) { |
| /* |
| * If we have filled the PIO buffers to capacity and are |
| * not in an active state this request is not going to |
| * go out to so just complete it with an error or else a |
| * ULP or the core may be stuck waiting. |
| */ |
| hfi1_cdbg( |
| PIO, |
| "alloc failed. state not active, completing"); |
| wc_status = IB_WC_GENERAL_ERR; |
| goto pio_bail; |
| } else { |
| /* |
| * This is a normal occurrence. The PIO buffs are full |
| * up but we are still happily sending, well we could be |
| * so lets continue to queue the request. |
| */ |
| hfi1_cdbg(PIO, "alloc failed. state active, queuing"); |
| ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO); |
| if (!ret) |
| /* txreq not queued - free */ |
| goto bail; |
| /* tx consumed in wait */ |
| return ret; |
| } |
| } |
| |
| if (dwords == 0) { |
| pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords); |
| } else { |
| seg_pio_copy_start(pbuf, pbc, |
| hdr, hdrwords * 4); |
| if (ss) { |
| while (len) { |
| void *addr = ss->sge.vaddr; |
| u32 slen = ss->sge.length; |
| |
| if (slen > len) |
| slen = len; |
| if (slen > ss->sge.sge_length) |
| slen = ss->sge.sge_length; |
| rvt_update_sge(ss, slen, false); |
| seg_pio_copy_mid(pbuf, addr, slen); |
| len -= slen; |
| } |
| } |
| /* |
| * Bypass packet will need to copy additional |
| * bytes to accommodate for CRC and LT bytes |
| */ |
| if (extra_bytes) { |
| u8 *empty_buf; |
| |
| empty_buf = kcalloc(extra_bytes, sizeof(u8), |
| GFP_KERNEL); |
| seg_pio_copy_mid(pbuf, empty_buf, extra_bytes); |
| kfree(empty_buf); |
| } |
| seg_pio_copy_end(pbuf); |
| } |
| |
| trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device), |
| &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5)); |
| |
| pio_bail: |
| if (qp->s_wqe) { |
| spin_lock_irqsave(&qp->s_lock, flags); |
| hfi1_send_complete(qp, qp->s_wqe, wc_status); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } else if (qp->ibqp.qp_type == IB_QPT_RC) { |
| spin_lock_irqsave(&qp->s_lock, flags); |
| hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } |
| |
| ret = 0; |
| |
| bail: |
| hfi1_put_txreq(ps->s_txreq); |
| return ret; |
| } |
| |
| /* |
| * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent |
| * being an entry from the partition key table), return 0 |
| * otherwise. Use the matching criteria for egress partition keys |
| * specified in the OPAv1 spec., section 9.1l.7. |
| */ |
| static inline int egress_pkey_matches_entry(u16 pkey, u16 ent) |
| { |
| u16 mkey = pkey & PKEY_LOW_15_MASK; |
| u16 mentry = ent & PKEY_LOW_15_MASK; |
| |
| if (mkey == mentry) { |
| /* |
| * If pkey[15] is set (full partition member), |
| * is bit 15 in the corresponding table element |
| * clear (limited member)? |
| */ |
| if (pkey & PKEY_MEMBER_MASK) |
| return !!(ent & PKEY_MEMBER_MASK); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * egress_pkey_check - check P_KEY of a packet |
| * @ppd: Physical IB port data |
| * @slid: SLID for packet |
| * @bkey: PKEY for header |
| * @sc5: SC for packet |
| * @s_pkey_index: It will be used for look up optimization for kernel contexts |
| * only. If it is negative value, then it means user contexts is calling this |
| * function. |
| * |
| * It checks if hdr's pkey is valid. |
| * |
| * Return: 0 on success, otherwise, 1 |
| */ |
| int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey, |
| u8 sc5, int8_t s_pkey_index) |
| { |
| struct hfi1_devdata *dd; |
| int i; |
| int is_user_ctxt_mechanism = (s_pkey_index < 0); |
| |
| if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT)) |
| return 0; |
| |
| /* If SC15, pkey[0:14] must be 0x7fff */ |
| if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK)) |
