| /* |
| * Copyright 2010 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| #include "priv.h" |
| |
| #include <subdev/fb.h> |
| #include <subdev/ltc.h> |
| #include <subdev/timer.h> |
| |
| #include <core/gpuobj.h> |
| |
| /* Map from compressed to corresponding uncompressed storage type. |
| * The value 0xff represents an invalid storage type. |
| */ |
| const u8 gf100_pte_storage_type_map[256] = |
| { |
| 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0xff, 0x01, /* 0x00 */ |
| 0x01, 0x01, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, /* 0x10 */ |
| 0x11, 0x11, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x27, /* 0x20 */ |
| 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x30 */ |
| 0xff, 0xff, 0x26, 0x27, 0x28, 0x29, 0x26, 0x27, |
| 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0x46, 0xff, /* 0x40 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0x46, 0x46, 0x46, 0x46, 0xff, 0xff, 0xff, /* 0x50 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x60 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x70 */ |
| 0xff, 0xff, 0xff, 0x7b, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7b, 0x7b, /* 0x80 */ |
| 0x7b, 0x7b, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x90 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xa7, /* 0xa0 */ |
| 0xa8, 0xa9, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xb0 */ |
| 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7, |
| 0xa8, 0xa9, 0xaa, 0xc3, 0xff, 0xff, 0xff, 0xff, /* 0xc0 */ |
| 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xc3, 0xc3, |
| 0xc3, 0xc3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xd0 */ |
| 0xfe, 0xff, 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, |
| 0xfe, 0xff, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xff, /* 0xe0 */ |
| 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, 0xfe, 0xff, |
| 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, /* 0xf0 */ |
| 0xfe, 0xfe, 0xfe, 0xfe, 0xff, 0xfd, 0xfe, 0xff |
| }; |
| |
| |
| static void |
| gf100_vm_map_pgt(struct nvkm_gpuobj *pgd, u32 index, struct nvkm_memory *pgt[2]) |
| { |
| u32 pde[2] = { 0, 0 }; |
| |
| if (pgt[0]) |
| pde[1] = 0x00000001 | (nvkm_memory_addr(pgt[0]) >> 8); |
| if (pgt[1]) |
| pde[0] = 0x00000001 | (nvkm_memory_addr(pgt[1]) >> 8); |
| |
| nvkm_kmap(pgd); |
| nvkm_wo32(pgd, (index * 8) + 0, pde[0]); |
| nvkm_wo32(pgd, (index * 8) + 4, pde[1]); |
| nvkm_done(pgd); |
| } |
| |
| static inline u64 |
| gf100_vm_addr(struct nvkm_vma *vma, u64 phys, u32 memtype, u32 target) |
| { |
| phys >>= 8; |
| |
| phys |= 0x00000001; /* present */ |
| if (vma->access & NV_MEM_ACCESS_SYS) |
| phys |= 0x00000002; |
| |
| phys |= ((u64)target << 32); |
| phys |= ((u64)memtype << 36); |
| return phys; |
| } |
| |
| static void |
| gf100_vm_map(struct nvkm_vma *vma, struct nvkm_memory *pgt, |
| struct nvkm_mem *mem, u32 pte, u32 cnt, u64 phys, u64 delta) |
| { |
| u64 next = 1 << (vma->node->type - 8); |
| |
| phys = gf100_vm_addr(vma, phys, mem->memtype, 0); |
| pte <<= 3; |
| |
