|  | /* | 
|  | * Copyright © 2008 Intel Corporation | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice (including the next | 
|  | * paragraph) shall be included in all copies or substantial portions of the | 
|  | * Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
|  | * IN THE SOFTWARE. | 
|  | * | 
|  | * Authors: | 
|  | *    Keith Packard <keithp@keithp.com> | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <drm/drmP.h> | 
|  | #include <drm/drm_crtc.h> | 
|  | #include <drm/drm_crtc_helper.h> | 
|  | #include <drm/drm_edid.h> | 
|  | #include "intel_drv.h" | 
|  | #include <drm/i915_drm.h> | 
|  | #include "i915_drv.h" | 
|  |  | 
|  | #define DP_LINK_CHECK_TIMEOUT	(10 * 1000) | 
|  |  | 
|  | struct dp_link_dpll { | 
|  | int link_bw; | 
|  | struct dpll dpll; | 
|  | }; | 
|  |  | 
|  | static const struct dp_link_dpll gen4_dpll[] = { | 
|  | { DP_LINK_BW_1_62, | 
|  | { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, | 
|  | { DP_LINK_BW_2_7, | 
|  | { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } | 
|  | }; | 
|  |  | 
|  | static const struct dp_link_dpll pch_dpll[] = { | 
|  | { DP_LINK_BW_1_62, | 
|  | { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, | 
|  | { DP_LINK_BW_2_7, | 
|  | { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } | 
|  | }; | 
|  |  | 
|  | static const struct dp_link_dpll vlv_dpll[] = { | 
|  | { DP_LINK_BW_1_62, | 
|  | { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, | 
|  | { DP_LINK_BW_2_7, | 
|  | { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * CHV supports eDP 1.4 that have  more link rates. | 
|  | * Below only provides the fixed rate but exclude variable rate. | 
|  | */ | 
|  | static const struct dp_link_dpll chv_dpll[] = { | 
|  | /* | 
|  | * CHV requires to program fractional division for m2. | 
|  | * m2 is stored in fixed point format using formula below | 
|  | * (m2_int << 22) | m2_fraction | 
|  | */ | 
|  | { DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */ | 
|  | { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, | 
|  | { DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */ | 
|  | { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, | 
|  | { DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */ | 
|  | { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } } | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * is_edp - is the given port attached to an eDP panel (either CPU or PCH) | 
|  | * @intel_dp: DP struct | 
|  | * | 
|  | * If a CPU or PCH DP output is attached to an eDP panel, this function | 
|  | * will return true, and false otherwise. | 
|  | */ | 
|  | static bool is_edp(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  |  | 
|  | return intel_dig_port->base.type == INTEL_OUTPUT_EDP; | 
|  | } | 
|  |  | 
|  | static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  |  | 
|  | return intel_dig_port->base.base.dev; | 
|  | } | 
|  |  | 
|  | static struct intel_dp *intel_attached_dp(struct drm_connector *connector) | 
|  | { | 
|  | return enc_to_intel_dp(&intel_attached_encoder(connector)->base); | 
|  | } | 
|  |  | 
|  | static void intel_dp_link_down(struct intel_dp *intel_dp); | 
|  | static bool edp_panel_vdd_on(struct intel_dp *intel_dp); | 
|  | static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); | 
|  |  | 
|  | int | 
|  | intel_dp_max_link_bw(struct intel_dp *intel_dp) | 
|  | { | 
|  | int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; | 
|  | struct drm_device *dev = intel_dp->attached_connector->base.dev; | 
|  |  | 
|  | switch (max_link_bw) { | 
|  | case DP_LINK_BW_1_62: | 
|  | case DP_LINK_BW_2_7: | 
|  | break; | 
|  | case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */ | 
|  | if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || | 
|  | INTEL_INFO(dev)->gen >= 8) && | 
|  | intel_dp->dpcd[DP_DPCD_REV] >= 0x12) | 
|  | max_link_bw = DP_LINK_BW_5_4; | 
|  | else | 
|  | max_link_bw = DP_LINK_BW_2_7; | 
|  | break; | 
|  | default: | 
|  | WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n", | 
|  | max_link_bw); | 
|  | max_link_bw = DP_LINK_BW_1_62; | 
|  | break; | 
|  | } | 
|  | return max_link_bw; | 
|  | } | 
|  |  | 
|  | static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | u8 source_max, sink_max; | 
|  |  | 
|  | source_max = 4; | 
|  | if (HAS_DDI(dev) && intel_dig_port->port == PORT_A && | 
|  | (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0) | 
|  | source_max = 2; | 
|  |  | 
|  | sink_max = drm_dp_max_lane_count(intel_dp->dpcd); | 
|  |  | 
|  | return min(source_max, sink_max); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The units on the numbers in the next two are... bizarre.  Examples will | 
|  | * make it clearer; this one parallels an example in the eDP spec. | 
|  | * | 
|  | * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as: | 
|  | * | 
|  | *     270000 * 1 * 8 / 10 == 216000 | 
|  | * | 
|  | * The actual data capacity of that configuration is 2.16Gbit/s, so the | 
|  | * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz - | 
|  | * or equivalently, kilopixels per second - so for 1680x1050R it'd be | 
|  | * 119000.  At 18bpp that's 2142000 kilobits per second. | 
|  | * | 
|  | * Thus the strange-looking division by 10 in intel_dp_link_required, to | 
|  | * get the result in decakilobits instead of kilobits. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | intel_dp_link_required(int pixel_clock, int bpp) | 
|  | { | 
|  | return (pixel_clock * bpp + 9) / 10; | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_dp_max_data_rate(int max_link_clock, int max_lanes) | 
|  | { | 
|  | return (max_link_clock * max_lanes * 8) / 10; | 
|  | } | 
|  |  | 
|  | static enum drm_mode_status | 
|  | intel_dp_mode_valid(struct drm_connector *connector, | 
|  | struct drm_display_mode *mode) | 
|  | { | 
|  | struct intel_dp *intel_dp = intel_attached_dp(connector); | 
|  | struct intel_connector *intel_connector = to_intel_connector(connector); | 
|  | struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; | 
|  | int target_clock = mode->clock; | 
|  | int max_rate, mode_rate, max_lanes, max_link_clock; | 
|  |  | 
|  | if (is_edp(intel_dp) && fixed_mode) { | 
|  | if (mode->hdisplay > fixed_mode->hdisplay) | 
|  | return MODE_PANEL; | 
|  |  | 
|  | if (mode->vdisplay > fixed_mode->vdisplay) | 
|  | return MODE_PANEL; | 
|  |  | 
|  | target_clock = fixed_mode->clock; | 
|  | } | 
|  |  | 
|  | max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp)); | 
|  | max_lanes = intel_dp_max_lane_count(intel_dp); | 
|  |  | 
|  | max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); | 
|  | mode_rate = intel_dp_link_required(target_clock, 18); | 
|  |  | 
|  | if (mode_rate > max_rate) | 
|  | return MODE_CLOCK_HIGH; | 
|  |  | 
|  | if (mode->clock < 10000) | 
|  | return MODE_CLOCK_LOW; | 
|  |  | 
|  | if (mode->flags & DRM_MODE_FLAG_DBLCLK) | 
|  | return MODE_H_ILLEGAL; | 
|  |  | 
|  | return MODE_OK; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | pack_aux(uint8_t *src, int src_bytes) | 
|  | { | 
|  | int	i; | 
|  | uint32_t v = 0; | 
|  |  | 
|  | if (src_bytes > 4) | 
|  | src_bytes = 4; | 
|  | for (i = 0; i < src_bytes; i++) | 
|  | v |= ((uint32_t) src[i]) << ((3-i) * 8); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | static void | 
|  | unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) | 
|  | { | 
|  | int i; | 
|  | if (dst_bytes > 4) | 
|  | dst_bytes = 4; | 
|  | for (i = 0; i < dst_bytes; i++) | 
|  | dst[i] = src >> ((3-i) * 8); | 
|  | } | 
|  |  | 
|  | /* hrawclock is 1/4 the FSB frequency */ | 
|  | static int | 
|  | intel_hrawclk(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t clkcfg; | 
|  |  | 
|  | /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */ | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | return 200; | 
|  |  | 
|  | clkcfg = I915_READ(CLKCFG); | 
|  | switch (clkcfg & CLKCFG_FSB_MASK) { | 
|  | case CLKCFG_FSB_400: | 
|  | return 100; | 
|  | case CLKCFG_FSB_533: | 
|  | return 133; | 
|  | case CLKCFG_FSB_667: | 
|  | return 166; | 
|  | case CLKCFG_FSB_800: | 
|  | return 200; | 
|  | case CLKCFG_FSB_1067: | 
|  | return 266; | 
|  | case CLKCFG_FSB_1333: | 
|  | return 333; | 
|  | /* these two are just a guess; one of them might be right */ | 
|  | case CLKCFG_FSB_1600: | 
|  | case CLKCFG_FSB_1600_ALT: | 
|  | return 400; | 
|  | default: | 
|  | return 133; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_init_panel_power_sequencer(struct drm_device *dev, | 
|  | struct intel_dp *intel_dp, | 
|  | struct edp_power_seq *out); | 
|  | static void | 
|  | intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, | 
|  | struct intel_dp *intel_dp, | 
|  | struct edp_power_seq *out); | 
|  |  | 
|  | static void pps_lock(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain power_domain; | 
|  |  | 
|  | /* | 
|  | * See vlv_power_sequencer_reset() why we need | 
|  | * a power domain reference here. | 
|  | */ | 
|  | power_domain = intel_display_port_power_domain(encoder); | 
|  | intel_display_power_get(dev_priv, power_domain); | 
|  |  | 
|  | mutex_lock(&dev_priv->pps_mutex); | 
|  | } | 
|  |  | 
|  | static void pps_unlock(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain power_domain; | 
|  |  | 
|  | mutex_unlock(&dev_priv->pps_mutex); | 
|  |  | 
|  | power_domain = intel_display_port_power_domain(encoder); | 
|  | intel_display_power_put(dev_priv, power_domain); | 
|  | } | 
|  |  | 
|  | static enum pipe | 
|  | vlv_power_sequencer_pipe(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); | 
|  | struct edp_power_seq power_seq; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | if (intel_dp->pps_pipe != INVALID_PIPE) | 
|  | return intel_dp->pps_pipe; | 
|  |  | 
|  | /* | 
|  | * We don't have power sequencer currently. | 
|  | * Pick one that's not used by other ports. | 
|  | */ | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | struct intel_dp *tmp; | 
|  |  | 
|  | if (encoder->type != INTEL_OUTPUT_EDP) | 
|  | continue; | 
|  |  | 
|  | tmp = enc_to_intel_dp(&encoder->base); | 
|  |  | 
|  | if (tmp->pps_pipe != INVALID_PIPE) | 
|  | pipes &= ~(1 << tmp->pps_pipe); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Didn't find one. This should not happen since there | 
|  | * are two power sequencers and up to two eDP ports. | 
|  | */ | 
|  | if (WARN_ON(pipes == 0)) | 
|  | return PIPE_A; | 
|  |  | 
|  | intel_dp->pps_pipe = ffs(pipes) - 1; | 
|  |  | 
|  | DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", | 
|  | pipe_name(intel_dp->pps_pipe), | 
|  | port_name(intel_dig_port->port)); | 
|  |  | 
|  | /* init power sequencer on this pipe and port */ | 
|  | intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); | 
|  | intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, | 
|  | &power_seq); | 
|  |  | 
|  | return intel_dp->pps_pipe; | 
|  | } | 
|  |  | 
|  | typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe); | 
|  |  | 
|  | static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON; | 
|  | } | 
|  |  | 
|  | static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD; | 
|  | } | 
|  |  | 
|  | static bool vlv_pipe_any(struct drm_i915_private *dev_priv, | 
|  | enum pipe pipe) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static enum pipe | 
|  | vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, | 
|  | enum port port, | 
|  | vlv_pipe_check pipe_check) | 
|  | { | 
|  | enum pipe pipe; | 
|  |  | 
|  | for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { | 
|  | u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) & | 
|  | PANEL_PORT_SELECT_MASK; | 
|  |  | 
|  | if (port_sel != PANEL_PORT_SELECT_VLV(port)) | 
|  | continue; | 
|  |  | 
|  | if (!pipe_check(dev_priv, pipe)) | 
|  | continue; | 
|  |  | 
|  | return pipe; | 
|  | } | 
|  |  | 
|  | return INVALID_PIPE; | 
|  | } | 
|  |  | 
|  | static void | 
|  | vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct edp_power_seq power_seq; | 
|  | enum port port = intel_dig_port->port; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | /* try to find a pipe with this port selected */ | 
|  | /* first pick one where the panel is on */ | 
|  | intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, | 
|  | vlv_pipe_has_pp_on); | 
|  | /* didn't find one? pick one where vdd is on */ | 
|  | if (intel_dp->pps_pipe == INVALID_PIPE) | 
|  | intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, | 
|  | vlv_pipe_has_vdd_on); | 
|  | /* didn't find one? pick one with just the correct port */ | 
|  | if (intel_dp->pps_pipe == INVALID_PIPE) | 
|  | intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, | 
|  | vlv_pipe_any); | 
|  |  | 
|  | /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ | 
|  | if (intel_dp->pps_pipe == INVALID_PIPE) { | 
|  | DRM_DEBUG_KMS("no initial power sequencer for port %c\n", | 
|  | port_name(port)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", | 
|  | port_name(port), pipe_name(intel_dp->pps_pipe)); | 
|  |  | 
|  | intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); | 
|  | intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, | 
|  | &power_seq); | 
|  | } | 
|  |  | 
|  | void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct drm_device *dev = dev_priv->dev; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | if (WARN_ON(!IS_VALLEYVIEW(dev))) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We can't grab pps_mutex here due to deadlock with power_domain | 
|  | * mutex when power_domain functions are called while holding pps_mutex. | 
|  | * That also means that in order to use pps_pipe the code needs to | 
|  | * hold both a power domain reference and pps_mutex, and the power domain | 
|  | * reference get/put must be done while _not_ holding pps_mutex. | 
|  | * pps_{lock,unlock}() do these steps in the correct order, so one | 
|  | * should use them always. | 
|  | */ | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) { | 
|  | struct intel_dp *intel_dp; | 
|  |  | 
|  | if (encoder->type != INTEL_OUTPUT_EDP) | 
|  | continue; | 
|  |  | 
|  | intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | intel_dp->pps_pipe = INVALID_PIPE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 _pp_ctrl_reg(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | return PCH_PP_CONTROL; | 
|  | else | 
|  | return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp)); | 
|  | } | 
|  |  | 
|  | static u32 _pp_stat_reg(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) | 
|  | return PCH_PP_STATUS; | 
|  | else | 
|  | return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp)); | 
|  | } | 
|  |  | 
|  | /* Reboot notifier handler to shutdown panel power to guarantee T12 timing | 
|  | This function only applicable when panel PM state is not to be tracked */ | 
|  | static int edp_notify_handler(struct notifier_block *this, unsigned long code, | 
|  | void *unused) | 
|  | { | 
|  | struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), | 
|  | edp_notifier); | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 pp_div; | 
|  | u32 pp_ctrl_reg, pp_div_reg; | 
|  |  | 
|  | if (!is_edp(intel_dp) || code != SYS_RESTART) | 
|  | return 0; | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); | 
|  |  | 
|  | pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); | 
|  | pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe); | 
|  | pp_div = I915_READ(pp_div_reg); | 
|  | pp_div &= PP_REFERENCE_DIVIDER_MASK; | 
|  |  | 
|  | /* 0x1F write to PP_DIV_REG sets max cycle delay */ | 
|  | I915_WRITE(pp_div_reg, pp_div | 0x1F); | 
|  | I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF); | 
|  | msleep(intel_dp->panel_power_cycle_delay); | 
|  | } | 
|  |  | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool edp_have_panel_power(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; | 
|  | } | 
|  |  | 
|  | static bool edp_have_panel_vdd(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_check_edp(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { | 
|  | WARN(1, "eDP powered off while attempting aux channel communication.\n"); | 
|  | DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", | 
|  | I915_READ(_pp_stat_reg(intel_dp)), | 
|  | I915_READ(_pp_ctrl_reg(intel_dp))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; | 
|  | uint32_t status; | 
|  | bool done; | 
|  |  | 
|  | #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) | 
|  | if (has_aux_irq) | 
|  | done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, | 
|  | msecs_to_jiffies_timeout(10)); | 
|  | else | 
|  | done = wait_for_atomic(C, 10) == 0; | 
|  | if (!done) | 
|  | DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n", | 
|  | has_aux_irq); | 
|  | #undef C | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  |  | 
|  | /* | 
|  | * The clock divider is based off the hrawclk, and would like to run at | 
|  | * 2MHz.  So, take the hrawclk value and divide by 2 and use that | 
|  | */ | 
|  | return index ? 0 : intel_hrawclk(dev) / 2; | 
|  | } | 
|  |  | 
|  | static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  |  | 
|  | if (index) | 
|  | return 0; | 
|  |  | 
|  | if (intel_dig_port->port == PORT_A) { | 
|  | if (IS_GEN6(dev) || IS_GEN7(dev)) | 
|  | return 200; /* SNB & IVB eDP input clock at 400Mhz */ | 
|  | else | 
|  | return 225; /* eDP input clock at 450Mhz */ | 
|  | } else { | 
|  | return DIV_ROUND_UP(intel_pch_rawclk(dev), 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (intel_dig_port->port == PORT_A) { | 
|  | if (index) | 
|  | return 0; | 
|  | return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000); | 
|  | } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { | 
|  | /* Workaround for non-ULT HSW */ | 
|  | switch (index) { | 
|  | case 0: return 63; | 
|  | case 1: return 72; | 
|  | default: return 0; | 
|  | } | 
|  | } else  { | 
|  | return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index) | 
|  | { | 
|  | return index ? 0 : 100; | 
|  | } | 
|  |  | 
|  | static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp, | 
|  | bool has_aux_irq, | 
|  | int send_bytes, | 
|  | uint32_t aux_clock_divider) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | uint32_t precharge, timeout; | 
|  |  | 
|  | if (IS_GEN6(dev)) | 
|  | precharge = 3; | 
|  | else | 
|  | precharge = 5; | 
|  |  | 
|  | if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL) | 
|  | timeout = DP_AUX_CH_CTL_TIME_OUT_600us; | 
|  | else | 
|  | timeout = DP_AUX_CH_CTL_TIME_OUT_400us; | 
|  |  | 
|  | return DP_AUX_CH_CTL_SEND_BUSY | | 
|  | DP_AUX_CH_CTL_DONE | | 
|  | (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | | 
|  | DP_AUX_CH_CTL_TIME_OUT_ERROR | | 
|  | timeout | | 
|  | DP_AUX_CH_CTL_RECEIVE_ERROR | | 
|  | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | | 
|  | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | | 
|  | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_dp_aux_ch(struct intel_dp *intel_dp, | 
|  | uint8_t *send, int send_bytes, | 
|  | uint8_t *recv, int recv_size) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; | 
|  | uint32_t ch_data = ch_ctl + 4; | 
|  | uint32_t aux_clock_divider; | 
|  | int i, ret, recv_bytes; | 
|  | uint32_t status; | 
|  | int try, clock = 0; | 
|  | bool has_aux_irq = HAS_AUX_IRQ(dev); | 
|  | bool vdd; | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | /* | 
|  | * We will be called with VDD already enabled for dpcd/edid/oui reads. | 
|  | * In such cases we want to leave VDD enabled and it's up to upper layers | 