| goto bad; |
| |
| /* Is the pkey = 0x0, or 0x8000? */ |
| if ((pkey & PKEY_LOW_15_MASK) == 0) |
| goto bad; |
| |
| /* |
| * For the kernel contexts only, if a qp is passed into the function, |
| * the most likely matching pkey has index qp->s_pkey_index |
| */ |
| if (!is_user_ctxt_mechanism && |
| egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) { |
| return 0; |
| } |
| |
| for (i = 0; i < MAX_PKEY_VALUES; i++) { |
| if (egress_pkey_matches_entry(pkey, ppd->pkeys[i])) |
| return 0; |
| } |
| bad: |
| /* |
| * For the user-context mechanism, the P_KEY check would only happen |
| * once per SDMA request, not once per packet. Therefore, there's no |
| * need to increment the counter for the user-context mechanism. |
| */ |
| if (!is_user_ctxt_mechanism) { |
| incr_cntr64(&ppd->port_xmit_constraint_errors); |
| dd = ppd->dd; |
| if (!(dd->err_info_xmit_constraint.status & |
| OPA_EI_STATUS_SMASK)) { |
| dd->err_info_xmit_constraint.status |= |
| OPA_EI_STATUS_SMASK; |
| dd->err_info_xmit_constraint.slid = slid; |
| dd->err_info_xmit_constraint.pkey = pkey; |
| } |
| } |
| return 1; |
| } |
| |
| /** |
| * get_send_routine - choose an egress routine |
| * |
| * Choose an egress routine based on QP type |
| * and size |
| */ |
| static inline send_routine get_send_routine(struct rvt_qp *qp, |
| struct hfi1_pkt_state *ps) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct verbs_txreq *tx = ps->s_txreq; |
| |
| if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA))) |
| return dd->process_pio_send; |
| switch (qp->ibqp.qp_type) { |
| case IB_QPT_SMI: |
| return dd->process_pio_send; |
| case IB_QPT_GSI: |
| case IB_QPT_UD: |
| break; |
| case IB_QPT_UC: |
| case IB_QPT_RC: { |
| if (piothreshold && |
| tx->s_cur_size <= min(piothreshold, qp->pmtu) && |
| (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) && |
| iowait_sdma_pending(&priv->s_iowait) == 0 && |
| !sdma_txreq_built(&tx->txreq)) |
| return dd->process_pio_send; |
| break; |
| } |
| default: |
| break; |
| } |
| return dd->process_dma_send; |
| } |
| |
| /** |
| * hfi1_verbs_send - send a packet |
| * @qp: the QP to send on |
| * @ps: the state of the packet to send |
| * |
| * Return zero if packet is sent or queued OK. |
| * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise. |
| */ |
| int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device); |
| struct hfi1_qp_priv *priv = qp->priv; |
| struct ib_other_headers *ohdr; |
| send_routine sr; |
| int ret; |
| u16 pkey; |
| u32 slid; |
| |
| /* locate the pkey within the headers */ |
| if (ps->s_txreq->phdr.hdr.hdr_type) { |
| struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah; |
| u8 l4 = hfi1_16B_get_l4(hdr); |
| |
| if (l4 == OPA_16B_L4_IB_GLOBAL) |
| ohdr = &hdr->u.l.oth; |
| else |
| ohdr = &hdr->u.oth; |
| slid = hfi1_16B_get_slid(hdr); |
| pkey = hfi1_16B_get_pkey(hdr); |
| } else { |
| struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh; |
| u8 lnh = ib_get_lnh(hdr); |
| |
| if (lnh == HFI1_LRH_GRH) |
| ohdr = &hdr->u.l.oth; |
| else |
| ohdr = &hdr->u.oth; |
| slid = ib_get_slid(hdr); |
| pkey = ib_bth_get_pkey(ohdr); |
| } |
| |
| ps->opcode = ib_bth_get_opcode(ohdr); |
| sr = get_send_routine(qp, ps); |
| ret = egress_pkey_check(dd->pport, slid, pkey, |
| priv->s_sc, qp->s_pkey_index); |
| if (unlikely(ret)) { |
| /* |
| * The value we are returning here does not get propagated to |
| * the verbs caller. Thus we need to complete the request with |
| * error otherwise the caller could be sitting waiting on the |
| * completion event. Only do this for PIO. SDMA has its own |
| * mechanism for handling the errors. So for SDMA we can just |
| * return. |
| */ |