| if (mem->tag) { |
| struct nvkm_ltc *ltc = vma->vm->mmu->subdev.device->ltc; |
| u32 tag = mem->tag->offset + (delta >> 17); |
| phys |= (u64)tag << (32 + 12); |
| next |= (u64)1 << (32 + 12); |
| nvkm_ltc_tags_clear(ltc, tag, cnt); |
| } |
| |
| nvkm_kmap(pgt); |
| while (cnt--) { |
| nvkm_wo32(pgt, pte + 0, lower_32_bits(phys)); |
| nvkm_wo32(pgt, pte + 4, upper_32_bits(phys)); |
| phys += next; |
| pte += 8; |
| } |
| nvkm_done(pgt); |
| } |
| |
| static void |
| gf100_vm_map_sg(struct nvkm_vma *vma, struct nvkm_memory *pgt, |
| struct nvkm_mem *mem, u32 pte, u32 cnt, dma_addr_t *list) |
| { |
| u32 target = (vma->access & NV_MEM_ACCESS_NOSNOOP) ? 7 : 5; |
| /* compressed storage types are invalid for system memory */ |
| u32 memtype = gf100_pte_storage_type_map[mem->memtype & 0xff]; |
| |
| nvkm_kmap(pgt); |
| pte <<= 3; |
| while (cnt--) { |
| u64 phys = gf100_vm_addr(vma, *list++, memtype, target); |
| nvkm_wo32(pgt, pte + 0, lower_32_bits(phys)); |
| nvkm_wo32(pgt, pte + 4, upper_32_bits(phys)); |
| pte += 8; |
| } |
| nvkm_done(pgt); |
| } |
| |
| static void |
| gf100_vm_unmap(struct nvkm_vma *vma, struct nvkm_memory *pgt, u32 pte, u32 cnt) |
| { |
| nvkm_kmap(pgt); |
| pte <<= 3; |
| while (cnt--) { |
| nvkm_wo32(pgt, pte + 0, 0x00000000); |
| nvkm_wo32(pgt, pte + 4, 0x00000000); |
| pte += 8; |
| } |
| nvkm_done(pgt); |
| } |
| |
| static void |
| gf100_vm_flush(struct nvkm_vm *vm) |
| { |
| struct nvkm_mmu *mmu = vm->mmu; |
| struct nvkm_device *device = mmu->subdev.device; |
| struct nvkm_vm_pgd *vpgd; |
| u32 type; |
| |
| type = 0x00000001; /* PAGE_ALL */ |
| if (atomic_read(&vm->engref[NVKM_SUBDEV_BAR])) |
| type |= 0x00000004; /* HUB_ONLY */ |
| |
| mutex_lock(&mmu->subdev.mutex); |
| list_for_each_entry(vpgd, &vm->pgd_list, head) { |
| /* looks like maybe a "free flush slots" counter, the |
| * faster you write to 0x100cbc to more it decreases |
| */ |
| nvkm_msec(device, 2000, |
| if (nvkm_rd32(device, 0x100c80) & 0x00ff0000) |
| break; |
| ); |
| |
| nvkm_wr32(device, 0x100cb8, vpgd->obj->addr >> 8); |
| nvkm_wr32(device, 0x100cbc, 0x80000000 | type); |
| |
| /* wait for flush to be queued? */ |
| nvkm_msec(device, 2000, |
| if (nvkm_rd32(device, 0x100c80) & 0x00008000) |
| break; |
| ); |
| } |
| mutex_unlock(&mmu->subdev.mutex); |
| } |
| |
| static int |
| gf100_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset, |
| struct lock_class_key *key, struct nvkm_vm **pvm) |
| { |
| return nvkm_vm_create(mmu, offset, length, mm_offset, 4096, key, pvm); |
| } |
| |
| static const struct nvkm_mmu_func |
| gf100_mmu = { |
| .limit = (1ULL << 40), |
| .dma_bits = 40, |
| .pgt_bits = 27 - 12, |
| .spg_shift = 12, |
| .lpg_shift = 17, |
| .create = gf100_vm_create, |
| .map_pgt = gf100_vm_map_pgt, |
| .map = gf100_vm_map, |
| .map_sg = gf100_vm_map_sg, |
| .unmap = gf100_vm_unmap, |
| .flush = gf100_vm_flush, |
| }; |
| |
| int |
| gf100_mmu_new(struct nvkm_device *device, int index, struct nvkm_mmu **pmmu) |
| { |
| return nvkm_mmu_new_(&gf100_mmu, device, index, pmmu); |
| } |