|  | * to turn it off. But for eg. i2c-dev access we need to turn it on/off | 
|  | * ourselves. | 
|  | */ | 
|  | vdd = edp_panel_vdd_on(intel_dp); | 
|  |  | 
|  | /* dp aux is extremely sensitive to irq latency, hence request the | 
|  | * lowest possible wakeup latency and so prevent the cpu from going into | 
|  | * deep sleep states. | 
|  | */ | 
|  | pm_qos_update_request(&dev_priv->pm_qos, 0); | 
|  |  | 
|  | intel_dp_check_edp(intel_dp); | 
|  |  | 
|  | intel_aux_display_runtime_get(dev_priv); | 
|  |  | 
|  | /* Try to wait for any previous AUX channel activity */ | 
|  | for (try = 0; try < 3; try++) { | 
|  | status = I915_READ_NOTRACE(ch_ctl); | 
|  | if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | if (try == 3) { | 
|  | WARN(1, "dp_aux_ch not started status 0x%08x\n", | 
|  | I915_READ(ch_ctl)); | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Only 5 data registers! */ | 
|  | if (WARN_ON(send_bytes > 20 || recv_size > 20)) { | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { | 
|  | u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, | 
|  | has_aux_irq, | 
|  | send_bytes, | 
|  | aux_clock_divider); | 
|  |  | 
|  | /* Must try at least 3 times according to DP spec */ | 
|  | for (try = 0; try < 5; try++) { | 
|  | /* Load the send data into the aux channel data registers */ | 
|  | for (i = 0; i < send_bytes; i += 4) | 
|  | I915_WRITE(ch_data + i, | 
|  | pack_aux(send + i, send_bytes - i)); | 
|  |  | 
|  | /* Send the command and wait for it to complete */ | 
|  | I915_WRITE(ch_ctl, send_ctl); | 
|  |  | 
|  | status = intel_dp_aux_wait_done(intel_dp, has_aux_irq); | 
|  |  | 
|  | /* Clear done status and any errors */ | 
|  | I915_WRITE(ch_ctl, | 
|  | status | | 
|  | DP_AUX_CH_CTL_DONE | | 
|  | DP_AUX_CH_CTL_TIME_OUT_ERROR | | 
|  | DP_AUX_CH_CTL_RECEIVE_ERROR); | 
|  |  | 
|  | if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | | 
|  | DP_AUX_CH_CTL_RECEIVE_ERROR)) | 
|  | continue; | 
|  | if (status & DP_AUX_CH_CTL_DONE) | 
|  | break; | 
|  | } | 
|  | if (status & DP_AUX_CH_CTL_DONE) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((status & DP_AUX_CH_CTL_DONE) == 0) { | 
|  | DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check for timeout or receive error. | 
|  | * Timeouts occur when the sink is not connected | 
|  | */ | 
|  | if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { | 
|  | DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Timeouts occur when the device isn't connected, so they're | 
|  | * "normal" -- don't fill the kernel log with these */ | 
|  | if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { | 
|  | DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); | 
|  | ret = -ETIMEDOUT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Unload any bytes sent back from the other side */ | 
|  | recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> | 
|  | DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); | 
|  | if (recv_bytes > recv_size) | 
|  | recv_bytes = recv_size; | 
|  |  | 
|  | for (i = 0; i < recv_bytes; i += 4) | 
|  | unpack_aux(I915_READ(ch_data + i), | 
|  | recv + i, recv_bytes - i); | 
|  |  | 
|  | ret = recv_bytes; | 
|  | out: | 
|  | pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE); | 
|  | intel_aux_display_runtime_put(dev_priv); | 
|  |  | 
|  | if (vdd) | 
|  | edp_panel_vdd_off(intel_dp, false); | 
|  |  | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define BARE_ADDRESS_SIZE	3 | 
|  | #define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1) | 
|  | static ssize_t | 
|  | intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) | 
|  | { | 
|  | struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); | 
|  | uint8_t txbuf[20], rxbuf[20]; | 
|  | size_t txsize, rxsize; | 
|  | int ret; | 
|  |  | 
|  | txbuf[0] = msg->request << 4; | 
|  | txbuf[1] = msg->address >> 8; | 
|  | txbuf[2] = msg->address & 0xff; | 
|  | txbuf[3] = msg->size - 1; | 
|  |  | 
|  | switch (msg->request & ~DP_AUX_I2C_MOT) { | 
|  | case DP_AUX_NATIVE_WRITE: | 
|  | case DP_AUX_I2C_WRITE: | 
|  | txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; | 
|  | rxsize = 1; | 
|  |  | 
|  | if (WARN_ON(txsize > 20)) | 
|  | return -E2BIG; | 
|  |  | 
|  | memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); | 
|  |  | 
|  | ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); | 
|  | if (ret > 0) { | 
|  | msg->reply = rxbuf[0] >> 4; | 
|  |  | 
|  | /* Return payload size. */ | 
|  | ret = msg->size; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DP_AUX_NATIVE_READ: | 
|  | case DP_AUX_I2C_READ: | 
|  | txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; | 
|  | rxsize = msg->size + 1; | 
|  |  | 
|  | if (WARN_ON(rxsize > 20)) | 
|  | return -E2BIG; | 
|  |  | 
|  | ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); | 
|  | if (ret > 0) { | 
|  | msg->reply = rxbuf[0] >> 4; | 
|  | /* | 
|  | * Assume happy day, and copy the data. The caller is | 
|  | * expected to check msg->reply before touching it. | 
|  | * | 
|  | * Return payload size. | 
|  | */ | 
|  | ret--; | 
|  | memcpy(msg->buffer, rxbuf + 1, ret); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | enum port port = intel_dig_port->port; | 
|  | const char *name = NULL; | 
|  | int ret; | 
|  |  | 
|  | switch (port) { | 
|  | case PORT_A: | 
|  | intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL; | 
|  | name = "DPDDC-A"; | 
|  | break; | 
|  | case PORT_B: | 
|  | intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL; | 
|  | name = "DPDDC-B"; | 
|  | break; | 
|  | case PORT_C: | 
|  | intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL; | 
|  | name = "DPDDC-C"; | 
|  | break; | 
|  | case PORT_D: | 
|  | intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL; | 
|  | name = "DPDDC-D"; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (!HAS_DDI(dev)) | 
|  | intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10; | 
|  |  | 
|  | intel_dp->aux.name = name; | 
|  | intel_dp->aux.dev = dev->dev; | 
|  | intel_dp->aux.transfer = intel_dp_aux_transfer; | 
|  |  | 
|  | DRM_DEBUG_KMS("registering %s bus for %s\n", name, | 
|  | connector->base.kdev->kobj.name); | 
|  |  | 
|  | ret = drm_dp_aux_register(&intel_dp->aux); | 
|  | if (ret < 0) { | 
|  | DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n", | 
|  | name, ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = sysfs_create_link(&connector->base.kdev->kobj, | 
|  | &intel_dp->aux.ddc.dev.kobj, | 
|  | intel_dp->aux.ddc.dev.kobj.name); | 
|  | if (ret < 0) { | 
|  | DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret); | 
|  | drm_dp_aux_unregister(&intel_dp->aux); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_connector_unregister(struct intel_connector *intel_connector) | 
|  | { | 
|  | struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base); | 
|  |  | 
|  | if (!intel_connector->mst_port) | 
|  | sysfs_remove_link(&intel_connector->base.kdev->kobj, | 
|  | intel_dp->aux.ddc.dev.kobj.name); | 
|  | intel_connector_unregister(intel_connector); | 
|  | } | 
|  |  | 
|  | static void | 
|  | hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw) | 
|  | { | 
|  | switch (link_bw) { | 
|  | case DP_LINK_BW_1_62: | 
|  | pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810; | 
|  | break; | 
|  | case DP_LINK_BW_2_7: | 
|  | pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350; | 
|  | break; | 
|  | case DP_LINK_BW_5_4: | 
|  | pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_set_clock(struct intel_encoder *encoder, | 
|  | struct intel_crtc_config *pipe_config, int link_bw) | 
|  | { | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | const struct dp_link_dpll *divisor = NULL; | 
|  | int i, count = 0; | 
|  |  | 
|  | if (IS_G4X(dev)) { | 
|  | divisor = gen4_dpll; | 
|  | count = ARRAY_SIZE(gen4_dpll); | 
|  | } else if (HAS_PCH_SPLIT(dev)) { | 
|  | divisor = pch_dpll; | 
|  | count = ARRAY_SIZE(pch_dpll); | 
|  | } else if (IS_CHERRYVIEW(dev)) { | 
|  | divisor = chv_dpll; | 
|  | count = ARRAY_SIZE(chv_dpll); | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | divisor = vlv_dpll; | 
|  | count = ARRAY_SIZE(vlv_dpll); | 
|  | } | 
|  |  | 
|  | if (divisor && count) { | 
|  | for (i = 0; i < count; i++) { | 
|  | if (link_bw == divisor[i].link_bw) { | 
|  | pipe_config->dpll = divisor[i].dpll; | 
|  | pipe_config->clock_set = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | intel_dp_compute_config(struct intel_encoder *encoder, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  | struct intel_crtc *intel_crtc = encoder->new_crtc; | 
|  | struct intel_connector *intel_connector = intel_dp->attached_connector; | 
|  | int lane_count, clock; | 
|  | int min_lane_count = 1; | 
|  | int max_lane_count = intel_dp_max_lane_count(intel_dp); | 
|  | /* Conveniently, the link BW constants become indices with a shift...*/ | 
|  | int min_clock = 0; | 
|  | int max_clock = intel_dp_max_link_bw(intel_dp) >> 3; | 
|  | int bpp, mode_rate; | 
|  | static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 }; | 
|  | int link_avail, link_clock; | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A) | 
|  | pipe_config->has_pch_encoder = true; | 
|  |  | 
|  | pipe_config->has_dp_encoder = true; | 
|  | pipe_config->has_drrs = false; | 
|  | pipe_config->has_audio = intel_dp->has_audio; | 
|  |  | 
|  | if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { | 
|  | intel_fixed_panel_mode(intel_connector->panel.fixed_mode, | 
|  | adjusted_mode); | 
|  | if (!HAS_PCH_SPLIT(dev)) | 
|  | intel_gmch_panel_fitting(intel_crtc, pipe_config, | 
|  | intel_connector->panel.fitting_mode); | 
|  | else | 
|  | intel_pch_panel_fitting(intel_crtc, pipe_config, | 
|  | intel_connector->panel.fitting_mode); | 
|  | } | 
|  |  | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) | 
|  | return false; | 
|  |  | 
|  | DRM_DEBUG_KMS("DP link computation with max lane count %i " | 
|  | "max bw %02x pixel clock %iKHz\n", | 
|  | max_lane_count, bws[max_clock], | 
|  | adjusted_mode->crtc_clock); | 
|  |  | 
|  | /* Walk through all bpp values. Luckily they're all nicely spaced with 2 | 
|  | * bpc in between. */ | 
|  | bpp = pipe_config->pipe_bpp; | 
|  | if (is_edp(intel_dp)) { | 
|  | if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) { | 
|  | DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", | 
|  | dev_priv->vbt.edp_bpp); | 
|  | bpp = dev_priv->vbt.edp_bpp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use the maximum clock and number of lanes the eDP panel | 
|  | * advertizes being capable of. The panels are generally | 
|  | * designed to support only a single clock and lane | 
|  | * configuration, and typically these values correspond to the | 
|  | * native resolution of the panel. | 
|  | */ | 
|  | min_lane_count = max_lane_count; | 
|  | min_clock = max_clock; | 
|  | } | 
|  |  | 
|  | for (; bpp >= 6*3; bpp -= 2*3) { | 
|  | mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, | 
|  | bpp); | 
|  |  | 
|  | for (clock = min_clock; clock <= max_clock; clock++) { | 
|  | for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) { | 
|  | link_clock = drm_dp_bw_code_to_link_rate(bws[clock]); | 
|  | link_avail = intel_dp_max_data_rate(link_clock, | 
|  | lane_count); | 
|  |  | 
|  | if (mode_rate <= link_avail) { | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | found: | 
|  | if (intel_dp->color_range_auto) { | 
|  | /* | 
|  | * See: | 
|  | * CEA-861-E - 5.1 Default Encoding Parameters | 
|  | * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry | 
|  | */ | 
|  | if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1) | 
|  | intel_dp->color_range = DP_COLOR_RANGE_16_235; | 
|  | else | 
|  | intel_dp->color_range = 0; | 
|  | } | 
|  |  | 
|  | if (intel_dp->color_range) | 
|  | pipe_config->limited_color_range = true; | 
|  |  | 
|  | intel_dp->link_bw = bws[clock]; | 
|  | intel_dp->lane_count = lane_count; | 
|  | pipe_config->pipe_bpp = bpp; | 
|  | pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw); | 
|  |  | 
|  | DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n", | 
|  | intel_dp->link_bw, intel_dp->lane_count, | 
|  | pipe_config->port_clock, bpp); | 
|  | DRM_DEBUG_KMS("DP link bw required %i available %i\n", | 
|  | mode_rate, link_avail); | 
|  |  | 
|  | intel_link_compute_m_n(bpp, lane_count, | 
|  | adjusted_mode->crtc_clock, | 
|  | pipe_config->port_clock, | 
|  | &pipe_config->dp_m_n); | 
|  |  | 
|  | if (intel_connector->panel.downclock_mode != NULL && | 
|  | intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) { | 
|  | pipe_config->has_drrs = true; | 
|  | intel_link_compute_m_n(bpp, lane_count, | 
|  | intel_connector->panel.downclock_mode->clock, | 
|  | pipe_config->port_clock, | 
|  | &pipe_config->dp_m2_n2); | 
|  | } | 
|  |  | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) | 
|  | hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw); | 
|  | else | 
|  | intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); | 
|  | struct drm_device *dev = crtc->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 dpa_ctl; | 
|  |  | 
|  | DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock); | 
|  | dpa_ctl = I915_READ(DP_A); | 
|  | dpa_ctl &= ~DP_PLL_FREQ_MASK; | 
|  |  | 
|  | if (crtc->config.port_clock == 162000) { | 
|  | /* For a long time we've carried around a ILK-DevA w/a for the | 
|  | * 160MHz clock. If we're really unlucky, it's still required. | 
|  | */ | 
|  | DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n"); | 
|  | dpa_ctl |= DP_PLL_FREQ_160MHZ; | 
|  | intel_dp->DP |= DP_PLL_FREQ_160MHZ; | 
|  | } else { | 
|  | dpa_ctl |= DP_PLL_FREQ_270MHZ; | 
|  | intel_dp->DP |= DP_PLL_FREQ_270MHZ; | 
|  | } | 
|  |  | 
|  | I915_WRITE(DP_A, dpa_ctl); | 
|  |  | 
|  | POSTING_READ(DP_A); | 
|  | udelay(500); | 
|  | } | 
|  |  | 
|  | static void intel_dp_prepare(struct intel_encoder *encoder) | 
|  | { | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  | struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); | 
|  | struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; | 
|  |  | 
|  | /* | 
|  | * There are four kinds of DP registers: | 
|  | * | 
|  | * 	IBX PCH | 
|  | * 	SNB CPU | 
|  | *	IVB CPU | 
|  | * 	CPT PCH | 
|  | * | 
|  | * IBX PCH and CPU are the same for almost everything, | 
|  | * except that the CPU DP PLL is configured in this | 
|  | * register | 
|  | * | 
|  | * CPT PCH is quite different, having many bits moved | 
|  | * to the TRANS_DP_CTL register instead. That | 
|  | * configuration happens (oddly) in ironlake_pch_enable | 
|  | */ | 
|  |  | 
|  | /* Preserve the BIOS-computed detected bit. This is | 
|  | * supposed to be read-only. | 
|  | */ | 
|  | intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; | 
|  |  | 
|  | /* Handle DP bits in common between all three register formats */ | 
|  | intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; | 
|  | intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count); | 
|  |  | 
|  | if (crtc->config.has_audio) { | 
|  | DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", | 
|  | pipe_name(crtc->pipe)); | 
|  | intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; | 
|  | intel_write_eld(&encoder->base, adjusted_mode); | 
|  | } | 
|  |  | 
|  | /* Split out the IBX/CPU vs CPT settings */ | 
|  |  | 
|  | if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) { | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) | 
|  | intel_dp->DP |= DP_SYNC_HS_HIGH; | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) | 
|  | intel_dp->DP |= DP_SYNC_VS_HIGH; | 
|  | intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; | 
|  |  | 
|  | if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) | 
|  | intel_dp->DP |= DP_ENHANCED_FRAMING; | 
|  |  | 
|  | intel_dp->DP |= crtc->pipe << 29; | 
|  | } else if (!HAS_PCH_CPT(dev) || port == PORT_A) { | 
|  | if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev)) | 
|  | intel_dp->DP |= intel_dp->color_range; | 
|  |  | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) | 
|  | intel_dp->DP |= DP_SYNC_HS_HIGH; | 
|  | if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) | 
|  | intel_dp->DP |= DP_SYNC_VS_HIGH; | 
|  | intel_dp->DP |= DP_LINK_TRAIN_OFF; | 
|  |  | 
|  | if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) | 
|  | intel_dp->DP |= DP_ENHANCED_FRAMING; | 
|  |  | 
|  | if (!IS_CHERRYVIEW(dev)) { | 
|  | if (crtc->pipe == 1) | 
|  | intel_dp->DP |= DP_PIPEB_SELECT; | 
|  | } else { | 
|  | intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe); | 
|  | } | 
|  | } else { | 
|  | intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK) | 
|  | #define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE) | 
|  |  | 
|  | #define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0) | 
|  | #define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0) | 
|  |  | 
|  | #define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) | 
|  | #define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE) | 
|  |  | 
|  | static void wait_panel_status(struct intel_dp *intel_dp, | 
|  | u32 mask, | 
|  | u32 value) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 pp_stat_reg, pp_ctrl_reg; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | pp_stat_reg = _pp_stat_reg(intel_dp); | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  |  | 
|  | DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", | 
|  | mask, value, | 
|  | I915_READ(pp_stat_reg), | 
|  | I915_READ(pp_ctrl_reg)); | 
|  |  | 
|  | if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) { | 
|  | DRM_ERROR("Panel status timeout: status %08x control %08x\n", | 
|  | I915_READ(pp_stat_reg), | 
|  | I915_READ(pp_ctrl_reg)); | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("Wait complete\n"); | 
|  | } | 
|  |  | 
|  | static void wait_panel_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | DRM_DEBUG_KMS("Wait for panel power on\n"); | 
|  | wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); | 
|  | } | 
|  |  | 
|  | static void wait_panel_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | DRM_DEBUG_KMS("Wait for panel power off time\n"); | 
|  | wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); | 
|  | } | 
|  |  | 
|  | static void wait_panel_power_cycle(struct intel_dp *intel_dp) | 
|  | { | 
|  | DRM_DEBUG_KMS("Wait for panel power cycle\n"); | 
|  |  | 
|  | /* When we disable the VDD override bit last we have to do the manual | 
|  | * wait. */ | 
|  | wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle, | 
|  | intel_dp->panel_power_cycle_delay); | 
|  |  | 
|  | wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); | 
|  | } | 
|  |  | 
|  | static void wait_backlight_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | wait_remaining_ms_from_jiffies(intel_dp->last_power_on, | 
|  | intel_dp->backlight_on_delay); | 
|  | } | 
|  |  | 
|  | static void edp_wait_backlight_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, | 
|  | intel_dp->backlight_off_delay); | 
|  | } | 
|  |  | 
|  | /* Read the current pp_control value, unlocking the register if it | 
|  | * is locked | 
|  | */ | 
|  |  | 
|  | static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 control; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | control = I915_READ(_pp_ctrl_reg(intel_dp)); | 
|  | control &= ~PANEL_UNLOCK_MASK; | 
|  | control |= PANEL_UNLOCK_REGS; | 
|  | return control; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be paired with edp_panel_vdd_off(). | 