| if (sr == dd->process_pio_send) { |
| unsigned long flags; |
| |
| hfi1_cdbg(PIO, "%s() Failed. Completing with err", |
| __func__); |
| spin_lock_irqsave(&qp->s_lock, flags); |
| hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| } |
| return -EINVAL; |
| } |
| if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait)) |
| return pio_wait(qp, |
| ps->s_txreq->psc, |
| ps, |
| RVT_S_WAIT_PIO_DRAIN); |
| return sr(qp, ps, 0); |
| } |
| |
| /** |
| * hfi1_fill_device_attr - Fill in rvt dev info device attributes. |
| * @dd: the device data structure |
| */ |
| static void hfi1_fill_device_attr(struct hfi1_devdata *dd) |
| { |
| struct rvt_dev_info *rdi = &dd->verbs_dev.rdi; |
| u32 ver = dd->dc8051_ver; |
| |
| memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props)); |
| |
| rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) | |
| ((u64)(dc8051_ver_min(ver)) << 16) | |
| (u64)dc8051_ver_patch(ver); |
| |
| rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR | |
| IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT | |
| IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN | |
| IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE | |
| IB_DEVICE_MEM_MGT_EXTENSIONS | |
| IB_DEVICE_RDMA_NETDEV_OPA_VNIC; |
| rdi->dparms.props.page_size_cap = PAGE_SIZE; |
| rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3; |
| rdi->dparms.props.vendor_part_id = dd->pcidev->device; |
| rdi->dparms.props.hw_ver = dd->minrev; |
| rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid; |
| rdi->dparms.props.max_mr_size = U64_MAX; |
| rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX; |
| rdi->dparms.props.max_qp = hfi1_max_qps; |
| rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs; |
| rdi->dparms.props.max_sge = hfi1_max_sges; |
| rdi->dparms.props.max_sge_rd = hfi1_max_sges; |
| rdi->dparms.props.max_cq = hfi1_max_cqs; |
| rdi->dparms.props.max_ah = hfi1_max_ahs; |
| rdi->dparms.props.max_cqe = hfi1_max_cqes; |
| rdi->dparms.props.max_mr = rdi->lkey_table.max; |
| rdi->dparms.props.max_fmr = rdi->lkey_table.max; |
| rdi->dparms.props.max_map_per_fmr = 32767; |
| rdi->dparms.props.max_pd = hfi1_max_pds; |
| rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC; |
| rdi->dparms.props.max_qp_init_rd_atom = 255; |
| rdi->dparms.props.max_srq = hfi1_max_srqs; |
| rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs; |
| rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges; |
| rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB; |
| rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd); |
| rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps; |
| rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached; |
| rdi->dparms.props.max_total_mcast_qp_attach = |
| rdi->dparms.props.max_mcast_qp_attach * |
| rdi->dparms.props.max_mcast_grp; |
| } |
| |
| static inline u16 opa_speed_to_ib(u16 in) |
| { |
| u16 out = 0; |
| |
| if (in & OPA_LINK_SPEED_25G) |
| out |= IB_SPEED_EDR; |
| if (in & OPA_LINK_SPEED_12_5G) |
| out |= IB_SPEED_FDR; |
| |
| return out; |
| } |
| |
| /* |
| * Convert a single OPA link width (no multiple flags) to an IB value. |
| * A zero OPA link width means link down, which means the IB width value |
| * is a don't care. |
| */ |
| static inline u16 opa_width_to_ib(u16 in) |
| { |
| switch (in) { |
| case OPA_LINK_WIDTH_1X: |
| /* map 2x and 3x to 1x as they don't exist in IB */ |
| case OPA_LINK_WIDTH_2X: |
| case OPA_LINK_WIDTH_3X: |
| return IB_WIDTH_1X; |
| default: /* link down or unknown, return our largest width */ |
| case OPA_LINK_WIDTH_4X: |
| return IB_WIDTH_4X; |
| } |
| } |
| |
| static int query_port(struct rvt_dev_info *rdi, u8 port_num, |
| struct ib_port_attr *props) |
| { |
| struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); |
| struct hfi1_devdata *dd = dd_from_dev(verbs_dev); |
| struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; |
| u32 lid = ppd->lid; |
| |
| /* props being zeroed by the caller, avoid zeroing it here */ |
| props->lid = lid ? lid : 0; |
| props->lmc = ppd->lmc; |
| /* OPA logical states match IB logical states */ |
| props->state = driver_lstate(ppd); |
| props->phys_state = driver_pstate(ppd); |
| props->gid_tbl_len = HFI1_GUIDS_PER_PORT; |
| props->active_width = (u8)opa_width_to_ib(ppd->link_width_active); |
| /* see rate_show() in ib core/sysfs.c */ |
| props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active); |
| props->max_vl_num = ppd->vls_supported; |
| |
| /* Once we are a "first class" citizen and have added the OPA MTUs to |
| * the core we can advertise the larger MTU enum to the ULPs, for now |
| * advertise only 4K. |
| * |
| * Those applications which are either OPA aware or pass the MTU enum |
| * from the Path Records to us will get the new 8k MTU. Those that |
| * attempt to process the MTU enum may fail in various ways. |
| */ |
| props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ? |
| 4096 : hfi1_max_mtu), IB_MTU_4096); |
| props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu : |
| mtu_to_enum(ppd->ibmtu, IB_MTU_2048); |
| |
| /* |
| * sm_lid of 0xFFFF needs special handling so that it can |
| * be differentiated from a permissve LID of 0xFFFF. |
| * We set the grh_required flag here so the SA can program |
| * the DGID in the address handle appropriately |
| */ |
| if (props->sm_lid == be16_to_cpu(IB_LID_PERMISSIVE)) |
| props->grh_required = true; |
| |
| return 0; |
| } |
| |
| static int modify_device(struct ib_device *device, |
| int device_modify_mask, |
| struct ib_device_modify *device_modify) |
| { |
| struct hfi1_devdata *dd = dd_from_ibdev(device); |
| unsigned i; |
| int ret; |
| |
| if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID | |
| IB_DEVICE_MODIFY_NODE_DESC)) { |
| ret = -EOPNOTSUPP; |
| goto bail; |
| } |
| |
| if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) { |
| memcpy(device->node_desc, device_modify->node_desc, |
| IB_DEVICE_NODE_DESC_MAX); |
| for (i = 0; i < dd->num_pports; i++) { |
| struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; |
| |
| hfi1_node_desc_chg(ibp); |
| } |
| } |
| |
| if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) { |
| ib_hfi1_sys_image_guid = |
| cpu_to_be64(device_modify->sys_image_guid); |
| for (i = 0; i < dd->num_pports; i++) { |
| struct hfi1_ibport *ibp = &dd->pport[i].ibport_data; |
| |
| hfi1_sys_guid_chg(ibp); |
| } |
| } |
| |
| ret = 0; |
| |
| bail: |
| return ret; |
| } |
| |
| static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num) |
| { |
| struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); |
| struct hfi1_devdata *dd = dd_from_dev(verbs_dev); |
| struct hfi1_pportdata *ppd = &dd->pport[port_num - 1]; |
| int ret; |
| |
| set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0, |
| OPA_LINKDOWN_REASON_UNKNOWN); |
| ret = set_link_state(ppd, HLS_DN_DOWNDEF); |
| return ret; |
| } |
| |
| static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp, |
| int guid_index, __be64 *guid) |
| { |
| struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp); |
| |
| if (guid_index >= HFI1_GUIDS_PER_PORT) |
| return -EINVAL; |
| |
| *guid = get_sguid(ibp, guid_index); |
| return 0; |
| } |
| |
| /* |
| * convert ah port,sl to sc |
| */ |
| u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah) |
| { |
| struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah)); |
| |