|  | * Must hold pps_mutex around the whole on/off sequence. | 
|  | * Can be nested with intel_edp_panel_vdd_{on,off}() calls. | 
|  | */ | 
|  | static bool edp_panel_vdd_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain power_domain; | 
|  | u32 pp; | 
|  | u32 pp_stat_reg, pp_ctrl_reg; | 
|  | bool need_to_disable = !intel_dp->want_panel_vdd; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return false; | 
|  |  | 
|  | intel_dp->want_panel_vdd = true; | 
|  |  | 
|  | if (edp_have_panel_vdd(intel_dp)) | 
|  | return need_to_disable; | 
|  |  | 
|  | power_domain = intel_display_port_power_domain(intel_encoder); | 
|  | intel_display_power_get(dev_priv, power_domain); | 
|  |  | 
|  | DRM_DEBUG_KMS("Turning eDP VDD on\n"); | 
|  |  | 
|  | if (!edp_have_panel_power(intel_dp)) | 
|  | wait_panel_power_cycle(intel_dp); | 
|  |  | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | pp |= EDP_FORCE_VDD; | 
|  |  | 
|  | pp_stat_reg = _pp_stat_reg(intel_dp); | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  |  | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  | DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", | 
|  | I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); | 
|  | /* | 
|  | * If the panel wasn't on, delay before accessing aux channel | 
|  | */ | 
|  | if (!edp_have_panel_power(intel_dp)) { | 
|  | DRM_DEBUG_KMS("eDP was not running\n"); | 
|  | msleep(intel_dp->panel_power_up_delay); | 
|  | } | 
|  |  | 
|  | return need_to_disable; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be paired with intel_edp_panel_vdd_off() or | 
|  | * intel_edp_panel_off(). | 
|  | * Nested calls to these functions are not allowed since | 
|  | * we drop the lock. Caller must use some higher level | 
|  | * locking to prevent nested calls from other threads. | 
|  | */ | 
|  | void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | bool vdd; | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  | vdd = edp_panel_vdd_on(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | WARN(!vdd, "eDP VDD already requested on\n"); | 
|  | } | 
|  |  | 
|  | static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_digital_port *intel_dig_port = | 
|  | dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | enum intel_display_power_domain power_domain; | 
|  | u32 pp; | 
|  | u32 pp_stat_reg, pp_ctrl_reg; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | WARN_ON(intel_dp->want_panel_vdd); | 
|  |  | 
|  | if (!edp_have_panel_vdd(intel_dp)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("Turning eDP VDD off\n"); | 
|  |  | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | pp &= ~EDP_FORCE_VDD; | 
|  |  | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  | pp_stat_reg = _pp_stat_reg(intel_dp); | 
|  |  | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  |  | 
|  | /* Make sure sequencer is idle before allowing subsequent activity */ | 
|  | DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", | 
|  | I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); | 
|  |  | 
|  | if ((pp & POWER_TARGET_ON) == 0) | 
|  | intel_dp->last_power_cycle = jiffies; | 
|  |  | 
|  | power_domain = intel_display_port_power_domain(intel_encoder); | 
|  | intel_display_power_put(dev_priv, power_domain); | 
|  | } | 
|  |  | 
|  | static void edp_panel_vdd_work(struct work_struct *__work) | 
|  | { | 
|  | struct intel_dp *intel_dp = container_of(to_delayed_work(__work), | 
|  | struct intel_dp, panel_vdd_work); | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  | if (!intel_dp->want_panel_vdd) | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | unsigned long delay; | 
|  |  | 
|  | /* | 
|  | * Queue the timer to fire a long time from now (relative to the power | 
|  | * down delay) to keep the panel power up across a sequence of | 
|  | * operations. | 
|  | */ | 
|  | delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); | 
|  | schedule_delayed_work(&intel_dp->panel_vdd_work, delay); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be paired with edp_panel_vdd_on(). | 
|  | * Must hold pps_mutex around the whole on/off sequence. | 
|  | * Can be nested with intel_edp_panel_vdd_{on,off}() calls. | 
|  | */ | 
|  | static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = | 
|  | intel_dp_to_dev(intel_dp)->dev_private; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on"); | 
|  |  | 
|  | intel_dp->want_panel_vdd = false; | 
|  |  | 
|  | if (sync) | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  | else | 
|  | edp_panel_vdd_schedule_off(intel_dp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be paired with intel_edp_panel_vdd_on(). | 
|  | * Nested calls to these functions are not allowed since | 
|  | * we drop the lock. Caller must use some higher level | 
|  | * locking to prevent nested calls from other threads. | 
|  | */ | 
|  | static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) | 
|  | { | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  | edp_panel_vdd_off(intel_dp, sync); | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | void intel_edp_panel_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 pp; | 
|  | u32 pp_ctrl_reg; | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("Turn eDP power on\n"); | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | if (edp_have_panel_power(intel_dp)) { | 
|  | DRM_DEBUG_KMS("eDP power already on\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wait_panel_power_cycle(intel_dp); | 
|  |  | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | if (IS_GEN5(dev)) { | 
|  | /* ILK workaround: disable reset around power sequence */ | 
|  | pp &= ~PANEL_POWER_RESET; | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  | } | 
|  |  | 
|  | pp |= POWER_TARGET_ON; | 
|  | if (!IS_GEN5(dev)) | 
|  | pp |= PANEL_POWER_RESET; | 
|  |  | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  |  | 
|  | wait_panel_on(intel_dp); | 
|  | intel_dp->last_power_on = jiffies; | 
|  |  | 
|  | if (IS_GEN5(dev)) { | 
|  | pp |= PANEL_POWER_RESET; /* restore panel reset bit */ | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  | } | 
|  |  | 
|  | out: | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | void intel_edp_panel_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain power_domain; | 
|  | u32 pp; | 
|  | u32 pp_ctrl_reg; | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("Turn eDP power off\n"); | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n"); | 
|  |  | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | /* We need to switch off panel power _and_ force vdd, for otherwise some | 
|  | * panels get very unhappy and cease to work. */ | 
|  | pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | | 
|  | EDP_BLC_ENABLE); | 
|  |  | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  |  | 
|  | intel_dp->want_panel_vdd = false; | 
|  |  | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  |  | 
|  | intel_dp->last_power_cycle = jiffies; | 
|  | wait_panel_off(intel_dp); | 
|  |  | 
|  | /* We got a reference when we enabled the VDD. */ | 
|  | power_domain = intel_display_port_power_domain(intel_encoder); | 
|  | intel_display_power_put(dev_priv, power_domain); | 
|  |  | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | /* Enable backlight in the panel power control. */ | 
|  | static void _intel_edp_backlight_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 pp; | 
|  | u32 pp_ctrl_reg; | 
|  |  | 
|  | /* | 
|  | * If we enable the backlight right away following a panel power | 
|  | * on, we may see slight flicker as the panel syncs with the eDP | 
|  | * link.  So delay a bit to make sure the image is solid before | 
|  | * allowing it to appear. | 
|  | */ | 
|  | wait_backlight_on(intel_dp); | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | pp |= EDP_BLC_ENABLE; | 
|  |  | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  |  | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  |  | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | /* Enable backlight PWM and backlight PP control. */ | 
|  | void intel_edp_backlight_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("\n"); | 
|  |  | 
|  | intel_panel_enable_backlight(intel_dp->attached_connector); | 
|  | _intel_edp_backlight_on(intel_dp); | 
|  | } | 
|  |  | 
|  | /* Disable backlight in the panel power control. */ | 
|  | static void _intel_edp_backlight_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 pp; | 
|  | u32 pp_ctrl_reg; | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | pp &= ~EDP_BLC_ENABLE; | 
|  |  | 
|  | pp_ctrl_reg = _pp_ctrl_reg(intel_dp); | 
|  |  | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  | POSTING_READ(pp_ctrl_reg); | 
|  |  | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | intel_dp->last_backlight_off = jiffies; | 
|  | edp_wait_backlight_off(intel_dp); | 
|  | } | 
|  |  | 
|  | /* Disable backlight PP control and backlight PWM. */ | 
|  | void intel_edp_backlight_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("\n"); | 
|  |  | 
|  | _intel_edp_backlight_off(intel_dp); | 
|  | intel_panel_disable_backlight(intel_dp->attached_connector); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hook for controlling the panel power control backlight through the bl_power | 
|  | * sysfs attribute. Take care to handle multiple calls. | 
|  | */ | 
|  | static void intel_edp_backlight_power(struct intel_connector *connector, | 
|  | bool enable) | 
|  | { | 
|  | struct intel_dp *intel_dp = intel_attached_dp(&connector->base); | 
|  | bool is_enabled; | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  | is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | if (is_enabled == enable) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("panel power control backlight %s\n", | 
|  | enable ? "enable" : "disable"); | 
|  |  | 
|  | if (enable) | 
|  | _intel_edp_backlight_on(intel_dp); | 
|  | else | 
|  | _intel_edp_backlight_off(intel_dp); | 
|  | } | 
|  |  | 
|  | static void ironlake_edp_pll_on(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_crtc *crtc = intel_dig_port->base.base.crtc; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 dpa_ctl; | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, | 
|  | to_intel_crtc(crtc)->pipe); | 
|  |  | 
|  | DRM_DEBUG_KMS("\n"); | 
|  | dpa_ctl = I915_READ(DP_A); | 
|  | WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n"); | 
|  | WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); | 
|  |  | 
|  | /* We don't adjust intel_dp->DP while tearing down the link, to | 
|  | * facilitate link retraining (e.g. after hotplug). Hence clear all | 
|  | * enable bits here to ensure that we don't enable too much. */ | 
|  | intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); | 
|  | intel_dp->DP |= DP_PLL_ENABLE; | 
|  | I915_WRITE(DP_A, intel_dp->DP); | 
|  | POSTING_READ(DP_A); | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | static void ironlake_edp_pll_off(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_crtc *crtc = intel_dig_port->base.base.crtc; | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 dpa_ctl; | 
|  |  | 
|  | assert_pipe_disabled(dev_priv, | 
|  | to_intel_crtc(crtc)->pipe); | 
|  |  | 
|  | dpa_ctl = I915_READ(DP_A); | 
|  | WARN((dpa_ctl & DP_PLL_ENABLE) == 0, | 
|  | "dp pll off, should be on\n"); | 
|  | WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); | 
|  |  | 
|  | /* We can't rely on the value tracked for the DP register in | 
|  | * intel_dp->DP because link_down must not change that (otherwise link | 
|  | * re-training will fail. */ | 
|  | dpa_ctl &= ~DP_PLL_ENABLE; | 
|  | I915_WRITE(DP_A, dpa_ctl); | 
|  | POSTING_READ(DP_A); | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | /* If the sink supports it, try to set the power state appropriately */ | 
|  | void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) | 
|  | { | 
|  | int ret, i; | 
|  |  | 
|  | /* Should have a valid DPCD by this point */ | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) | 
|  | return; | 
|  |  | 
|  | if (mode != DRM_MODE_DPMS_ON) { | 
|  | ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, | 
|  | DP_SET_POWER_D3); | 
|  | } else { | 
|  | /* | 
|  | * When turning on, we need to retry for 1ms to give the sink | 
|  | * time to wake up. | 
|  | */ | 
|  | for (i = 0; i < 3; i++) { | 
|  | ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, | 
|  | DP_SET_POWER_D0); | 
|  | if (ret == 1) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret != 1) | 
|  | DRM_DEBUG_KMS("failed to %s sink power state\n", | 
|  | mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); | 
|  | } | 
|  |  | 
|  | static bool intel_dp_get_hw_state(struct intel_encoder *encoder, | 
|  | enum pipe *pipe) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain power_domain; | 
|  | u32 tmp; | 
|  |  | 
|  | power_domain = intel_display_port_power_domain(encoder); | 
|  | if (!intel_display_power_enabled(dev_priv, power_domain)) | 
|  | return false; | 
|  |  | 
|  | tmp = I915_READ(intel_dp->output_reg); | 
|  |  | 
|  | if (!(tmp & DP_PORT_EN)) | 
|  | return false; | 
|  |  | 
|  | if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) { | 
|  | *pipe = PORT_TO_PIPE_CPT(tmp); | 
|  | } else if (IS_CHERRYVIEW(dev)) { | 
|  | *pipe = DP_PORT_TO_PIPE_CHV(tmp); | 
|  | } else if (!HAS_PCH_CPT(dev) || port == PORT_A) { | 
|  | *pipe = PORT_TO_PIPE(tmp); | 
|  | } else { | 
|  | u32 trans_sel; | 
|  | u32 trans_dp; | 
|  | int i; | 
|  |  | 
|  | switch (intel_dp->output_reg) { | 
|  | case PCH_DP_B: | 
|  | trans_sel = TRANS_DP_PORT_SEL_B; | 
|  | break; | 
|  | case PCH_DP_C: | 
|  | trans_sel = TRANS_DP_PORT_SEL_C; | 
|  | break; | 
|  | case PCH_DP_D: | 
|  | trans_sel = TRANS_DP_PORT_SEL_D; | 
|  | break; | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for_each_pipe(dev_priv, i) { | 
|  | trans_dp = I915_READ(TRANS_DP_CTL(i)); | 
|  | if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) { | 
|  | *pipe = i; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", | 
|  | intel_dp->output_reg); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void intel_dp_get_config(struct intel_encoder *encoder, | 
|  | struct intel_crtc_config *pipe_config) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | u32 tmp, flags = 0; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  | struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); | 
|  | int dotclock; | 
|  |  | 
|  | tmp = I915_READ(intel_dp->output_reg); | 
|  | if (tmp & DP_AUDIO_OUTPUT_ENABLE) | 
|  | pipe_config->has_audio = true; | 
|  |  | 
|  | if ((port == PORT_A) || !HAS_PCH_CPT(dev)) { | 
|  | if (tmp & DP_SYNC_HS_HIGH) | 
|  | flags |= DRM_MODE_FLAG_PHSYNC; | 
|  | else | 
|  | flags |= DRM_MODE_FLAG_NHSYNC; | 
|  |  | 
|  | if (tmp & DP_SYNC_VS_HIGH) | 
|  | flags |= DRM_MODE_FLAG_PVSYNC; | 
|  | else | 
|  | flags |= DRM_MODE_FLAG_NVSYNC; | 
|  | } else { | 
|  | tmp = I915_READ(TRANS_DP_CTL(crtc->pipe)); | 
|  | if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH) | 
|  | flags |= DRM_MODE_FLAG_PHSYNC; | 
|  | else | 
|  | flags |= DRM_MODE_FLAG_NHSYNC; | 
|  |  | 
|  | if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH) | 
|  | flags |= DRM_MODE_FLAG_PVSYNC; | 
|  | else | 
|  | flags |= DRM_MODE_FLAG_NVSYNC; | 
|  | } | 
|  |  | 
|  | pipe_config->adjusted_mode.flags |= flags; | 
|  |  | 
|  | if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) && | 
|  | tmp & DP_COLOR_RANGE_16_235) | 
|  | pipe_config->limited_color_range = true; | 
|  |  | 
|  | pipe_config->has_dp_encoder = true; | 
|  |  | 
|  | intel_dp_get_m_n(crtc, pipe_config); | 
|  |  | 
|  | if (port == PORT_A) { | 
|  | if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ) | 
|  | pipe_config->port_clock = 162000; | 
|  | else | 
|  | pipe_config->port_clock = 270000; | 
|  | } | 
|  |  | 
|  | dotclock = intel_dotclock_calculate(pipe_config->port_clock, | 
|  | &pipe_config->dp_m_n); | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A) | 
|  | ironlake_check_encoder_dotclock(pipe_config, dotclock); | 
|  |  | 
|  | pipe_config->adjusted_mode.crtc_clock = dotclock; | 
|  |  | 
|  | if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp && | 
|  | pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { | 
|  | /* | 
|  | * This is a big fat ugly hack. | 
|  | * | 
|  | * Some machines in UEFI boot mode provide us a VBT that has 18 | 
|  | * bpp and 1.62 GHz link bandwidth for eDP, which for reasons | 
|  | * unknown we fail to light up. Yet the same BIOS boots up with | 
|  | * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as | 
|  | * max, not what it tells us to use. | 
|  | * | 
|  | * Note: This will still be broken if the eDP panel is not lit | 
|  | * up by the BIOS, and thus we can't get the mode at module | 
|  | * load. | 
|  | */ | 
|  | DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", | 
|  | pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); | 
|  | dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_edp_psr(struct intel_dp *intel_dp) | 
|  | { | 
|  | return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED; | 
|  | } | 
|  |  | 
|  | static bool intel_edp_is_psr_enabled(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!HAS_PSR(dev)) | 
|  | return false; | 
|  |  | 
|  | return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE; | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp, | 
|  | struct edp_vsc_psr *vsc_psr) | 
|  | { | 
|  | struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); | 
|  | u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder); | 
|  | u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder); | 
|  | uint32_t *data = (uint32_t *) vsc_psr; | 
|  | unsigned int i; | 
|  |  | 
|  | /* As per BSPec (Pipe Video Data Island Packet), we need to disable | 
|  | the video DIP being updated before program video DIP data buffer | 
|  | registers for DIP being updated. */ | 
|  | I915_WRITE(ctl_reg, 0); | 
|  | POSTING_READ(ctl_reg); | 
|  |  | 
|  | for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) { | 
|  | if (i < sizeof(struct edp_vsc_psr)) | 
|  | I915_WRITE(data_reg + i, *data++); | 
|  | else | 
|  | I915_WRITE(data_reg + i, 0); | 
|  | } | 
|  |  | 
|  | I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW); | 
|  | POSTING_READ(ctl_reg); | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_setup(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct edp_vsc_psr psr_vsc; | 
|  |  | 
|  | /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ | 
|  | memset(&psr_vsc, 0, sizeof(psr_vsc)); | 
|  | psr_vsc.sdp_header.HB0 = 0; | 
|  | psr_vsc.sdp_header.HB1 = 0x7; | 
|  | psr_vsc.sdp_header.HB2 = 0x2; | 
|  | psr_vsc.sdp_header.HB3 = 0x8; | 
|  | intel_edp_psr_write_vsc(intel_dp, &psr_vsc); | 
|  |  | 
|  | /* Avoid continuous PSR exit by masking memup and hpd */ | 
|  | I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP | | 
|  | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP); | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t aux_clock_divider; | 
|  | int precharge = 0x3; | 
|  | int msg_size = 5;       /* Header(4) + Message(1) */ | 
|  | bool only_standby = false; | 
|  |  | 
|  | aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); | 
|  |  | 
|  | if (IS_BROADWELL(dev) && dig_port->port != PORT_A) | 
|  | only_standby = true; | 
|  |  | 
|  | /* Enable PSR in sink */ | 
|  | if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) | 
|  | drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, | 
|  | DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE); | 