| return ibp->sl_to_sc[rdma_ah_get_sl(ah)]; |
| } |
| |
| static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr) |
| { |
| struct hfi1_ibport *ibp; |
| struct hfi1_pportdata *ppd; |
| struct hfi1_devdata *dd; |
| u8 sc5; |
| u8 sl; |
| |
| if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) && |
| !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH)) |
| return -EINVAL; |
| |
| /* test the mapping for validity */ |
| ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); |
| ppd = ppd_from_ibp(ibp); |
| dd = dd_from_ppd(ppd); |
| |
| sl = rdma_ah_get_sl(ah_attr); |
| if (sl >= ARRAY_SIZE(ibp->sl_to_sc)) |
| return -EINVAL; |
| |
| sc5 = ibp->sl_to_sc[sl]; |
| if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static void hfi1_notify_new_ah(struct ib_device *ibdev, |
| struct rdma_ah_attr *ah_attr, |
| struct rvt_ah *ah) |
| { |
| struct hfi1_ibport *ibp; |
| struct hfi1_pportdata *ppd; |
| struct hfi1_devdata *dd; |
| u8 sc5; |
| struct rdma_ah_attr *attr = &ah->attr; |
| |
| /* |
| * Do not trust reading anything from rvt_ah at this point as it is not |
| * done being setup. We can however modify things which we need to set. |
| */ |
| |
| ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr)); |
| ppd = ppd_from_ibp(ibp); |
| sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)]; |
| hfi1_update_ah_attr(ibdev, attr); |
| hfi1_make_opa_lid(attr); |
| dd = dd_from_ppd(ppd); |
| ah->vl = sc_to_vlt(dd, sc5); |
| if (ah->vl < num_vls || ah->vl == 15) |
| ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu); |
| } |
| |
| /** |
| * hfi1_get_npkeys - return the size of the PKEY table for context 0 |
| * @dd: the hfi1_ib device |
| */ |
| unsigned hfi1_get_npkeys(struct hfi1_devdata *dd) |
| { |
| return ARRAY_SIZE(dd->pport[0].pkeys); |
| } |
| |
| static void init_ibport(struct hfi1_pportdata *ppd) |
| { |
| struct hfi1_ibport *ibp = &ppd->ibport_data; |
| size_t sz = ARRAY_SIZE(ibp->sl_to_sc); |
| int i; |
| |
| for (i = 0; i < sz; i++) { |
| ibp->sl_to_sc[i] = i; |
| ibp->sc_to_sl[i] = i; |
| } |
| |
| for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++) |
| INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list); |
| setup_timer(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, |
| (unsigned long)ibp); |
| |
| spin_lock_init(&ibp->rvp.lock); |
| /* Set the prefix to the default value (see ch. 4.1.1) */ |
| ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX; |
| ibp->rvp.sm_lid = 0; |
| /* |
| * Below should only set bits defined in OPA PortInfo.CapabilityMask |
| * and PortInfo.CapabilityMask3 |
| */ |
| ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP | |
| IB_PORT_CAP_MASK_NOTICE_SUP; |
| ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported; |
| ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA; |
| ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA; |
| ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS; |
| ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS; |
| ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT; |
| |
| RCU_INIT_POINTER(ibp->rvp.qp[0], NULL); |
| RCU_INIT_POINTER(ibp->rvp.qp[1], NULL); |
| } |
| |
| static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str) |
| { |
| struct rvt_dev_info *rdi = ib_to_rvt(ibdev); |
| struct hfi1_ibdev *dev = dev_from_rdi(rdi); |
| u32 ver = dd_from_dev(dev)->dc8051_ver; |
| |
| snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver), |
| dc8051_ver_min(ver), dc8051_ver_patch(ver)); |
| } |
| |
| static const char * const driver_cntr_names[] = { |
| /* must be element 0*/ |
| "DRIVER_KernIntr", |
| "DRIVER_ErrorIntr", |
| "DRIVER_Tx_Errs", |
| "DRIVER_Rcv_Errs", |
| "DRIVER_HW_Errs", |
| "DRIVER_NoPIOBufs", |
| "DRIVER_CtxtsOpen", |
| "DRIVER_RcvLen_Errs", |
| "DRIVER_EgrBufFull", |
| "DRIVER_EgrHdrFull" |
| }; |
| |
| static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */ |
| static const char **dev_cntr_names; |
| static const char **port_cntr_names; |
| int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names); |
| static int num_dev_cntrs; |
| static int num_port_cntrs; |
| static int cntr_names_initialized; |
| |
| /* |
| * Convert a list of names separated by '\n' into an array of NULL terminated |
| * strings. Optionally some entries can be reserved in the array to hold extra |
| * external strings. |
| */ |
| static int init_cntr_names(const char *names_in, |
| const size_t names_len, |
| int num_extra_names, |
| int *num_cntrs, |
| const char ***cntr_names) |
| { |
| char *names_out, *p, **q; |
| int i, n; |
| |
| n = 0; |
| for (i = 0; i < names_len; i++) |
| if (names_in[i] == '\n') |
| n++; |
| |
| names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len, |
| GFP_KERNEL); |
| if (!names_out) { |
| *num_cntrs = 0; |
| *cntr_names = NULL; |
| return -ENOMEM; |
| } |
| |
| p = names_out + (n + num_extra_names) * sizeof(char *); |
| memcpy(p, names_in, names_len); |
| |
| q = (char **)names_out; |
| for (i = 0; i < n; i++) { |
| q[i] = p; |
| p = strchr(p, '\n'); |
| *p++ = '\0'; |
| } |
| |
| *num_cntrs = n; |
| *cntr_names = (const char **)names_out; |
| return 0; |
| } |
| |
| static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev, |
| u8 port_num) |
| { |
| int i, err; |
| |
| mutex_lock(&cntr_names_lock); |
| if (!cntr_names_initialized) { |
| struct hfi1_devdata *dd = dd_from_ibdev(ibdev); |
| |
| err = init_cntr_names(dd->cntrnames, |
| dd->cntrnameslen, |
| num_driver_cntrs, |
| &num_dev_cntrs, |
| &dev_cntr_names); |
| if (err) { |
| mutex_unlock(&cntr_names_lock); |
| return NULL; |
| } |
| |
| for (i = 0; i < num_driver_cntrs; i++) |
| dev_cntr_names[num_dev_cntrs + i] = |
| driver_cntr_names[i]; |
| |
| err = init_cntr_names(dd->portcntrnames, |
| dd->portcntrnameslen, |
| 0, |
| &num_port_cntrs, |
| &port_cntr_names); |
| if (err) { |
| kfree(dev_cntr_names); |
| dev_cntr_names = NULL; |
| mutex_unlock(&cntr_names_lock); |
| return NULL; |
| } |
| cntr_names_initialized = 1; |
| } |
| mutex_unlock(&cntr_names_lock); |
| |
| if (!port_num) |
| return rdma_alloc_hw_stats_struct( |
| dev_cntr_names, |
| num_dev_cntrs + num_driver_cntrs, |
| RDMA_HW_STATS_DEFAULT_LIFESPAN); |
| else |
| return rdma_alloc_hw_stats_struct( |
| port_cntr_names, |
| num_port_cntrs, |
| RDMA_HW_STATS_DEFAULT_LIFESPAN); |
| } |
| |
| static u64 hfi1_sps_ints(void) |
| { |
| unsigned long flags; |
| struct hfi1_devdata *dd; |
| u64 sps_ints = 0; |
| |
| spin_lock_irqsave(&hfi1_devs_lock, flags); |
| list_for_each_entry(dd, &hfi1_dev_list, list) { |
| sps_ints += get_all_cpu_total(dd->int_counter); |
| } |
| spin_unlock_irqrestore(&hfi1_devs_lock, flags); |
| return sps_ints; |
| } |
| |
| static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats, |
| u8 port, int index) |
| { |
| u64 *values; |
| int count; |
| |
| if (!port) { |
| u64 *stats = (u64 *)&hfi1_stats; |
| int i; |
| |
| hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values); |
| values[num_dev_cntrs] = hfi1_sps_ints(); |
| for (i = 1; i < num_driver_cntrs; i++) |
| values[num_dev_cntrs + i] = stats[i]; |
| count = num_dev_cntrs + num_driver_cntrs; |
| } else { |
| struct hfi1_ibport *ibp = to_iport(ibdev, port); |
| |
| hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values); |
| count = num_port_cntrs; |
| } |
| |
| memcpy(stats->value, values, count * sizeof(u64)); |
| return count; |
| } |
| |
| /** |