|  | else | 
|  | drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, | 
|  | DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); | 
|  |  | 
|  | /* Setup AUX registers */ | 
|  | I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND); | 
|  | I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION); | 
|  | I915_WRITE(EDP_PSR_AUX_CTL(dev), | 
|  | DP_AUX_CH_CTL_TIME_OUT_400us | | 
|  | (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | | 
|  | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | | 
|  | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT)); | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_enable_source(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t max_sleep_time = 0x1f; | 
|  | uint32_t idle_frames = 1; | 
|  | uint32_t val = 0x0; | 
|  | const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; | 
|  | bool only_standby = false; | 
|  |  | 
|  | if (IS_BROADWELL(dev) && dig_port->port != PORT_A) | 
|  | only_standby = true; | 
|  |  | 
|  | if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) { | 
|  | val |= EDP_PSR_LINK_STANDBY; | 
|  | val |= EDP_PSR_TP2_TP3_TIME_0us; | 
|  | val |= EDP_PSR_TP1_TIME_0us; | 
|  | val |= EDP_PSR_SKIP_AUX_EXIT; | 
|  | val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0; | 
|  | } else | 
|  | val |= EDP_PSR_LINK_DISABLE; | 
|  |  | 
|  | I915_WRITE(EDP_PSR_CTL(dev), val | | 
|  | (IS_BROADWELL(dev) ? 0 : link_entry_time) | | 
|  | max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT | | 
|  | idle_frames << EDP_PSR_IDLE_FRAME_SHIFT | | 
|  | EDP_PSR_ENABLE); | 
|  | } | 
|  |  | 
|  | static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc = dig_port->base.base.crtc; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(crtc); | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->psr.lock); | 
|  | WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); | 
|  | WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); | 
|  |  | 
|  | dev_priv->psr.source_ok = false; | 
|  |  | 
|  | if (IS_HASWELL(dev) && dig_port->port != PORT_A) { | 
|  | DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!i915.enable_psr) { | 
|  | DRM_DEBUG_KMS("PSR disable by flag\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Below limitations aren't valid for Broadwell */ | 
|  | if (IS_BROADWELL(dev)) | 
|  | goto out; | 
|  |  | 
|  | if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) & | 
|  | S3D_ENABLE) { | 
|  | DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { | 
|  | DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out: | 
|  | dev_priv->psr.source_ok = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_do_enable(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); | 
|  | WARN_ON(dev_priv->psr.active); | 
|  | lockdep_assert_held(&dev_priv->psr.lock); | 
|  |  | 
|  | /* Enable PSR on the panel */ | 
|  | intel_edp_psr_enable_sink(intel_dp); | 
|  |  | 
|  | /* Enable PSR on the host */ | 
|  | intel_edp_psr_enable_source(intel_dp); | 
|  |  | 
|  | dev_priv->psr.active = true; | 
|  | } | 
|  |  | 
|  | void intel_edp_psr_enable(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (!HAS_PSR(dev)) { | 
|  | DRM_DEBUG_KMS("PSR not supported on this platform\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!is_edp_psr(intel_dp)) { | 
|  | DRM_DEBUG_KMS("PSR not supported by this panel\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev_priv->psr.lock); | 
|  | if (dev_priv->psr.enabled) { | 
|  | DRM_DEBUG_KMS("PSR already in use\n"); | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dev_priv->psr.busy_frontbuffer_bits = 0; | 
|  |  | 
|  | /* Setup PSR once */ | 
|  | intel_edp_psr_setup(intel_dp); | 
|  |  | 
|  | if (intel_edp_psr_match_conditions(intel_dp)) | 
|  | dev_priv->psr.enabled = intel_dp; | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | } | 
|  |  | 
|  | void intel_edp_psr_disable(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | mutex_lock(&dev_priv->psr.lock); | 
|  | if (!dev_priv->psr.enabled) { | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dev_priv->psr.active) { | 
|  | I915_WRITE(EDP_PSR_CTL(dev), | 
|  | I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE); | 
|  |  | 
|  | /* Wait till PSR is idle */ | 
|  | if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) & | 
|  | EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10)) | 
|  | DRM_ERROR("Timed out waiting for PSR Idle State\n"); | 
|  |  | 
|  | dev_priv->psr.active = false; | 
|  | } else { | 
|  | WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); | 
|  | } | 
|  |  | 
|  | dev_priv->psr.enabled = NULL; | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  |  | 
|  | cancel_delayed_work_sync(&dev_priv->psr.work); | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_work(struct work_struct *work) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = | 
|  | container_of(work, typeof(*dev_priv), psr.work.work); | 
|  | struct intel_dp *intel_dp = dev_priv->psr.enabled; | 
|  |  | 
|  | mutex_lock(&dev_priv->psr.lock); | 
|  | intel_dp = dev_priv->psr.enabled; | 
|  |  | 
|  | if (!intel_dp) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * The delayed work can race with an invalidate hence we need to | 
|  | * recheck. Since psr_flush first clears this and then reschedules we | 
|  | * won't ever miss a flush when bailing out here. | 
|  | */ | 
|  | if (dev_priv->psr.busy_frontbuffer_bits) | 
|  | goto unlock; | 
|  |  | 
|  | intel_edp_psr_do_enable(intel_dp); | 
|  | unlock: | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | } | 
|  |  | 
|  | static void intel_edp_psr_do_exit(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (dev_priv->psr.active) { | 
|  | u32 val = I915_READ(EDP_PSR_CTL(dev)); | 
|  |  | 
|  | WARN_ON(!(val & EDP_PSR_ENABLE)); | 
|  |  | 
|  | I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE); | 
|  |  | 
|  | dev_priv->psr.active = false; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void intel_edp_psr_invalidate(struct drm_device *dev, | 
|  | unsigned frontbuffer_bits) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc; | 
|  | enum pipe pipe; | 
|  |  | 
|  | mutex_lock(&dev_priv->psr.lock); | 
|  | if (!dev_priv->psr.enabled) { | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; | 
|  | pipe = to_intel_crtc(crtc)->pipe; | 
|  |  | 
|  | intel_edp_psr_do_exit(dev); | 
|  |  | 
|  | frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); | 
|  |  | 
|  | dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | } | 
|  |  | 
|  | void intel_edp_psr_flush(struct drm_device *dev, | 
|  | unsigned frontbuffer_bits) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_crtc *crtc; | 
|  | enum pipe pipe; | 
|  |  | 
|  | mutex_lock(&dev_priv->psr.lock); | 
|  | if (!dev_priv->psr.enabled) { | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; | 
|  | pipe = to_intel_crtc(crtc)->pipe; | 
|  | dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; | 
|  |  | 
|  | /* | 
|  | * On Haswell sprite plane updates don't result in a psr invalidating | 
|  | * signal in the hardware. Which means we need to manually fake this in | 
|  | * software for all flushes, not just when we've seen a preceding | 
|  | * invalidation through frontbuffer rendering. | 
|  | */ | 
|  | if (IS_HASWELL(dev) && | 
|  | (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe))) | 
|  | intel_edp_psr_do_exit(dev); | 
|  |  | 
|  | if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) | 
|  | schedule_delayed_work(&dev_priv->psr.work, | 
|  | msecs_to_jiffies(100)); | 
|  | mutex_unlock(&dev_priv->psr.lock); | 
|  | } | 
|  |  | 
|  | void intel_edp_psr_init(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work); | 
|  | mutex_init(&dev_priv->psr.lock); | 
|  | } | 
|  |  | 
|  | static void intel_disable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  |  | 
|  | /* Make sure the panel is off before trying to change the mode. But also | 
|  | * ensure that we have vdd while we switch off the panel. */ | 
|  | intel_edp_panel_vdd_on(intel_dp); | 
|  | intel_edp_backlight_off(intel_dp); | 
|  | intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); | 
|  | intel_edp_panel_off(intel_dp); | 
|  |  | 
|  | /* disable the port before the pipe on g4x */ | 
|  | if (INTEL_INFO(dev)->gen < 5) | 
|  | intel_dp_link_down(intel_dp); | 
|  | } | 
|  |  | 
|  | static void ilk_post_disable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  |  | 
|  | intel_dp_link_down(intel_dp); | 
|  | if (port == PORT_A) | 
|  | ironlake_edp_pll_off(intel_dp); | 
|  | } | 
|  |  | 
|  | static void vlv_post_disable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  |  | 
|  | intel_dp_link_down(intel_dp); | 
|  | } | 
|  |  | 
|  | static void chv_post_disable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | struct intel_digital_port *dport = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(encoder->base.crtc); | 
|  | enum dpio_channel ch = vlv_dport_to_channel(dport); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | u32 val; | 
|  |  | 
|  | intel_dp_link_down(intel_dp); | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* Propagate soft reset to data lane reset */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); | 
|  | val |= CHV_PCS_REQ_SOFTRESET_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); | 
|  | val |= CHV_PCS_REQ_SOFTRESET_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); | 
|  | val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); | 
|  | val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void | 
|  | _intel_dp_set_link_train(struct intel_dp *intel_dp, | 
|  | uint32_t *DP, | 
|  | uint8_t dp_train_pat) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum port port = intel_dig_port->port; | 
|  |  | 
|  | if (HAS_DDI(dev)) { | 
|  | uint32_t temp = I915_READ(DP_TP_CTL(port)); | 
|  |  | 
|  | if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) | 
|  | temp |= DP_TP_CTL_SCRAMBLE_DISABLE; | 
|  | else | 
|  | temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; | 
|  |  | 
|  | temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; | 
|  | switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { | 
|  | case DP_TRAINING_PATTERN_DISABLE: | 
|  | temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; | 
|  |  | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_1: | 
|  | temp |= DP_TP_CTL_LINK_TRAIN_PAT1; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_2: | 
|  | temp |= DP_TP_CTL_LINK_TRAIN_PAT2; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_3: | 
|  | temp |= DP_TP_CTL_LINK_TRAIN_PAT3; | 
|  | break; | 
|  | } | 
|  | I915_WRITE(DP_TP_CTL(port), temp); | 
|  |  | 
|  | } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) { | 
|  | *DP &= ~DP_LINK_TRAIN_MASK_CPT; | 
|  |  | 
|  | switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { | 
|  | case DP_TRAINING_PATTERN_DISABLE: | 
|  | *DP |= DP_LINK_TRAIN_OFF_CPT; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_1: | 
|  | *DP |= DP_LINK_TRAIN_PAT_1_CPT; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_2: | 
|  | *DP |= DP_LINK_TRAIN_PAT_2_CPT; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_3: | 
|  | DRM_ERROR("DP training pattern 3 not supported\n"); | 
|  | *DP |= DP_LINK_TRAIN_PAT_2_CPT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | *DP &= ~DP_LINK_TRAIN_MASK_CHV; | 
|  | else | 
|  | *DP &= ~DP_LINK_TRAIN_MASK; | 
|  |  | 
|  | switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { | 
|  | case DP_TRAINING_PATTERN_DISABLE: | 
|  | *DP |= DP_LINK_TRAIN_OFF; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_1: | 
|  | *DP |= DP_LINK_TRAIN_PAT_1; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_2: | 
|  | *DP |= DP_LINK_TRAIN_PAT_2; | 
|  | break; | 
|  | case DP_TRAINING_PATTERN_3: | 
|  | if (IS_CHERRYVIEW(dev)) { | 
|  | *DP |= DP_LINK_TRAIN_PAT_3_CHV; | 
|  | } else { | 
|  | DRM_ERROR("DP training pattern 3 not supported\n"); | 
|  | *DP |= DP_LINK_TRAIN_PAT_2; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_dp_enable_port(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | intel_dp->DP |= DP_PORT_EN; | 
|  |  | 
|  | /* enable with pattern 1 (as per spec) */ | 
|  | _intel_dp_set_link_train(intel_dp, &intel_dp->DP, | 
|  | DP_TRAINING_PATTERN_1); | 
|  |  | 
|  | I915_WRITE(intel_dp->output_reg, intel_dp->DP); | 
|  | POSTING_READ(intel_dp->output_reg); | 
|  | } | 
|  |  | 
|  | static void intel_enable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t dp_reg = I915_READ(intel_dp->output_reg); | 
|  |  | 
|  | if (WARN_ON(dp_reg & DP_PORT_EN)) | 
|  | return; | 
|  |  | 
|  | intel_dp_enable_port(intel_dp); | 
|  | intel_edp_panel_vdd_on(intel_dp); | 
|  | intel_edp_panel_on(intel_dp); | 
|  | intel_edp_panel_vdd_off(intel_dp, true); | 
|  | intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); | 
|  | intel_dp_start_link_train(intel_dp); | 
|  | intel_dp_complete_link_train(intel_dp); | 
|  | intel_dp_stop_link_train(intel_dp); | 
|  | } | 
|  |  | 
|  | static void g4x_enable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  |  | 
|  | intel_enable_dp(encoder); | 
|  | intel_edp_backlight_on(intel_dp); | 
|  | } | 
|  |  | 
|  | static void vlv_enable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  |  | 
|  | intel_edp_backlight_on(intel_dp); | 
|  | } | 
|  |  | 
|  | static void g4x_pre_enable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | struct intel_digital_port *dport = dp_to_dig_port(intel_dp); | 
|  |  | 
|  | intel_dp_prepare(encoder); | 
|  |  | 
|  | /* Only ilk+ has port A */ | 
|  | if (dport->port == PORT_A) { | 
|  | ironlake_set_pll_cpu_edp(intel_dp); | 
|  | ironlake_edp_pll_on(intel_dp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vlv_steal_power_sequencer(struct drm_device *dev, | 
|  | enum pipe pipe) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | list_for_each_entry(encoder, &dev->mode_config.encoder_list, | 
|  | base.head) { | 
|  | struct intel_dp *intel_dp; | 
|  | enum port port; | 
|  |  | 
|  | if (encoder->type != INTEL_OUTPUT_EDP) | 
|  | continue; | 
|  |  | 
|  | intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | port = dp_to_dig_port(intel_dp)->port; | 
|  |  | 
|  | if (intel_dp->pps_pipe != pipe) | 
|  | continue; | 
|  |  | 
|  | DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", | 
|  | pipe_name(pipe), port_name(port)); | 
|  |  | 
|  | /* make sure vdd is off before we steal it */ | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  |  | 
|  | intel_dp->pps_pipe = INVALID_PIPE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); | 
|  | struct edp_power_seq power_seq; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | if (intel_dp->pps_pipe == crtc->pipe) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If another power sequencer was being used on this | 
|  | * port previously make sure to turn off vdd there while | 
|  | * we still have control of it. | 
|  | */ | 
|  | if (intel_dp->pps_pipe != INVALID_PIPE) | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  |  | 
|  | /* | 
|  | * We may be stealing the power | 
|  | * sequencer from another port. | 
|  | */ | 
|  | vlv_steal_power_sequencer(dev, crtc->pipe); | 
|  |  | 
|  | /* now it's all ours */ | 
|  | intel_dp->pps_pipe = crtc->pipe; | 
|  |  | 
|  | DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", | 
|  | pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port)); | 
|  |  | 
|  | /* init power sequencer on this pipe and port */ | 
|  | intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); | 
|  | intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, | 
|  | &power_seq); | 
|  | } | 
|  |  | 
|  | static void vlv_pre_enable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | struct intel_digital_port *dport = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); | 
|  | enum dpio_channel port = vlv_dport_to_channel(dport); | 
|  | int pipe = intel_crtc->pipe; | 
|  | u32 val; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); | 
|  | val = 0; | 
|  | if (pipe) | 
|  | val |= (1<<21); | 
|  | else | 
|  | val &= ~(1<<21); | 
|  | val |= 0x001000c4; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | if (is_edp(intel_dp)) { | 
|  | pps_lock(intel_dp); | 
|  | vlv_init_panel_power_sequencer(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | intel_enable_dp(encoder); | 
|  |  | 
|  | vlv_wait_port_ready(dev_priv, dport); | 
|  | } | 
|  |  | 
|  | static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(encoder->base.crtc); | 
|  | enum dpio_channel port = vlv_dport_to_channel(dport); | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | intel_dp_prepare(encoder); | 
|  |  | 
|  | /* Program Tx lane resets to default */ | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), | 
|  | DPIO_PCS_TX_LANE2_RESET | | 
|  | DPIO_PCS_TX_LANE1_RESET); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), | 
|  | DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | | 
|  | DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | | 
|  | (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | | 
|  | DPIO_PCS_CLK_SOFT_RESET); | 
|  |  | 
|  | /* Fix up inter-pair skew failure */ | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | static void chv_pre_enable_dp(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | struct intel_digital_port *dport = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(encoder->base.crtc); | 
|  | enum dpio_channel ch = vlv_dport_to_channel(dport); | 
|  | int pipe = intel_crtc->pipe; | 
|  | int data, i; | 
|  | u32 val; | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* Deassert soft data lane reset*/ | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); | 
|  | val |= CHV_PCS_REQ_SOFTRESET_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); | 
|  | val |= CHV_PCS_REQ_SOFTRESET_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); | 
|  | val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); | 
|  | val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); | 
|  |  | 
|  | /* Program Tx lane latency optimal setting*/ | 
|  | for (i = 0; i < 4; i++) { | 
|  | /* Set the latency optimal bit */ | 
|  | data = (i == 1) ? 0x0 : 0x6; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i), | 
|  | data << DPIO_FRC_LATENCY_SHFIT); | 
|  |  | 
|  | /* Set the upar bit */ | 
|  | data = (i == 1) ? 0x0 : 0x1; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), | 
|  | data << DPIO_UPAR_SHIFT); | 
|  | } | 
|  |  | 
|  | /* Data lane stagger programming */ | 
|  | /* FIXME: Fix up value only after power analysis */ | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | if (is_edp(intel_dp)) { | 
|  | pps_lock(intel_dp); | 
|  | vlv_init_panel_power_sequencer(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | intel_enable_dp(encoder); | 
|  |  | 
|  | vlv_wait_port_ready(dev_priv, dport); | 
|  | } | 
|  |  | 
|  | static void chv_dp_pre_pll_enable(struct intel_encoder *encoder) | 
|  | { | 
|  | struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); | 
|  | struct drm_device *dev = encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(encoder->base.crtc); | 
|  | enum dpio_channel ch = vlv_dport_to_channel(dport); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | u32 val; | 
|  |  | 
|  | intel_dp_prepare(encoder); | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* program left/right clock distribution */ | 
|  | if (pipe != PIPE_B) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); | 
|  | val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); | 
|  | if (ch == DPIO_CH0) | 
|  | val |= CHV_BUFLEFTENA1_FORCE; | 
|  | if (ch == DPIO_CH1) | 
|  | val |= CHV_BUFRIGHTENA1_FORCE; | 
|  | vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); | 
|  | } else { | 
|  | val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); | 
|  | val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); | 
|  | if (ch == DPIO_CH0) | 
|  | val |= CHV_BUFLEFTENA2_FORCE; | 
|  | if (ch == DPIO_CH1) | 
|  | val |= CHV_BUFRIGHTENA2_FORCE; | 
|  | vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); | 
|  | } | 
|  |  | 
|  | /* program clock channel usage */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); | 
|  | val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; | 
|  | if (pipe != PIPE_B) | 
|  | val &= ~CHV_PCS_USEDCLKCHANNEL; | 
|  | else | 
|  | val |= CHV_PCS_USEDCLKCHANNEL; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); | 
|  | val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; | 
|  | if (pipe != PIPE_B) | 
|  | val &= ~CHV_PCS_USEDCLKCHANNEL; | 
|  | else | 
|  | val |= CHV_PCS_USEDCLKCHANNEL; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); | 
|  |  | 
|  | /* | 
|  | * This a a bit weird since generally CL | 
|  | * matches the pipe, but here we need to | 
|  | * pick the CL based on the port. | 
|  | */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); | 
|  | if (pipe != PIPE_B) | 
|  | val &= ~CHV_CMN_USEDCLKCHANNEL; | 
|  | else | 
|  | val |= CHV_CMN_USEDCLKCHANNEL; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Native read with retry for link status and receiver capability reads for | 
|  | * cases where the sink may still be asleep. | 
|  | * | 
|  | * Sinks are *supposed* to come up within 1ms from an off state, but we're also | 
|  | * supposed to retry 3 times per the spec. | 
|  | */ | 
|  | static ssize_t | 
|  | intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset, | 
|  | void *buffer, size_t size) | 
|  | { | 
|  | ssize_t ret; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 3; i++) { | 
|  | ret = drm_dp_dpcd_read(aux, offset, buffer, size); | 
|  | if (ret == size) | 
|  | return ret; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch AUX CH registers 0x202 - 0x207 which contain | 
|  | * link status information | 
|  | */ | 
|  | static bool | 
|  | intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) | 
|  | { | 
|  | return intel_dp_dpcd_read_wake(&intel_dp->aux, | 
|  | DP_LANE0_1_STATUS, | 
|  | link_status, | 
|  | DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; | 
|  | } | 
|  |  | 
|  | /* These are source-specific values. */ | 
|  | static uint8_t | 
|  | intel_dp_voltage_max(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; | 
|  | else if (IS_GEN7(dev) && port == PORT_A) | 
|  | return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; | 
|  | else if (HAS_PCH_CPT(dev) && port != PORT_A) | 
|  | return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; | 
|  | else | 
|  | return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; | 
|  | } | 
|  |  | 
|  | static uint8_t | 
|  | intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  |  | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_3; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_2; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_1; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: | 
|  | default: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_0; | 
|  | } | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_3; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_2; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_1; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: | 
|  | default: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_0; | 
|  | } | 
|  | } else if (IS_GEN7(dev) && port == PORT_A) { | 
|  | switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_2; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_1; | 
|  | default: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_0; | 
|  | } | 
|  | } else { | 
|  | switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_2; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_2; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_1; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: | 
|  | default: | 
|  | return DP_TRAIN_PRE_EMPH_LEVEL_0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_digital_port *dport = dp_to_dig_port(intel_dp); | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(dport->base.base.crtc); | 
|  | unsigned long demph_reg_value, preemph_reg_value, | 
|  | uniqtranscale_reg_value; | 
|  | uint8_t train_set = intel_dp->train_set[0]; | 
|  | enum dpio_channel port = vlv_dport_to_channel(dport); | 
|  | int pipe = intel_crtc->pipe; | 
|  |  | 
|  | switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | preemph_reg_value = 0x0004000; | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | demph_reg_value = 0x2B405555; | 
|  | uniqtranscale_reg_value = 0x552AB83A; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | demph_reg_value = 0x2B404040; | 
|  | uniqtranscale_reg_value = 0x5548B83A; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | demph_reg_value = 0x2B245555; | 
|  | uniqtranscale_reg_value = 0x5560B83A; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: | 
|  | demph_reg_value = 0x2B405555; | 
|  | uniqtranscale_reg_value = 0x5598DA3A; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | preemph_reg_value = 0x0002000; | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | demph_reg_value = 0x2B404040; | 
|  | uniqtranscale_reg_value = 0x5552B83A; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | demph_reg_value = 0x2B404848; | 
|  | uniqtranscale_reg_value = 0x5580B83A; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | demph_reg_value = 0x2B404040; | 
|  | uniqtranscale_reg_value = 0x55ADDA3A; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | preemph_reg_value = 0x0000000; | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | demph_reg_value = 0x2B305555; | 
|  | uniqtranscale_reg_value = 0x5570B83A; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | demph_reg_value = 0x2B2B4040; | 
|  | uniqtranscale_reg_value = 0x55ADDA3A; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_3: | 
|  | preemph_reg_value = 0x0006000; | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | demph_reg_value = 0x1B405555; | 
|  | uniqtranscale_reg_value = 0x55ADDA3A; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), | 
|  | uniqtranscale_reg_value); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000); | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_digital_port *dport = dp_to_dig_port(intel_dp); | 
|  | struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc); | 
|  | u32 deemph_reg_value, margin_reg_value, val; | 
|  | uint8_t train_set = intel_dp->train_set[0]; | 
|  | enum dpio_channel ch = vlv_dport_to_channel(dport); | 
|  | enum pipe pipe = intel_crtc->pipe; | 
|  | int i; | 
|  |  | 
|  | switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | deemph_reg_value = 128; | 
|  | margin_reg_value = 52; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | deemph_reg_value = 128; | 
|  | margin_reg_value = 77; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | deemph_reg_value = 128; | 
|  | margin_reg_value = 102; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: | 
|  | deemph_reg_value = 128; | 
|  | margin_reg_value = 154; | 
|  | /* FIXME extra to set for 1200 */ | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | deemph_reg_value = 85; | 
|  | margin_reg_value = 78; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | deemph_reg_value = 85; | 
|  | margin_reg_value = 116; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | deemph_reg_value = 85; | 
|  | margin_reg_value = 154; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | deemph_reg_value = 64; | 
|  | margin_reg_value = 104; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | deemph_reg_value = 64; | 
|  | margin_reg_value = 154; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_3: | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | deemph_reg_value = 43; | 
|  | margin_reg_value = 154; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mutex_lock(&dev_priv->dpio_lock); | 
|  |  | 
|  | /* Clear calc init */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); | 
|  | val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); | 
|  | val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); | 
|  |  | 
|  | /* Program swing deemph */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); | 
|  | val &= ~DPIO_SWING_DEEMPH9P5_MASK; | 
|  | val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); | 
|  | } | 
|  |  | 
|  | /* Program swing margin */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); | 
|  | val &= ~DPIO_SWING_MARGIN000_MASK; | 
|  | val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); | 
|  | } | 
|  |  | 
|  | /* Disable unique transition scale */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); | 
|  | val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); | 
|  | } | 
|  |  | 
|  | if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK) | 
|  | == DP_TRAIN_PRE_EMPH_LEVEL_0) && | 
|  | ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK) | 
|  | == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) { | 
|  |  | 
|  | /* | 
|  | * The document said it needs to set bit 27 for ch0 and bit 26 | 
|  | * for ch1. Might be a typo in the doc. | 
|  | * For now, for this unique transition scale selection, set bit | 
|  | * 27 for ch0 and ch1. | 
|  | */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); | 
|  | val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); | 
|  | val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); | 
|  | val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT); | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Start swing calculation */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); | 
|  | val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); | 
|  |  | 
|  | val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); | 
|  | val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; | 
|  | vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); | 
|  |  | 
|  | /* LRC Bypass */ | 
|  | val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); | 
|  | val |= DPIO_LRC_BYPASS; | 
|  | vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val); | 
|  |  | 
|  | mutex_unlock(&dev_priv->dpio_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_get_adjust_train(struct intel_dp *intel_dp, | 
|  | const uint8_t link_status[DP_LINK_STATUS_SIZE]) | 
|  | { | 
|  | uint8_t v = 0; | 
|  | uint8_t p = 0; | 
|  | int lane; | 
|  | uint8_t voltage_max; | 
|  | uint8_t preemph_max; | 
|  |  | 
|  | for (lane = 0; lane < intel_dp->lane_count; lane++) { | 
|  | uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane); | 
|  | uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane); | 
|  |  | 
|  | if (this_v > v) | 
|  | v = this_v; | 
|  | if (this_p > p) | 
|  | p = this_p; | 
|  | } | 
|  |  | 
|  | voltage_max = intel_dp_voltage_max(intel_dp); | 
|  | if (v >= voltage_max) | 
|  | v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; | 
|  |  | 
|  | preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); | 
|  | if (p >= preemph_max) | 
|  | p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; | 
|  |  | 
|  | for (lane = 0; lane < 4; lane++) | 
|  | intel_dp->train_set[lane] = v | p; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | intel_gen4_signal_levels(uint8_t train_set) | 
|  | { | 
|  | uint32_t	signal_levels = 0; | 
|  |  | 
|  | switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: | 
|  | default: | 
|  | signal_levels |= DP_VOLTAGE_0_4; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: | 
|  | signal_levels |= DP_VOLTAGE_0_6; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: | 
|  | signal_levels |= DP_VOLTAGE_0_8; | 
|  | break; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: | 
|  | signal_levels |= DP_VOLTAGE_1_2; | 
|  | break; | 
|  | } | 
|  | switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | default: | 
|  | signal_levels |= DP_PRE_EMPHASIS_0; | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | signal_levels |= DP_PRE_EMPHASIS_3_5; | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | signal_levels |= DP_PRE_EMPHASIS_6; | 
|  | break; | 
|  | case DP_TRAIN_PRE_EMPH_LEVEL_3: | 
|  | signal_levels |= DP_PRE_EMPHASIS_9_5; | 
|  | break; | 
|  | } | 
|  | return signal_levels; | 
|  | } | 
|  |  | 
|  | /* Gen6's DP voltage swing and pre-emphasis control */ | 
|  | static uint32_t | 
|  | intel_gen6_edp_signal_levels(uint8_t train_set) | 
|  | { | 
|  | int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | | 
|  | DP_TRAIN_PRE_EMPHASIS_MASK); | 
|  | switch (signal_levels) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; | 
|  | default: | 
|  | DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" | 
|  | "0x%x\n", signal_levels); | 
|  | return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Gen7's DP voltage swing and pre-emphasis control */ | 
|  | static uint32_t | 
|  | intel_gen7_edp_signal_levels(uint8_t train_set) | 
|  | { | 
|  | int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | | 
|  | DP_TRAIN_PRE_EMPHASIS_MASK); | 
|  | switch (signal_levels) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return EDP_LINK_TRAIN_400MV_0DB_IVB; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return EDP_LINK_TRAIN_400MV_3_5DB_IVB; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | return EDP_LINK_TRAIN_400MV_6DB_IVB; | 
|  |  | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return EDP_LINK_TRAIN_600MV_0DB_IVB; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return EDP_LINK_TRAIN_600MV_3_5DB_IVB; | 
|  |  | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return EDP_LINK_TRAIN_800MV_0DB_IVB; | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return EDP_LINK_TRAIN_800MV_3_5DB_IVB; | 
|  |  | 
|  | default: | 
|  | DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" | 
|  | "0x%x\n", signal_levels); | 
|  | return EDP_LINK_TRAIN_500MV_0DB_IVB; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */ | 
|  | static uint32_t | 
|  | intel_hsw_signal_levels(uint8_t train_set) | 
|  | { | 
|  | int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | | 
|  | DP_TRAIN_PRE_EMPHASIS_MASK); | 
|  | switch (signal_levels) { | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return DDI_BUF_TRANS_SELECT(0); | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return DDI_BUF_TRANS_SELECT(1); | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | return DDI_BUF_TRANS_SELECT(2); | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3: | 
|  | return DDI_BUF_TRANS_SELECT(3); | 
|  |  | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return DDI_BUF_TRANS_SELECT(4); | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return DDI_BUF_TRANS_SELECT(5); | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: | 
|  | return DDI_BUF_TRANS_SELECT(6); | 
|  |  | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: | 
|  | return DDI_BUF_TRANS_SELECT(7); | 
|  | case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: | 
|  | return DDI_BUF_TRANS_SELECT(8); | 
|  | default: | 
|  | DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" | 
|  | "0x%x\n", signal_levels); | 
|  | return DDI_BUF_TRANS_SELECT(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Properly updates "DP" with the correct signal levels. */ | 
|  | static void | 
|  | intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | enum port port = intel_dig_port->port; | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | uint32_t signal_levels, mask; | 
|  | uint8_t train_set = intel_dp->train_set[0]; | 
|  |  | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | signal_levels = intel_hsw_signal_levels(train_set); | 
|  | mask = DDI_BUF_EMP_MASK; | 
|  | } else if (IS_CHERRYVIEW(dev)) { | 
|  | signal_levels = intel_chv_signal_levels(intel_dp); | 
|  | mask = 0; | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | signal_levels = intel_vlv_signal_levels(intel_dp); | 
|  | mask = 0; | 
|  | } else if (IS_GEN7(dev) && port == PORT_A) { | 
|  | signal_levels = intel_gen7_edp_signal_levels(train_set); | 
|  | mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; | 
|  | } else if (IS_GEN6(dev) && port == PORT_A) { | 
|  | signal_levels = intel_gen6_edp_signal_levels(train_set); | 
|  | mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; | 
|  | } else { | 
|  | signal_levels = intel_gen4_signal_levels(train_set); | 
|  | mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); | 
|  |  | 
|  | *DP = (*DP & ~mask) | signal_levels; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_set_link_train(struct intel_dp *intel_dp, | 
|  | uint32_t *DP, | 
|  | uint8_t dp_train_pat) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint8_t buf[sizeof(intel_dp->train_set) + 1]; | 
|  | int ret, len; | 
|  |  | 
|  | _intel_dp_set_link_train(intel_dp, DP, dp_train_pat); | 
|  |  | 
|  | I915_WRITE(intel_dp->output_reg, *DP); | 
|  | POSTING_READ(intel_dp->output_reg); | 
|  |  | 
|  | buf[0] = dp_train_pat; | 
|  | if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) == | 
|  | DP_TRAINING_PATTERN_DISABLE) { | 
|  | /* don't write DP_TRAINING_LANEx_SET on disable */ | 
|  | len = 1; | 
|  | } else { | 
|  | /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */ | 
|  | memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count); | 
|  | len = intel_dp->lane_count + 1; | 
|  | } | 
|  |  | 
|  | ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET, | 
|  | buf, len); | 
|  |  | 
|  | return ret == len; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP, | 
|  | uint8_t dp_train_pat) | 
|  | { | 
|  | memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); | 
|  | intel_dp_set_signal_levels(intel_dp, DP); | 
|  | return intel_dp_set_link_train(intel_dp, DP, dp_train_pat); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP, | 
|  | const uint8_t link_status[DP_LINK_STATUS_SIZE]) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int ret; | 
|  |  | 
|  | intel_get_adjust_train(intel_dp, link_status); | 
|  | intel_dp_set_signal_levels(intel_dp, DP); | 
|  |  | 
|  | I915_WRITE(intel_dp->output_reg, *DP); | 
|  | POSTING_READ(intel_dp->output_reg); | 
|  |  | 
|  | ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET, | 
|  | intel_dp->train_set, intel_dp->lane_count); | 
|  |  | 
|  | return ret == intel_dp->lane_count; | 
|  | } | 
|  |  | 
|  | static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum port port = intel_dig_port->port; | 
|  | uint32_t val; | 
|  |  | 
|  | if (!HAS_DDI(dev)) | 
|  | return; | 
|  |  | 
|  | val = I915_READ(DP_TP_CTL(port)); | 
|  | val &= ~DP_TP_CTL_LINK_TRAIN_MASK; | 
|  | val |= DP_TP_CTL_LINK_TRAIN_IDLE; | 
|  | I915_WRITE(DP_TP_CTL(port), val); | 
|  |  | 
|  | /* | 
|  | * On PORT_A we can have only eDP in SST mode. There the only reason | 
|  | * we need to set idle transmission mode is to work around a HW issue | 
|  | * where we enable the pipe while not in idle link-training mode. | 
|  | * In this case there is requirement to wait for a minimum number of | 
|  | * idle patterns to be sent. | 
|  | */ | 
|  | if (port == PORT_A) | 
|  | return; | 
|  |  | 
|  | if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE), | 
|  | 1)) | 
|  | DRM_ERROR("Timed out waiting for DP idle patterns\n"); | 
|  | } | 
|  |  | 