| * hfi1_register_ib_device - register our device with the infiniband core |
| * @dd: the device data structure |
| * Return 0 if successful, errno if unsuccessful. |
| */ |
| int hfi1_register_ib_device(struct hfi1_devdata *dd) |
| { |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| struct ib_device *ibdev = &dev->rdi.ibdev; |
| struct hfi1_pportdata *ppd = dd->pport; |
| struct hfi1_ibport *ibp = &ppd->ibport_data; |
| unsigned i; |
| int ret; |
| size_t lcpysz = IB_DEVICE_NAME_MAX; |
| |
| for (i = 0; i < dd->num_pports; i++) |
| init_ibport(ppd + i); |
| |
| /* Only need to initialize non-zero fields. */ |
| |
| setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev); |
| |
| seqlock_init(&dev->iowait_lock); |
| seqlock_init(&dev->txwait_lock); |
| INIT_LIST_HEAD(&dev->txwait); |
| INIT_LIST_HEAD(&dev->memwait); |
| |
| ret = verbs_txreq_init(dev); |
| if (ret) |
| goto err_verbs_txreq; |
| |
| /* Use first-port GUID as node guid */ |
| ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX); |
| |
| /* |
| * The system image GUID is supposed to be the same for all |
| * HFIs in a single system but since there can be other |
| * device types in the system, we can't be sure this is unique. |
| */ |
| if (!ib_hfi1_sys_image_guid) |
| ib_hfi1_sys_image_guid = ibdev->node_guid; |
| lcpysz = strlcpy(ibdev->name, class_name(), lcpysz); |
| strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz); |
| ibdev->owner = THIS_MODULE; |
| ibdev->phys_port_cnt = dd->num_pports; |
| ibdev->dev.parent = &dd->pcidev->dev; |
| ibdev->modify_device = modify_device; |
| ibdev->alloc_hw_stats = alloc_hw_stats; |
| ibdev->get_hw_stats = get_hw_stats; |
| ibdev->alloc_rdma_netdev = hfi1_vnic_alloc_rn; |
| |
| /* keep process mad in the driver */ |
| ibdev->process_mad = hfi1_process_mad; |
| ibdev->get_dev_fw_str = hfi1_get_dev_fw_str; |
| |
| strncpy(ibdev->node_desc, init_utsname()->nodename, |
| sizeof(ibdev->node_desc)); |
| |
| /* |
| * Fill in rvt info object. |
| */ |
| dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files; |
| dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name; |
| dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev; |
| dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah; |
| dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah; |
| dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be; |
| dd->verbs_dev.rdi.driver_f.query_port_state = query_port; |
| dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port; |
| dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg; |
| /* |
| * Fill in rvt info device attributes. |
| */ |
| hfi1_fill_device_attr(dd); |
| |
| /* queue pair */ |
| dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size; |
| dd->verbs_dev.rdi.dparms.qpn_start = 0; |
| dd->verbs_dev.rdi.dparms.qpn_inc = 1; |
| dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift; |
| dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16; |
| dd->verbs_dev.rdi.dparms.qpn_res_end = |
| dd->verbs_dev.rdi.dparms.qpn_res_start + 65535; |
| dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC; |
| dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK; |
| dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT; |
| dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK; |
| dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA | |
| RDMA_CORE_CAP_OPA_AH; |
| dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE; |
| |
| dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc; |
| dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free; |
| dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps; |
| dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset; |
| dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt; |
| dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send; |
| dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send; |
| dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr; |
| dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; |
| dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters; |
| dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue; |
| dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp; |
| dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp; |
| dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp; |
| dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu; |
| dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp; |
| dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp; |
| dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc; |
| dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe; |
| |
| /* completeion queue */ |
| snprintf(dd->verbs_dev.rdi.dparms.cq_name, |
| sizeof(dd->verbs_dev.rdi.dparms.cq_name), |
| "hfi1_cq%d", dd->unit); |
| dd->verbs_dev.rdi.dparms.node = dd->node; |
| |
| /* misc settings */ |
| dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */ |
| dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size; |
| dd->verbs_dev.rdi.dparms.nports = dd->num_pports; |
| dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd); |
| |
| /* post send table */ |
| dd->verbs_dev.rdi.post_parms = hfi1_post_parms; |
| |
| ppd = dd->pport; |
| for (i = 0; i < dd->num_pports; i++, ppd++) |
| rvt_init_port(&dd->verbs_dev.rdi, |
| &ppd->ibport_data.rvp, |
| i, |
| ppd->pkeys); |
| |
| ret = rvt_register_device(&dd->verbs_dev.rdi); |
| if (ret) |
| goto err_verbs_txreq; |
| |
| ret = hfi1_verbs_register_sysfs(dd); |
| if (ret) |
| goto err_class; |
| |
| return ret; |
| |
| err_class: |
| rvt_unregister_device(&dd->verbs_dev.rdi); |
| err_verbs_txreq: |
| verbs_txreq_exit(dev); |
| dd_dev_err(dd, "cannot register verbs: %d!\n", -ret); |
| return ret; |
| } |
| |
| void hfi1_unregister_ib_device(struct hfi1_devdata *dd) |
| { |
| struct hfi1_ibdev *dev = &dd->verbs_dev; |
| |
| hfi1_verbs_unregister_sysfs(dd); |
| |
| rvt_unregister_device(&dd->verbs_dev.rdi); |
| |
| if (!list_empty(&dev->txwait)) |
| dd_dev_err(dd, "txwait list not empty!\n"); |
| if (!list_empty(&dev->memwait)) |
| dd_dev_err(dd, "memwait list not empty!\n"); |
| |
| del_timer_sync(&dev->mem_timer); |
| verbs_txreq_exit(dev); |
| |
| mutex_lock(&cntr_names_lock); |
| kfree(dev_cntr_names); |
| kfree(port_cntr_names); |
| dev_cntr_names = NULL; |
| port_cntr_names = NULL; |
| cntr_names_initialized = 0; |
| mutex_unlock(&cntr_names_lock); |
| } |
| |
| void hfi1_cnp_rcv(struct hfi1_packet *packet) |
| { |
| struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); |
| struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); |
| struct ib_header *hdr = packet->hdr; |
| struct rvt_qp *qp = packet->qp; |
| u32 lqpn, rqpn = 0; |
| u16 rlid = 0; |
| u8 sl, sc5, svc_type; |
| |
| switch (packet->qp->ibqp.qp_type) { |
| case IB_QPT_UC: |
| rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); |
| rqpn = qp->remote_qpn; |
| svc_type = IB_CC_SVCTYPE_UC; |
| break; |
| case IB_QPT_RC: |
| rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); |
| rqpn = qp->remote_qpn; |
| svc_type = IB_CC_SVCTYPE_RC; |
| break; |
| case IB_QPT_SMI: |
| case IB_QPT_GSI: |
| case IB_QPT_UD: |
| svc_type = IB_CC_SVCTYPE_UD; |
| break; |
| default: |
| ibp->rvp.n_pkt_drops++; |
| return; |
| } |
| |
| sc5 = hfi1_9B_get_sc5(hdr, packet->rhf); |
| sl = ibp->sc_to_sl[sc5]; |
| lqpn = qp->ibqp.qp_num; |
| |
| process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); |
| } |