|  | /* Enable corresponding port and start training pattern 1 */ | 
|  | void | 
|  | intel_dp_start_link_train(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base; | 
|  | struct drm_device *dev = encoder->dev; | 
|  | int i; | 
|  | uint8_t voltage; | 
|  | int voltage_tries, loop_tries; | 
|  | uint32_t DP = intel_dp->DP; | 
|  | uint8_t link_config[2]; | 
|  |  | 
|  | if (HAS_DDI(dev)) | 
|  | intel_ddi_prepare_link_retrain(encoder); | 
|  |  | 
|  | /* Write the link configuration data */ | 
|  | link_config[0] = intel_dp->link_bw; | 
|  | link_config[1] = intel_dp->lane_count; | 
|  | if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) | 
|  | link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; | 
|  | drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2); | 
|  |  | 
|  | link_config[0] = 0; | 
|  | link_config[1] = DP_SET_ANSI_8B10B; | 
|  | drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2); | 
|  |  | 
|  | DP |= DP_PORT_EN; | 
|  |  | 
|  | /* clock recovery */ | 
|  | if (!intel_dp_reset_link_train(intel_dp, &DP, | 
|  | DP_TRAINING_PATTERN_1 | | 
|  | DP_LINK_SCRAMBLING_DISABLE)) { | 
|  | DRM_ERROR("failed to enable link training\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | voltage = 0xff; | 
|  | voltage_tries = 0; | 
|  | loop_tries = 0; | 
|  | for (;;) { | 
|  | uint8_t link_status[DP_LINK_STATUS_SIZE]; | 
|  |  | 
|  | drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd); | 
|  | if (!intel_dp_get_link_status(intel_dp, link_status)) { | 
|  | DRM_ERROR("failed to get link status\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { | 
|  | DRM_DEBUG_KMS("clock recovery OK\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Check to see if we've tried the max voltage */ | 
|  | for (i = 0; i < intel_dp->lane_count; i++) | 
|  | if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) | 
|  | break; | 
|  | if (i == intel_dp->lane_count) { | 
|  | ++loop_tries; | 
|  | if (loop_tries == 5) { | 
|  | DRM_ERROR("too many full retries, give up\n"); | 
|  | break; | 
|  | } | 
|  | intel_dp_reset_link_train(intel_dp, &DP, | 
|  | DP_TRAINING_PATTERN_1 | | 
|  | DP_LINK_SCRAMBLING_DISABLE); | 
|  | voltage_tries = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Check to see if we've tried the same voltage 5 times */ | 
|  | if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { | 
|  | ++voltage_tries; | 
|  | if (voltage_tries == 5) { | 
|  | DRM_ERROR("too many voltage retries, give up\n"); | 
|  | break; | 
|  | } | 
|  | } else | 
|  | voltage_tries = 0; | 
|  | voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; | 
|  |  | 
|  | /* Update training set as requested by target */ | 
|  | if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { | 
|  | DRM_ERROR("failed to update link training\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | intel_dp->DP = DP; | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_dp_complete_link_train(struct intel_dp *intel_dp) | 
|  | { | 
|  | bool channel_eq = false; | 
|  | int tries, cr_tries; | 
|  | uint32_t DP = intel_dp->DP; | 
|  | uint32_t training_pattern = DP_TRAINING_PATTERN_2; | 
|  |  | 
|  | /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/ | 
|  | if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3) | 
|  | training_pattern = DP_TRAINING_PATTERN_3; | 
|  |  | 
|  | /* channel equalization */ | 
|  | if (!intel_dp_set_link_train(intel_dp, &DP, | 
|  | training_pattern | | 
|  | DP_LINK_SCRAMBLING_DISABLE)) { | 
|  | DRM_ERROR("failed to start channel equalization\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tries = 0; | 
|  | cr_tries = 0; | 
|  | channel_eq = false; | 
|  | for (;;) { | 
|  | uint8_t link_status[DP_LINK_STATUS_SIZE]; | 
|  |  | 
|  | if (cr_tries > 5) { | 
|  | DRM_ERROR("failed to train DP, aborting\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | drm_dp_link_train_channel_eq_delay(intel_dp->dpcd); | 
|  | if (!intel_dp_get_link_status(intel_dp, link_status)) { | 
|  | DRM_ERROR("failed to get link status\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Make sure clock is still ok */ | 
|  | if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { | 
|  | intel_dp_start_link_train(intel_dp); | 
|  | intel_dp_set_link_train(intel_dp, &DP, | 
|  | training_pattern | | 
|  | DP_LINK_SCRAMBLING_DISABLE); | 
|  | cr_tries++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { | 
|  | channel_eq = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Try 5 times, then try clock recovery if that fails */ | 
|  | if (tries > 5) { | 
|  | intel_dp_link_down(intel_dp); | 
|  | intel_dp_start_link_train(intel_dp); | 
|  | intel_dp_set_link_train(intel_dp, &DP, | 
|  | training_pattern | | 
|  | DP_LINK_SCRAMBLING_DISABLE); | 
|  | tries = 0; | 
|  | cr_tries++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Update training set as requested by target */ | 
|  | if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { | 
|  | DRM_ERROR("failed to update link training\n"); | 
|  | break; | 
|  | } | 
|  | ++tries; | 
|  | } | 
|  |  | 
|  | intel_dp_set_idle_link_train(intel_dp); | 
|  |  | 
|  | intel_dp->DP = DP; | 
|  |  | 
|  | if (channel_eq) | 
|  | DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n"); | 
|  |  | 
|  | } | 
|  |  | 
|  | void intel_dp_stop_link_train(struct intel_dp *intel_dp) | 
|  | { | 
|  | intel_dp_set_link_train(intel_dp, &intel_dp->DP, | 
|  | DP_TRAINING_PATTERN_DISABLE); | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_link_down(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | enum port port = intel_dig_port->port; | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(intel_dig_port->base.base.crtc); | 
|  | uint32_t DP = intel_dp->DP; | 
|  |  | 
|  | if (WARN_ON(HAS_DDI(dev))) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) | 
|  | return; | 
|  |  | 
|  | DRM_DEBUG_KMS("\n"); | 
|  |  | 
|  | if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) { | 
|  | DP &= ~DP_LINK_TRAIN_MASK_CPT; | 
|  | I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT); | 
|  | } else { | 
|  | if (IS_CHERRYVIEW(dev)) | 
|  | DP &= ~DP_LINK_TRAIN_MASK_CHV; | 
|  | else | 
|  | DP &= ~DP_LINK_TRAIN_MASK; | 
|  | I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); | 
|  | } | 
|  | POSTING_READ(intel_dp->output_reg); | 
|  |  | 
|  | if (HAS_PCH_IBX(dev) && | 
|  | I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) { | 
|  | struct drm_crtc *crtc = intel_dig_port->base.base.crtc; | 
|  |  | 
|  | /* Hardware workaround: leaving our transcoder select | 
|  | * set to transcoder B while it's off will prevent the | 
|  | * corresponding HDMI output on transcoder A. | 
|  | * | 
|  | * Combine this with another hardware workaround: | 
|  | * transcoder select bit can only be cleared while the | 
|  | * port is enabled. | 
|  | */ | 
|  | DP &= ~DP_PIPEB_SELECT; | 
|  | I915_WRITE(intel_dp->output_reg, DP); | 
|  |  | 
|  | /* Changes to enable or select take place the vblank | 
|  | * after being written. | 
|  | */ | 
|  | if (WARN_ON(crtc == NULL)) { | 
|  | /* We should never try to disable a port without a crtc | 
|  | * attached. For paranoia keep the code around for a | 
|  | * bit. */ | 
|  | POSTING_READ(intel_dp->output_reg); | 
|  | msleep(50); | 
|  | } else | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | } | 
|  |  | 
|  | DP &= ~DP_AUDIO_OUTPUT_ENABLE; | 
|  | I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); | 
|  | POSTING_READ(intel_dp->output_reg); | 
|  | msleep(intel_dp->panel_power_down_delay); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_get_dpcd(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  |  | 
|  | if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd, | 
|  | sizeof(intel_dp->dpcd)) < 0) | 
|  | return false; /* aux transfer failed */ | 
|  |  | 
|  | DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); | 
|  |  | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] == 0) | 
|  | return false; /* DPCD not present */ | 
|  |  | 
|  | /* Check if the panel supports PSR */ | 
|  | memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd)); | 
|  | if (is_edp(intel_dp)) { | 
|  | intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT, | 
|  | intel_dp->psr_dpcd, | 
|  | sizeof(intel_dp->psr_dpcd)); | 
|  | if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) { | 
|  | dev_priv->psr.sink_support = true; | 
|  | DRM_DEBUG_KMS("Detected EDP PSR Panel.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Training Pattern 3 support */ | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 && | 
|  | intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) { | 
|  | intel_dp->use_tps3 = true; | 
|  | DRM_DEBUG_KMS("Displayport TPS3 supported\n"); | 
|  | } else | 
|  | intel_dp->use_tps3 = false; | 
|  |  | 
|  | if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & | 
|  | DP_DWN_STRM_PORT_PRESENT)) | 
|  | return true; /* native DP sink */ | 
|  |  | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) | 
|  | return true; /* no per-port downstream info */ | 
|  |  | 
|  | if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, | 
|  | intel_dp->downstream_ports, | 
|  | DP_MAX_DOWNSTREAM_PORTS) < 0) | 
|  | return false; /* downstream port status fetch failed */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_probe_oui(struct intel_dp *intel_dp) | 
|  | { | 
|  | u8 buf[3]; | 
|  |  | 
|  | if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) | 
|  | return; | 
|  |  | 
|  | intel_edp_panel_vdd_on(intel_dp); | 
|  |  | 
|  | if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3) | 
|  | DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", | 
|  | buf[0], buf[1], buf[2]); | 
|  |  | 
|  | if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3) | 
|  | DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", | 
|  | buf[0], buf[1], buf[2]); | 
|  |  | 
|  | intel_edp_panel_vdd_off(intel_dp, false); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_probe_mst(struct intel_dp *intel_dp) | 
|  | { | 
|  | u8 buf[1]; | 
|  |  | 
|  | if (!intel_dp->can_mst) | 
|  | return false; | 
|  |  | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) | 
|  | return false; | 
|  |  | 
|  | intel_edp_panel_vdd_on(intel_dp); | 
|  | if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) { | 
|  | if (buf[0] & DP_MST_CAP) { | 
|  | DRM_DEBUG_KMS("Sink is MST capable\n"); | 
|  | intel_dp->is_mst = true; | 
|  | } else { | 
|  | DRM_DEBUG_KMS("Sink is not MST capable\n"); | 
|  | intel_dp->is_mst = false; | 
|  | } | 
|  | } | 
|  | intel_edp_panel_vdd_off(intel_dp, false); | 
|  |  | 
|  | drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); | 
|  | return intel_dp->is_mst; | 
|  | } | 
|  |  | 
|  | int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct intel_crtc *intel_crtc = | 
|  | to_intel_crtc(intel_dig_port->base.base.crtc); | 
|  | u8 buf[1]; | 
|  |  | 
|  | if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | if (!(buf[0] & DP_TEST_CRC_SUPPORTED)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, | 
|  | DP_TEST_SINK_START) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | /* Wait 2 vblanks to be sure we will have the correct CRC value */ | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  | intel_wait_for_vblank(dev, intel_crtc->pipe); | 
|  |  | 
|  | if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) | 
|  | { | 
|  | return intel_dp_dpcd_read_wake(&intel_dp->aux, | 
|  | DP_DEVICE_SERVICE_IRQ_VECTOR, | 
|  | sink_irq_vector, 1) == 1; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = intel_dp_dpcd_read_wake(&intel_dp->aux, | 
|  | DP_SINK_COUNT_ESI, | 
|  | sink_irq_vector, 14); | 
|  | if (ret != 14) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_handle_test_request(struct intel_dp *intel_dp) | 
|  | { | 
|  | /* NAK by default */ | 
|  | drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK); | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_dp_check_mst_status(struct intel_dp *intel_dp) | 
|  | { | 
|  | bool bret; | 
|  |  | 
|  | if (intel_dp->is_mst) { | 
|  | u8 esi[16] = { 0 }; | 
|  | int ret = 0; | 
|  | int retry; | 
|  | bool handled; | 
|  | bret = intel_dp_get_sink_irq_esi(intel_dp, esi); | 
|  | go_again: | 
|  | if (bret == true) { | 
|  |  | 
|  | /* check link status - esi[10] = 0x200c */ | 
|  | if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { | 
|  | DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); | 
|  | intel_dp_start_link_train(intel_dp); | 
|  | intel_dp_complete_link_train(intel_dp); | 
|  | intel_dp_stop_link_train(intel_dp); | 
|  | } | 
|  |  | 
|  | DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]); | 
|  | ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); | 
|  |  | 
|  | if (handled) { | 
|  | for (retry = 0; retry < 3; retry++) { | 
|  | int wret; | 
|  | wret = drm_dp_dpcd_write(&intel_dp->aux, | 
|  | DP_SINK_COUNT_ESI+1, | 
|  | &esi[1], 3); | 
|  | if (wret == 3) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bret = intel_dp_get_sink_irq_esi(intel_dp, esi); | 
|  | if (bret == true) { | 
|  | DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]); | 
|  | goto go_again; | 
|  | } | 
|  | } else | 
|  | ret = 0; | 
|  |  | 
|  | return ret; | 
|  | } else { | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); | 
|  | intel_dp->is_mst = false; | 
|  | drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); | 
|  | /* send a hotplug event */ | 
|  | drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev); | 
|  | } | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * According to DP spec | 
|  | * 5.1.2: | 
|  | *  1. Read DPCD | 
|  | *  2. Configure link according to Receiver Capabilities | 
|  | *  3. Use Link Training from 2.5.3.3 and 3.5.1.3 | 
|  | *  4. Check link status on receipt of hot-plug interrupt | 
|  | */ | 
|  | void | 
|  | intel_dp_check_link_status(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; | 
|  | u8 sink_irq_vector; | 
|  | u8 link_status[DP_LINK_STATUS_SIZE]; | 
|  |  | 
|  | WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); | 
|  |  | 
|  | if (!intel_encoder->connectors_active) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON(!intel_encoder->base.crtc)) | 
|  | return; | 
|  |  | 
|  | if (!to_intel_crtc(intel_encoder->base.crtc)->active) | 
|  | return; | 
|  |  | 
|  | /* Try to read receiver status if the link appears to be up */ | 
|  | if (!intel_dp_get_link_status(intel_dp, link_status)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Now read the DPCD to see if it's actually running */ | 
|  | if (!intel_dp_get_dpcd(intel_dp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Try to read the source of the interrupt */ | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && | 
|  | intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { | 
|  | /* Clear interrupt source */ | 
|  | drm_dp_dpcd_writeb(&intel_dp->aux, | 
|  | DP_DEVICE_SERVICE_IRQ_VECTOR, | 
|  | sink_irq_vector); | 
|  |  | 
|  | if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) | 
|  | intel_dp_handle_test_request(intel_dp); | 
|  | if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) | 
|  | DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); | 
|  | } | 
|  |  | 
|  | if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { | 
|  | DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", | 
|  | intel_encoder->base.name); | 
|  | intel_dp_start_link_train(intel_dp); | 
|  | intel_dp_complete_link_train(intel_dp); | 
|  | intel_dp_stop_link_train(intel_dp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX this is probably wrong for multiple downstream ports */ | 
|  | static enum drm_connector_status | 
|  | intel_dp_detect_dpcd(struct intel_dp *intel_dp) | 
|  | { | 
|  | uint8_t *dpcd = intel_dp->dpcd; | 
|  | uint8_t type; | 
|  |  | 
|  | if (!intel_dp_get_dpcd(intel_dp)) | 
|  | return connector_status_disconnected; | 
|  |  | 
|  | /* if there's no downstream port, we're done */ | 
|  | if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) | 
|  | return connector_status_connected; | 
|  |  | 
|  | /* If we're HPD-aware, SINK_COUNT changes dynamically */ | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && | 
|  | intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { | 
|  | uint8_t reg; | 
|  |  | 
|  | if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT, | 
|  | ®, 1) < 0) | 
|  | return connector_status_unknown; | 
|  |  | 
|  | return DP_GET_SINK_COUNT(reg) ? connector_status_connected | 
|  | : connector_status_disconnected; | 
|  | } | 
|  |  | 
|  | /* If no HPD, poke DDC gently */ | 
|  | if (drm_probe_ddc(&intel_dp->aux.ddc)) | 
|  | return connector_status_connected; | 
|  |  | 
|  | /* Well we tried, say unknown for unreliable port types */ | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { | 
|  | type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; | 
|  | if (type == DP_DS_PORT_TYPE_VGA || | 
|  | type == DP_DS_PORT_TYPE_NON_EDID) | 
|  | return connector_status_unknown; | 
|  | } else { | 
|  | type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & | 
|  | DP_DWN_STRM_PORT_TYPE_MASK; | 
|  | if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || | 
|  | type == DP_DWN_STRM_PORT_TYPE_OTHER) | 
|  | return connector_status_unknown; | 
|  | } | 
|  |  | 
|  | /* Anything else is out of spec, warn and ignore */ | 
|  | DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); | 
|  | return connector_status_disconnected; | 
|  | } | 
|  |  | 
|  | static enum drm_connector_status | 
|  | edp_detect(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | enum drm_connector_status status; | 
|  |  | 
|  | status = intel_panel_detect(dev); | 
|  | if (status == connector_status_unknown) | 
|  | status = connector_status_connected; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static enum drm_connector_status | 
|  | ironlake_dp_detect(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  |  | 
|  | if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) | 
|  | return connector_status_disconnected; | 
|  |  | 
|  | return intel_dp_detect_dpcd(intel_dp); | 
|  | } | 
|  |  | 
|  | static int g4x_digital_port_connected(struct drm_device *dev, | 
|  | struct intel_digital_port *intel_dig_port) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | uint32_t bit; | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | switch (intel_dig_port->port) { | 
|  | case PORT_B: | 
|  | bit = PORTB_HOTPLUG_LIVE_STATUS_VLV; | 
|  | break; | 
|  | case PORT_C: | 
|  | bit = PORTC_HOTPLUG_LIVE_STATUS_VLV; | 
|  | break; | 
|  | case PORT_D: | 
|  | bit = PORTD_HOTPLUG_LIVE_STATUS_VLV; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | switch (intel_dig_port->port) { | 
|  | case PORT_B: | 
|  | bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; | 
|  | break; | 
|  | case PORT_C: | 
|  | bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; | 
|  | break; | 
|  | case PORT_D: | 
|  | bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static enum drm_connector_status | 
|  | g4x_dp_detect(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct drm_device *dev = intel_dp_to_dev(intel_dp); | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | int ret; | 
|  |  | 
|  | /* Can't disconnect eDP, but you can close the lid... */ | 
|  | if (is_edp(intel_dp)) { | 
|  | enum drm_connector_status status; | 
|  |  | 
|  | status = intel_panel_detect(dev); | 
|  | if (status == connector_status_unknown) | 
|  | status = connector_status_connected; | 
|  | return status; | 
|  | } | 
|  |  | 
|  | ret = g4x_digital_port_connected(dev, intel_dig_port); | 
|  | if (ret == -EINVAL) | 
|  | return connector_status_unknown; | 
|  | else if (ret == 0) | 
|  | return connector_status_disconnected; | 
|  |  | 
|  | return intel_dp_detect_dpcd(intel_dp); | 
|  | } | 
|  |  | 
|  | static struct edid * | 
|  | intel_dp_get_edid(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_connector *intel_connector = intel_dp->attached_connector; | 
|  |  | 
|  | /* use cached edid if we have one */ | 
|  | if (intel_connector->edid) { | 
|  | /* invalid edid */ | 
|  | if (IS_ERR(intel_connector->edid)) | 
|  | return NULL; | 
|  |  | 
|  | return drm_edid_duplicate(intel_connector->edid); | 
|  | } else | 
|  | return drm_get_edid(&intel_connector->base, | 
|  | &intel_dp->aux.ddc); | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_set_edid(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_connector *intel_connector = intel_dp->attached_connector; | 
|  | struct edid *edid; | 
|  |  | 
|  | edid = intel_dp_get_edid(intel_dp); | 
|  | intel_connector->detect_edid = edid; | 
|  |  | 
|  | if (intel_dp->force_audio != HDMI_AUDIO_AUTO) | 
|  | intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON; | 
|  | else | 
|  | intel_dp->has_audio = drm_detect_monitor_audio(edid); | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_unset_edid(struct intel_dp *intel_dp) | 
|  | { | 
|  | struct intel_connector *intel_connector = intel_dp->attached_connector; | 
|  |  | 
|  | kfree(intel_connector->detect_edid); | 
|  | intel_connector->detect_edid = NULL; | 
|  |  | 
|  | intel_dp->has_audio = false; | 
|  | } | 
|  |  | 
|  | static enum intel_display_power_domain | 
|  | intel_dp_power_get(struct intel_dp *dp) | 
|  | { | 
|  | struct intel_encoder *encoder = &dp_to_dig_port(dp)->base; | 
|  | enum intel_display_power_domain power_domain; | 
|  |  | 
|  | power_domain = intel_display_port_power_domain(encoder); | 
|  | intel_display_power_get(to_i915(encoder->base.dev), power_domain); | 
|  |  | 
|  | return power_domain; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_power_put(struct intel_dp *dp, | 
|  | enum intel_display_power_domain power_domain) | 
|  | { | 
|  | struct intel_encoder *encoder = &dp_to_dig_port(dp)->base; | 
|  | intel_display_power_put(to_i915(encoder->base.dev), power_domain); | 
|  | } | 
|  |  | 
|  | static enum drm_connector_status | 
|  | intel_dp_detect(struct drm_connector *connector, bool force) | 
|  | { | 
|  | struct intel_dp *intel_dp = intel_attached_dp(connector); | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = connector->dev; | 
|  | enum drm_connector_status status; | 
|  | enum intel_display_power_domain power_domain; | 
|  | bool ret; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", | 
|  | connector->base.id, connector->name); | 
|  | intel_dp_unset_edid(intel_dp); | 
|  |  | 
|  | if (intel_dp->is_mst) { | 
|  | /* MST devices are disconnected from a monitor POV */ | 
|  | if (intel_encoder->type != INTEL_OUTPUT_EDP) | 
|  | intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; | 
|  | return connector_status_disconnected; | 
|  | } | 
|  |  | 
|  | power_domain = intel_dp_power_get(intel_dp); | 
|  |  | 
|  | /* Can't disconnect eDP, but you can close the lid... */ | 
|  | if (is_edp(intel_dp)) | 
|  | status = edp_detect(intel_dp); | 
|  | else if (HAS_PCH_SPLIT(dev)) | 
|  | status = ironlake_dp_detect(intel_dp); | 
|  | else | 
|  | status = g4x_dp_detect(intel_dp); | 
|  | if (status != connector_status_connected) | 
|  | goto out; | 
|  |  | 
|  | intel_dp_probe_oui(intel_dp); | 
|  |  | 
|  | ret = intel_dp_probe_mst(intel_dp); | 
|  | if (ret) { | 
|  | /* if we are in MST mode then this connector | 
|  | won't appear connected or have anything with EDID on it */ | 
|  | if (intel_encoder->type != INTEL_OUTPUT_EDP) | 
|  | intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; | 
|  | status = connector_status_disconnected; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | intel_dp_set_edid(intel_dp); | 
|  |  | 
|  | if (intel_encoder->type != INTEL_OUTPUT_EDP) | 
|  | intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; | 
|  | status = connector_status_connected; | 
|  |  | 
|  | out: | 
|  | intel_dp_power_put(intel_dp, power_domain); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_force(struct drm_connector *connector) | 
|  | { | 
|  | struct intel_dp *intel_dp = intel_attached_dp(connector); | 
|  | struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; | 
|  | enum intel_display_power_domain power_domain; | 
|  |  | 
|  | DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", | 
|  | connector->base.id, connector->name); | 
|  | intel_dp_unset_edid(intel_dp); | 
|  |  | 
|  | if (connector->status != connector_status_connected) | 
|  | return; | 
|  |  | 
|  | power_domain = intel_dp_power_get(intel_dp); | 
|  |  | 
|  | intel_dp_set_edid(intel_dp); | 
|  |  | 
|  | intel_dp_power_put(intel_dp, power_domain); | 
|  |  | 
|  | if (intel_encoder->type != INTEL_OUTPUT_EDP) | 
|  | intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; | 
|  | } | 
|  |  | 
|  | static int intel_dp_get_modes(struct drm_connector *connector) | 
|  | { | 
|  | struct intel_connector *intel_connector = to_intel_connector(connector); | 
|  | struct edid *edid; | 
|  |  | 
|  | edid = intel_connector->detect_edid; | 
|  | if (edid) { | 
|  | int ret = intel_connector_update_modes(connector, edid); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* if eDP has no EDID, fall back to fixed mode */ | 
|  | if (is_edp(intel_attached_dp(connector)) && | 
|  | intel_connector->panel.fixed_mode) { | 
|  | struct drm_display_mode *mode; | 
|  |  | 
|  | mode = drm_mode_duplicate(connector->dev, | 
|  | intel_connector->panel.fixed_mode); | 
|  | if (mode) { | 
|  | drm_mode_probed_add(connector, mode); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | intel_dp_detect_audio(struct drm_connector *connector) | 
|  | { | 
|  | bool has_audio = false; | 
|  | struct edid *edid; | 
|  |  | 
|  | edid = to_intel_connector(connector)->detect_edid; | 
|  | if (edid) | 
|  | has_audio = drm_detect_monitor_audio(edid); | 
|  |  | 
|  | return has_audio; | 
|  | } | 
|  |  | 
|  | static int | 
|  | intel_dp_set_property(struct drm_connector *connector, | 
|  | struct drm_property *property, | 
|  | uint64_t val) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = connector->dev->dev_private; | 
|  | struct intel_connector *intel_connector = to_intel_connector(connector); | 
|  | struct intel_encoder *intel_encoder = intel_attached_encoder(connector); | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); | 
|  | int ret; | 
|  |  | 
|  | ret = drm_object_property_set_value(&connector->base, property, val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (property == dev_priv->force_audio_property) { | 
|  | int i = val; | 
|  | bool has_audio; | 
|  |  | 
|  | if (i == intel_dp->force_audio) | 
|  | return 0; | 
|  |  | 
|  | intel_dp->force_audio = i; | 
|  |  | 
|  | if (i == HDMI_AUDIO_AUTO) | 
|  | has_audio = intel_dp_detect_audio(connector); | 
|  | else | 
|  | has_audio = (i == HDMI_AUDIO_ON); | 
|  |  | 
|  | if (has_audio == intel_dp->has_audio) | 
|  | return 0; | 
|  |  | 
|  | intel_dp->has_audio = has_audio; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (property == dev_priv->broadcast_rgb_property) { | 
|  | bool old_auto = intel_dp->color_range_auto; | 
|  | uint32_t old_range = intel_dp->color_range; | 
|  |  | 
|  | switch (val) { | 
|  | case INTEL_BROADCAST_RGB_AUTO: | 
|  | intel_dp->color_range_auto = true; | 
|  | break; | 
|  | case INTEL_BROADCAST_RGB_FULL: | 
|  | intel_dp->color_range_auto = false; | 
|  | intel_dp->color_range = 0; | 
|  | break; | 
|  | case INTEL_BROADCAST_RGB_LIMITED: | 
|  | intel_dp->color_range_auto = false; | 
|  | intel_dp->color_range = DP_COLOR_RANGE_16_235; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (old_auto == intel_dp->color_range_auto && | 
|  | old_range == intel_dp->color_range) | 
|  | return 0; | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (is_edp(intel_dp) && | 
|  | property == connector->dev->mode_config.scaling_mode_property) { | 
|  | if (val == DRM_MODE_SCALE_NONE) { | 
|  | DRM_DEBUG_KMS("no scaling not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (intel_connector->panel.fitting_mode == val) { | 
|  | /* the eDP scaling property is not changed */ | 
|  | return 0; | 
|  | } | 
|  | intel_connector->panel.fitting_mode = val; | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  |  | 
|  | done: | 
|  | if (intel_encoder->base.crtc) | 
|  | intel_crtc_restore_mode(intel_encoder->base.crtc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_connector_destroy(struct drm_connector *connector) | 
|  | { | 
|  | struct intel_connector *intel_connector = to_intel_connector(connector); | 
|  |  | 
|  | kfree(intel_connector->detect_edid); | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(intel_connector->edid)) | 
|  | kfree(intel_connector->edid); | 
|  |  | 
|  | /* Can't call is_edp() since the encoder may have been destroyed | 
|  | * already. */ | 
|  | if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) | 
|  | intel_panel_fini(&intel_connector->panel); | 
|  |  | 
|  | drm_connector_cleanup(connector); | 
|  | kfree(connector); | 
|  | } | 
|  |  | 
|  | void intel_dp_encoder_destroy(struct drm_encoder *encoder) | 
|  | { | 
|  | struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); | 
|  | struct intel_dp *intel_dp = &intel_dig_port->dp; | 
|  |  | 
|  | drm_dp_aux_unregister(&intel_dp->aux); | 
|  | intel_dp_mst_encoder_cleanup(intel_dig_port); | 
|  | drm_encoder_cleanup(encoder); | 
|  | if (is_edp(intel_dp)) { | 
|  | cancel_delayed_work_sync(&intel_dp->panel_vdd_work); | 
|  | /* | 
|  | * vdd might still be enabled do to the delayed vdd off. | 
|  | * Make sure vdd is actually turned off here. | 
|  | */ | 
|  | pps_lock(intel_dp); | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | if (intel_dp->edp_notifier.notifier_call) { | 
|  | unregister_reboot_notifier(&intel_dp->edp_notifier); | 
|  | intel_dp->edp_notifier.notifier_call = NULL; | 
|  | } | 
|  | } | 
|  | kfree(intel_dig_port); | 
|  | } | 
|  |  | 
|  | static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) | 
|  | { | 
|  | struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * vdd might still be enabled do to the delayed vdd off. | 
|  | * Make sure vdd is actually turned off here. | 
|  | */ | 
|  | pps_lock(intel_dp); | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | static void intel_dp_encoder_reset(struct drm_encoder *encoder) | 
|  | { | 
|  | intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder)); | 
|  | } | 
|  |  | 
|  | static const struct drm_connector_funcs intel_dp_connector_funcs = { | 
|  | .dpms = intel_connector_dpms, | 
|  | .detect = intel_dp_detect, | 
|  | .force = intel_dp_force, | 
|  | .fill_modes = drm_helper_probe_single_connector_modes, | 
|  | .set_property = intel_dp_set_property, | 
|  | .destroy = intel_dp_connector_destroy, | 
|  | }; | 
|  |  | 
|  | static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { | 
|  | .get_modes = intel_dp_get_modes, | 
|  | .mode_valid = intel_dp_mode_valid, | 
|  | .best_encoder = intel_best_encoder, | 
|  | }; | 
|  |  | 
|  | static const struct drm_encoder_funcs intel_dp_enc_funcs = { | 
|  | .reset = intel_dp_encoder_reset, | 
|  | .destroy = intel_dp_encoder_destroy, | 
|  | }; | 
|  |  | 
|  | void | 
|  | intel_dp_hot_plug(struct intel_encoder *intel_encoder) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool | 
|  | intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) | 
|  | { | 
|  | struct intel_dp *intel_dp = &intel_dig_port->dp; | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum intel_display_power_domain power_domain; | 
|  | bool ret = true; | 
|  |  | 
|  | if (intel_dig_port->base.type != INTEL_OUTPUT_EDP) | 
|  | intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT; | 
|  |  | 
|  | DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", | 
|  | port_name(intel_dig_port->port), | 
|  | long_hpd ? "long" : "short"); | 
|  |  | 
|  | power_domain = intel_display_port_power_domain(intel_encoder); | 
|  | intel_display_power_get(dev_priv, power_domain); | 
|  |  | 
|  | if (long_hpd) { | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) { | 
|  | if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) | 
|  | goto mst_fail; | 
|  | } else { | 
|  | if (g4x_digital_port_connected(dev, intel_dig_port) != 1) | 
|  | goto mst_fail; | 
|  | } | 
|  |  | 
|  | if (!intel_dp_get_dpcd(intel_dp)) { | 
|  | goto mst_fail; | 
|  | } | 
|  |  | 
|  | intel_dp_probe_oui(intel_dp); | 
|  |  | 
|  | if (!intel_dp_probe_mst(intel_dp)) | 
|  | goto mst_fail; | 
|  |  | 
|  | } else { | 
|  | if (intel_dp->is_mst) { | 
|  | if (intel_dp_check_mst_status(intel_dp) == -EINVAL) | 
|  | goto mst_fail; | 
|  | } | 
|  |  | 
|  | if (!intel_dp->is_mst) { | 
|  | /* | 
|  | * we'll check the link status via the normal hot plug path later - | 
|  | * but for short hpds we should check it now | 
|  | */ | 
|  | drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); | 
|  | intel_dp_check_link_status(intel_dp); | 
|  | drm_modeset_unlock(&dev->mode_config.connection_mutex); | 
|  | } | 
|  | } | 
|  | ret = false; | 
|  | goto put_power; | 
|  | mst_fail: | 
|  | /* if we were in MST mode, and device is not there get out of MST mode */ | 
|  | if (intel_dp->is_mst) { | 
|  | DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); | 
|  | intel_dp->is_mst = false; | 
|  | drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); | 
|  | } | 
|  | put_power: | 
|  | intel_display_power_put(dev_priv, power_domain); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Return which DP Port should be selected for Transcoder DP control */ | 
|  | int | 
|  | intel_trans_dp_port_sel(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_device *dev = crtc->dev; | 
|  | struct intel_encoder *intel_encoder; | 
|  | struct intel_dp *intel_dp; | 
|  |  | 
|  | for_each_encoder_on_crtc(dev, crtc, intel_encoder) { | 
|  | intel_dp = enc_to_intel_dp(&intel_encoder->base); | 
|  |  | 
|  | if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || | 
|  | intel_encoder->type == INTEL_OUTPUT_EDP) | 
|  | return intel_dp->output_reg; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* check the VBT to see whether the eDP is on DP-D port */ | 
|  | bool intel_dp_is_edp(struct drm_device *dev, enum port port) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | union child_device_config *p_child; | 
|  | int i; | 
|  | static const short port_mapping[] = { | 
|  | [PORT_B] = PORT_IDPB, | 
|  | [PORT_C] = PORT_IDPC, | 
|  | [PORT_D] = PORT_IDPD, | 
|  | }; | 
|  |  | 
|  | if (port == PORT_A) | 
|  | return true; | 
|  |  | 
|  | if (!dev_priv->vbt.child_dev_num) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { | 
|  | p_child = dev_priv->vbt.child_dev + i; | 
|  |  | 
|  | if (p_child->common.dvo_port == port_mapping[port] && | 
|  | (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) == | 
|  | (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) | 
|  | { | 
|  | struct intel_connector *intel_connector = to_intel_connector(connector); | 
|  |  | 
|  | intel_attach_force_audio_property(connector); | 
|  | intel_attach_broadcast_rgb_property(connector); | 
|  | intel_dp->color_range_auto = true; | 
|  |  | 
|  | if (is_edp(intel_dp)) { | 
|  | drm_mode_create_scaling_mode_property(connector->dev); | 
|  | drm_object_attach_property( | 
|  | &connector->base, | 
|  | connector->dev->mode_config.scaling_mode_property, | 
|  | DRM_MODE_SCALE_ASPECT); | 
|  | intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) | 
|  | { | 
|  | intel_dp->last_power_cycle = jiffies; | 
|  | intel_dp->last_power_on = jiffies; | 
|  | intel_dp->last_backlight_off = jiffies; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_init_panel_power_sequencer(struct drm_device *dev, | 
|  | struct intel_dp *intel_dp, | 
|  | struct edp_power_seq *out) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct edp_power_seq cur, vbt, spec, final; | 
|  | u32 pp_on, pp_off, pp_div, pp; | 
|  | int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) { | 
|  | pp_ctrl_reg = PCH_PP_CONTROL; | 
|  | pp_on_reg = PCH_PP_ON_DELAYS; | 
|  | pp_off_reg = PCH_PP_OFF_DELAYS; | 
|  | pp_div_reg = PCH_PP_DIVISOR; | 
|  | } else { | 
|  | enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); | 
|  |  | 
|  | pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); | 
|  | pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); | 
|  | pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); | 
|  | pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); | 
|  | } | 
|  |  | 
|  | /* Workaround: Need to write PP_CONTROL with the unlock key as | 
|  | * the very first thing. */ | 
|  | pp = ironlake_get_pp_control(intel_dp); | 
|  | I915_WRITE(pp_ctrl_reg, pp); | 
|  |  | 
|  | pp_on = I915_READ(pp_on_reg); | 
|  | pp_off = I915_READ(pp_off_reg); | 
|  | pp_div = I915_READ(pp_div_reg); | 
|  |  | 
|  | /* Pull timing values out of registers */ | 
|  | cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> | 
|  | PANEL_POWER_UP_DELAY_SHIFT; | 
|  |  | 
|  | cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> | 
|  | PANEL_LIGHT_ON_DELAY_SHIFT; | 
|  |  | 
|  | cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> | 
|  | PANEL_LIGHT_OFF_DELAY_SHIFT; | 
|  |  | 
|  | cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> | 
|  | PANEL_POWER_DOWN_DELAY_SHIFT; | 
|  |  | 
|  | cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> | 
|  | PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; | 
|  |  | 
|  | DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", | 
|  | cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); | 
|  |  | 
|  | vbt = dev_priv->vbt.edp_pps; | 
|  |  | 
|  | /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of | 
|  | * our hw here, which are all in 100usec. */ | 
|  | spec.t1_t3 = 210 * 10; | 
|  | spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ | 
|  | spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ | 
|  | spec.t10 = 500 * 10; | 
|  | /* This one is special and actually in units of 100ms, but zero | 
|  | * based in the hw (so we need to add 100 ms). But the sw vbt | 
|  | * table multiplies it with 1000 to make it in units of 100usec, | 
|  | * too. */ | 
|  | spec.t11_t12 = (510 + 100) * 10; | 
|  |  | 
|  | DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", | 
|  | vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12); | 
|  |  | 
|  | /* Use the max of the register settings and vbt. If both are | 
|  | * unset, fall back to the spec limits. */ | 
|  | #define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \ | 
|  | spec.field : \ | 
|  | max(cur.field, vbt.field)) | 
|  | assign_final(t1_t3); | 
|  | assign_final(t8); | 
|  | assign_final(t9); | 
|  | assign_final(t10); | 
|  | assign_final(t11_t12); | 
|  | #undef assign_final | 
|  |  | 
|  | #define get_delay(field)	(DIV_ROUND_UP(final.field, 10)) | 
|  | intel_dp->panel_power_up_delay = get_delay(t1_t3); | 
|  | intel_dp->backlight_on_delay = get_delay(t8); | 
|  | intel_dp->backlight_off_delay = get_delay(t9); | 
|  | intel_dp->panel_power_down_delay = get_delay(t10); | 
|  | intel_dp->panel_power_cycle_delay = get_delay(t11_t12); | 
|  | #undef get_delay | 
|  |  | 
|  | DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", | 
|  | intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, | 
|  | intel_dp->panel_power_cycle_delay); | 
|  |  | 
|  | DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", | 
|  | intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); | 
|  |  | 
|  | if (out) | 
|  | *out = final; | 
|  | } | 
|  |  | 
|  | static void | 
|  | intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, | 
|  | struct intel_dp *intel_dp, | 
|  | struct edp_power_seq *seq) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | u32 pp_on, pp_off, pp_div, port_sel = 0; | 
|  | int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev); | 
|  | int pp_on_reg, pp_off_reg, pp_div_reg; | 
|  | enum port port = dp_to_dig_port(intel_dp)->port; | 
|  |  | 
|  | lockdep_assert_held(&dev_priv->pps_mutex); | 
|  |  | 
|  | if (HAS_PCH_SPLIT(dev)) { | 
|  | pp_on_reg = PCH_PP_ON_DELAYS; | 
|  | pp_off_reg = PCH_PP_OFF_DELAYS; | 
|  | pp_div_reg = PCH_PP_DIVISOR; | 
|  | } else { | 
|  | enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); | 
|  |  | 
|  | pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); | 
|  | pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); | 
|  | pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * And finally store the new values in the power sequencer. The | 
|  | * backlight delays are set to 1 because we do manual waits on them. For | 
|  | * T8, even BSpec recommends doing it. For T9, if we don't do this, | 
|  | * we'll end up waiting for the backlight off delay twice: once when we | 
|  | * do the manual sleep, and once when we disable the panel and wait for | 
|  | * the PP_STATUS bit to become zero. | 
|  | */ | 
|  | pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) | | 
|  | (1 << PANEL_LIGHT_ON_DELAY_SHIFT); | 
|  | pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) | | 
|  | (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT); | 
|  | /* Compute the divisor for the pp clock, simply match the Bspec | 
|  | * formula. */ | 
|  | pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT; | 
|  | pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) | 
|  | << PANEL_POWER_CYCLE_DELAY_SHIFT); | 
|  |  | 
|  | /* Haswell doesn't have any port selection bits for the panel | 
|  | * power sequencer any more. */ | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | port_sel = PANEL_PORT_SELECT_VLV(port); | 
|  | } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { | 
|  | if (port == PORT_A) | 
|  | port_sel = PANEL_PORT_SELECT_DPA; | 
|  | else | 
|  | port_sel = PANEL_PORT_SELECT_DPD; | 
|  | } | 
|  |  | 
|  | pp_on |= port_sel; | 
|  |  | 
|  | I915_WRITE(pp_on_reg, pp_on); | 
|  | I915_WRITE(pp_off_reg, pp_off); | 
|  | I915_WRITE(pp_div_reg, pp_div); | 
|  |  | 
|  | DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", | 
|  | I915_READ(pp_on_reg), | 
|  | I915_READ(pp_off_reg), | 
|  | I915_READ(pp_div_reg)); | 
|  | } | 
|  |  | 
|  | void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_encoder *encoder; | 
|  | struct intel_dp *intel_dp = NULL; | 
|  | struct intel_crtc_config *config = NULL; | 
|  | struct intel_crtc *intel_crtc = NULL; | 
|  | struct intel_connector *intel_connector = dev_priv->drrs.connector; | 
|  | u32 reg, val; | 
|  | enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR; | 
|  |  | 
|  | if (refresh_rate <= 0) { | 
|  | DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (intel_connector == NULL) { | 
|  | DRM_DEBUG_KMS("DRRS supported for eDP only.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME: This needs proper synchronization with psr state. But really | 
|  | * hard to tell without seeing the user of this function of this code. | 
|  | * Check locking and ordering once that lands. | 
|  | */ | 
|  | if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) { | 
|  | DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | encoder = intel_attached_encoder(&intel_connector->base); | 
|  | intel_dp = enc_to_intel_dp(&encoder->base); | 
|  | intel_crtc = encoder->new_crtc; | 
|  |  | 
|  | if (!intel_crtc) { | 
|  | DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | config = &intel_crtc->config; | 
|  |  | 
|  | if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) { | 
|  | DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate) | 
|  | index = DRRS_LOW_RR; | 
|  |  | 
|  | if (index == intel_dp->drrs_state.refresh_rate_type) { | 
|  | DRM_DEBUG_KMS( | 
|  | "DRRS requested for previously set RR...ignoring\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!intel_crtc->active) { | 
|  | DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) { | 
|  | reg = PIPECONF(intel_crtc->config.cpu_transcoder); | 
|  | val = I915_READ(reg); | 
|  | if (index > DRRS_HIGH_RR) { | 
|  | val |= PIPECONF_EDP_RR_MODE_SWITCH; | 
|  | intel_dp_set_m_n(intel_crtc); | 
|  | } else { | 
|  | val &= ~PIPECONF_EDP_RR_MODE_SWITCH; | 
|  | } | 
|  | I915_WRITE(reg, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mutex taken to ensure that there is no race between differnt | 
|  | * drrs calls trying to update refresh rate. This scenario may occur | 
|  | * in future when idleness detection based DRRS in kernel and | 
|  | * possible calls from user space to set differnt RR are made. | 
|  | */ | 
|  |  | 
|  | mutex_lock(&intel_dp->drrs_state.mutex); | 
|  |  | 
|  | intel_dp->drrs_state.refresh_rate_type = index; | 
|  |  | 
|  | mutex_unlock(&intel_dp->drrs_state.mutex); | 
|  |  | 
|  | DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); | 
|  | } | 
|  |  | 
|  | static struct drm_display_mode * | 
|  | intel_dp_drrs_init(struct intel_digital_port *intel_dig_port, | 
|  | struct intel_connector *intel_connector, | 
|  | struct drm_display_mode *fixed_mode) | 
|  | { | 
|  | struct drm_connector *connector = &intel_connector->base; | 
|  | struct intel_dp *intel_dp = &intel_dig_port->dp; | 
|  | struct drm_device *dev = intel_dig_port->base.base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_display_mode *downclock_mode = NULL; | 
|  |  | 
|  | if (INTEL_INFO(dev)->gen <= 6) { | 
|  | DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { | 
|  | DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | downclock_mode = intel_find_panel_downclock | 
|  | (dev, fixed_mode, connector); | 
|  |  | 
|  | if (!downclock_mode) { | 
|  | DRM_DEBUG_KMS("DRRS not supported\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dev_priv->drrs.connector = intel_connector; | 
|  |  | 
|  | mutex_init(&intel_dp->drrs_state.mutex); | 
|  |  | 
|  | intel_dp->drrs_state.type = dev_priv->vbt.drrs_type; | 
|  |  | 
|  | intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR; | 
|  | DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); | 
|  | return downclock_mode; | 
|  | } | 
|  |  | 
|  | void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder) | 
|  | { | 
|  | struct drm_device *dev = intel_encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_dp *intel_dp; | 
|  | enum intel_display_power_domain power_domain; | 
|  |  | 
|  | if (intel_encoder->type != INTEL_OUTPUT_EDP) | 
|  | return; | 
|  |  | 
|  | intel_dp = enc_to_intel_dp(&intel_encoder->base); | 
|  |  | 
|  | pps_lock(intel_dp); | 
|  |  | 
|  | if (!edp_have_panel_vdd(intel_dp)) | 
|  | goto out; | 
|  | /* | 
|  | * The VDD bit needs a power domain reference, so if the bit is | 
|  | * already enabled when we boot or resume, grab this reference and | 
|  | * schedule a vdd off, so we don't hold on to the reference | 
|  | * indefinitely. | 
|  | */ | 
|  | DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); | 
|  | power_domain = intel_display_port_power_domain(intel_encoder); | 
|  | intel_display_power_get(dev_priv, power_domain); | 
|  |  | 
|  | edp_panel_vdd_schedule_off(intel_dp); | 
|  | out: | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | static bool intel_edp_init_connector(struct intel_dp *intel_dp, | 
|  | struct intel_connector *intel_connector, | 
|  | struct edp_power_seq *power_seq) | 
|  | { | 
|  | struct drm_connector *connector = &intel_connector->base; | 
|  | struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = intel_encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct drm_display_mode *fixed_mode = NULL; | 
|  | struct drm_display_mode *downclock_mode = NULL; | 
|  | bool has_dpcd; | 
|  | struct drm_display_mode *scan; | 
|  | struct edid *edid; | 
|  |  | 
|  | intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED; | 
|  |  | 
|  | if (!is_edp(intel_dp)) | 
|  | return true; | 
|  |  | 
|  | intel_edp_panel_vdd_sanitize(intel_encoder); | 
|  |  | 
|  | /* Cache DPCD and EDID for edp. */ | 
|  | intel_edp_panel_vdd_on(intel_dp); | 
|  | has_dpcd = intel_dp_get_dpcd(intel_dp); | 
|  | intel_edp_panel_vdd_off(intel_dp, false); | 
|  |  | 
|  | if (has_dpcd) { | 
|  | if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) | 
|  | dev_priv->no_aux_handshake = | 
|  | intel_dp->dpcd[DP_MAX_DOWNSPREAD] & | 
|  | DP_NO_AUX_HANDSHAKE_LINK_TRAINING; | 
|  | } else { | 
|  | /* if this fails, presume the device is a ghost */ | 
|  | DRM_INFO("failed to retrieve link info, disabling eDP\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We now know it's not a ghost, init power sequence regs. */ | 
|  | pps_lock(intel_dp); | 
|  | intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq); | 
|  | pps_unlock(intel_dp); | 
|  |  | 
|  | mutex_lock(&dev->mode_config.mutex); | 
|  | edid = drm_get_edid(connector, &intel_dp->aux.ddc); | 
|  | if (edid) { | 
|  | if (drm_add_edid_modes(connector, edid)) { | 
|  | drm_mode_connector_update_edid_property(connector, | 
|  | edid); | 
|  | drm_edid_to_eld(connector, edid); | 
|  | } else { | 
|  | kfree(edid); | 
|  | edid = ERR_PTR(-EINVAL); | 
|  | } | 
|  | } else { | 
|  | edid = ERR_PTR(-ENOENT); | 
|  | } | 
|  | intel_connector->edid = edid; | 
|  |  | 
|  | /* prefer fixed mode from EDID if available */ | 
|  | list_for_each_entry(scan, &connector->probed_modes, head) { | 
|  | if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { | 
|  | fixed_mode = drm_mode_duplicate(dev, scan); | 
|  | downclock_mode = intel_dp_drrs_init( | 
|  | intel_dig_port, | 
|  | intel_connector, fixed_mode); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fallback to VBT if available for eDP */ | 
|  | if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) { | 
|  | fixed_mode = drm_mode_duplicate(dev, | 
|  | dev_priv->vbt.lfp_lvds_vbt_mode); | 
|  | if (fixed_mode) | 
|  | fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; | 
|  | } | 
|  | mutex_unlock(&dev->mode_config.mutex); | 
|  |  | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | intel_dp->edp_notifier.notifier_call = edp_notify_handler; | 
|  | register_reboot_notifier(&intel_dp->edp_notifier); | 
|  | } | 
|  |  | 
|  | intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); | 
|  | intel_connector->panel.backlight_power = intel_edp_backlight_power; | 
|  | intel_panel_setup_backlight(connector); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | intel_dp_init_connector(struct intel_digital_port *intel_dig_port, | 
|  | struct intel_connector *intel_connector) | 
|  | { | 
|  | struct drm_connector *connector = &intel_connector->base; | 
|  | struct intel_dp *intel_dp = &intel_dig_port->dp; | 
|  | struct intel_encoder *intel_encoder = &intel_dig_port->base; | 
|  | struct drm_device *dev = intel_encoder->base.dev; | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | enum port port = intel_dig_port->port; | 
|  | struct edp_power_seq power_seq = { 0 }; | 
|  | int type; | 
|  |  | 
|  | intel_dp->pps_pipe = INVALID_PIPE; | 
|  |  | 
|  | /* intel_dp vfuncs */ | 
|  | if (IS_VALLEYVIEW(dev)) | 
|  | intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider; | 
|  | else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) | 
|  | intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; | 
|  | else if (HAS_PCH_SPLIT(dev)) | 
|  | intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; | 
|  | else | 
|  | intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider; | 
|  |  | 
|  | intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl; | 
|  |  | 
|  | /* Preserve the current hw state. */ | 
|  | intel_dp->DP = I915_READ(intel_dp->output_reg); | 
|  | intel_dp->attached_connector = intel_connector; | 
|  |  | 
|  | if (intel_dp_is_edp(dev, port)) | 
|  | type = DRM_MODE_CONNECTOR_eDP; | 
|  | else | 
|  | type = DRM_MODE_CONNECTOR_DisplayPort; | 
|  |  | 
|  | /* | 
|  | * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but | 
|  | * for DP the encoder type can be set by the caller to | 
|  | * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. | 
|  | */ | 
|  | if (type == DRM_MODE_CONNECTOR_eDP) | 
|  | intel_encoder->type = INTEL_OUTPUT_EDP; | 
|  |  | 
|  | DRM_DEBUG_KMS("Adding %s connector on port %c\n", | 
|  | type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", | 
|  | port_name(port)); | 
|  |  | 
|  | drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); | 
|  | drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); | 
|  |  | 
|  | connector->interlace_allowed = true; | 
|  | connector->doublescan_allowed = 0; | 
|  |  | 
|  | INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, | 
|  | edp_panel_vdd_work); | 
|  |  | 
|  | intel_connector_attach_encoder(intel_connector, intel_encoder); | 
|  | drm_connector_register(connector); | 
|  |  | 
|  | if (HAS_DDI(dev)) | 
|  | intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; | 
|  | else | 
|  | intel_connector->get_hw_state = intel_connector_get_hw_state; | 
|  | intel_connector->unregister = intel_dp_connector_unregister; | 
|  |  | 
|  | /* Set up the hotplug pin. */ | 
|  | switch (port) { | 
|  | case PORT_A: | 
|  | intel_encoder->hpd_pin = HPD_PORT_A; | 
|  | break; | 
|  | case PORT_B: | 
|  | intel_encoder->hpd_pin = HPD_PORT_B; | 
|  | break; | 
|  | case PORT_C: | 
|  | intel_encoder->hpd_pin = HPD_PORT_C; | 
|  | break; | 
|  | case PORT_D: | 
|  | intel_encoder->hpd_pin = HPD_PORT_D; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (is_edp(intel_dp)) { | 
|  | pps_lock(intel_dp); | 
|  | if (IS_VALLEYVIEW(dev)) { | 
|  | vlv_initial_power_sequencer_setup(intel_dp); | 
|  | } else { | 
|  | intel_dp_init_panel_power_timestamps(intel_dp); | 
|  | intel_dp_init_panel_power_sequencer(dev, intel_dp, | 
|  | &power_seq); | 
|  | } | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  |  | 
|  | intel_dp_aux_init(intel_dp, intel_connector); | 
|  |  | 
|  | /* init MST on ports that can support it */ | 
|  | if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { | 
|  | if (port == PORT_B || port == PORT_C || port == PORT_D) { | 
|  | intel_dp_mst_encoder_init(intel_dig_port, | 
|  | intel_connector->base.base.id); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) { | 
|  | drm_dp_aux_unregister(&intel_dp->aux); | 
|  | if (is_edp(intel_dp)) { | 
|  | cancel_delayed_work_sync(&intel_dp->panel_vdd_work); | 
|  | /* | 
|  | * vdd might still be enabled do to the delayed vdd off. | 
|  | * Make sure vdd is actually turned off here. | 
|  | */ | 
|  | pps_lock(intel_dp); | 
|  | edp_panel_vdd_off_sync(intel_dp); | 
|  | pps_unlock(intel_dp); | 
|  | } | 
|  | drm_connector_unregister(connector); | 
|  | drm_connector_cleanup(connector); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | intel_dp_add_properties(intel_dp, connector); | 
|  |  | 
|  | /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written | 
|  | * 0xd.  Failure to do so will result in spurious interrupts being | 
|  | * generated on the port when a cable is not attached. | 
|  | */ | 
|  | if (IS_G4X(dev) && !IS_GM45(dev)) { | 
|  | u32 temp = I915_READ(PEG_BAND_GAP_DATA); | 
|  | I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void | 
|  | intel_dp_init(struct drm_device *dev, int output_reg, enum port port) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | struct intel_digital_port *intel_dig_port; | 
|  | struct intel_encoder *intel_encoder; | 
|  | struct drm_encoder *encoder; | 
|  | struct intel_connector *intel_connector; | 
|  |  | 
|  | intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); | 
|  | if (!intel_dig_port) | 
|  | return; | 
|  |  | 
|  | intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); | 
|  | if (!intel_connector) { | 
|  | kfree(intel_dig_port); | 
|  | return; | 
|  | } | 
|  |  | 
|  | intel_encoder = &intel_dig_port->base; | 
|  | encoder = &intel_encoder->base; | 
|  |  | 
|  | drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, | 
|  | DRM_MODE_ENCODER_TMDS); | 
|  |  | 
|  | intel_encoder->compute_config = intel_dp_compute_config; | 
|  | intel_encoder->disable = intel_disable_dp; | 
|  | intel_encoder->get_hw_state = intel_dp_get_hw_state; | 
|  | intel_encoder->get_config = intel_dp_get_config; | 
|  | intel_encoder->suspend = intel_dp_encoder_suspend; | 
|  | if (IS_CHERRYVIEW(dev)) { | 
|  | intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; | 
|  | intel_encoder->pre_enable = chv_pre_enable_dp; | 
|  | intel_encoder->enable = vlv_enable_dp; | 
|  | intel_encoder->post_disable = chv_post_disable_dp; | 
|  | } else if (IS_VALLEYVIEW(dev)) { | 
|  | intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; | 
|  | intel_encoder->pre_enable = vlv_pre_enable_dp; | 
|  | intel_encoder->enable = vlv_enable_dp; | 
|  | intel_encoder->post_disable = vlv_post_disable_dp; | 
|  | } else { | 
|  | intel_encoder->pre_enable = g4x_pre_enable_dp; | 
|  | intel_encoder->enable = g4x_enable_dp; | 
|  | if (INTEL_INFO(dev)->gen >= 5) | 
|  | intel_encoder->post_disable = ilk_post_disable_dp; | 
|  | } | 
|  |  | 
|  | intel_dig_port->port = port; | 
|  | intel_dig_port->dp.output_reg = output_reg; | 
|  |  | 
|  | intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; | 
|  | if (IS_CHERRYVIEW(dev)) { | 
|  | if (port == PORT_D) | 
|  | intel_encoder->crtc_mask = 1 << 2; | 
|  | else | 
|  | intel_encoder->crtc_mask = (1 << 0) | (1 << 1); | 
|  | } else { | 
|  | intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); | 
|  | } | 
|  | intel_encoder->cloneable = 0; | 
|  | intel_encoder->hot_plug = intel_dp_hot_plug; | 
|  |  | 
|  | intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; | 
|  | dev_priv->hpd_irq_port[port] = intel_dig_port; | 
|  |  | 
|  | if (!intel_dp_init_connector(intel_dig_port, intel_connector)) { | 
|  | drm_encoder_cleanup(encoder); | 
|  | kfree(intel_dig_port); | 
|  | kfree(intel_connector); | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_dp_mst_suspend(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int i; | 
|  |  | 
|  | /* disable MST */ | 
|  | for (i = 0; i < I915_MAX_PORTS; i++) { | 
|  | struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i]; | 
|  | if (!intel_dig_port) | 
|  | continue; | 
|  |  | 
|  | if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { | 
|  | if (!intel_dig_port->dp.can_mst) | 
|  | continue; | 
|  | if (intel_dig_port->dp.is_mst) | 
|  | drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_dp_mst_resume(struct drm_device *dev) | 
|  | { | 
|  | struct drm_i915_private *dev_priv = dev->dev_private; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < I915_MAX_PORTS; i++) { | 
|  | struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i]; | 
|  | if (!intel_dig_port) | 
|  | continue; | 
|  | if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { | 
|  | int ret; | 
|  |  | 
|  | if (!intel_dig_port->dp.can_mst) | 
|  | continue; | 
|  |  | 
|  | ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr); | 
|  | if (ret != 0) { | 
|  | intel_dp_check_mst_status(&intel_dig_port->dp); | 
|  | } | 
|  | } | 
|  | } | 
|  | } |