|  | /* | 
|  | *  Generic process-grouping system. | 
|  | * | 
|  | *  Based originally on the cpuset system, extracted by Paul Menage | 
|  | *  Copyright (C) 2006 Google, Inc | 
|  | * | 
|  | *  Copyright notices from the original cpuset code: | 
|  | *  -------------------------------------------------- | 
|  | *  Copyright (C) 2003 BULL SA. | 
|  | *  Copyright (C) 2004-2006 Silicon Graphics, Inc. | 
|  | * | 
|  | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | * | 
|  | *  2003-10-10 Written by Simon Derr. | 
|  | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | *  2004 May-July Rework by Paul Jackson. | 
|  | *  --------------------------------------------------- | 
|  | * | 
|  | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | *  License.  See the file COPYING in the main directory of the Linux | 
|  | *  distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/cgroupstats.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/namei.h> | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  |  | 
|  | static DEFINE_MUTEX(cgroup_mutex); | 
|  |  | 
|  | /* Generate an array of cgroup subsystem pointers */ | 
|  | #define SUBSYS(_x) &_x ## _subsys, | 
|  |  | 
|  | static struct cgroup_subsys *subsys[] = { | 
|  | #include <linux/cgroup_subsys.h> | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A cgroupfs_root represents the root of a cgroup hierarchy, | 
|  | * and may be associated with a superblock to form an active | 
|  | * hierarchy | 
|  | */ | 
|  | struct cgroupfs_root { | 
|  | struct super_block *sb; | 
|  |  | 
|  | /* | 
|  | * The bitmask of subsystems intended to be attached to this | 
|  | * hierarchy | 
|  | */ | 
|  | unsigned long subsys_bits; | 
|  |  | 
|  | /* The bitmask of subsystems currently attached to this hierarchy */ | 
|  | unsigned long actual_subsys_bits; | 
|  |  | 
|  | /* A list running through the attached subsystems */ | 
|  | struct list_head subsys_list; | 
|  |  | 
|  | /* The root cgroup for this hierarchy */ | 
|  | struct cgroup top_cgroup; | 
|  |  | 
|  | /* Tracks how many cgroups are currently defined in hierarchy.*/ | 
|  | int number_of_cgroups; | 
|  |  | 
|  | /* A list running through the mounted hierarchies */ | 
|  | struct list_head root_list; | 
|  |  | 
|  | /* Hierarchy-specific flags */ | 
|  | unsigned long flags; | 
|  |  | 
|  | /* The path to use for release notifications. */ | 
|  | char release_agent_path[PATH_MAX]; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the | 
|  | * subsystems that are otherwise unattached - it never has more than a | 
|  | * single cgroup, and all tasks are part of that cgroup. | 
|  | */ | 
|  | static struct cgroupfs_root rootnode; | 
|  |  | 
|  | /* The list of hierarchy roots */ | 
|  |  | 
|  | static LIST_HEAD(roots); | 
|  | static int root_count; | 
|  |  | 
|  | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 
|  | #define dummytop (&rootnode.top_cgroup) | 
|  |  | 
|  | /* This flag indicates whether tasks in the fork and exit paths should | 
|  | * check for fork/exit handlers to call. This avoids us having to do | 
|  | * extra work in the fork/exit path if none of the subsystems need to | 
|  | * be called. | 
|  | */ | 
|  | static int need_forkexit_callback __read_mostly; | 
|  | static int need_mm_owner_callback __read_mostly; | 
|  |  | 
|  | /* convenient tests for these bits */ | 
|  | inline int cgroup_is_removed(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_REMOVED, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | /* bits in struct cgroupfs_root flags field */ | 
|  | enum { | 
|  | ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ | 
|  | }; | 
|  |  | 
|  | static int cgroup_is_releasable(const struct cgroup *cgrp) | 
|  | { | 
|  | const int bits = | 
|  | (1 << CGRP_RELEASABLE) | | 
|  | (1 << CGRP_NOTIFY_ON_RELEASE); | 
|  | return (cgrp->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | static int notify_on_release(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for_each_subsys() allows you to iterate on each subsystem attached to | 
|  | * an active hierarchy | 
|  | */ | 
|  | #define for_each_subsys(_root, _ss) \ | 
|  | list_for_each_entry(_ss, &_root->subsys_list, sibling) | 
|  |  | 
|  | /* for_each_root() allows you to iterate across the active hierarchies */ | 
|  | #define for_each_root(_root) \ | 
|  | list_for_each_entry(_root, &roots, root_list) | 
|  |  | 
|  | /* the list of cgroups eligible for automatic release. Protected by | 
|  | * release_list_lock */ | 
|  | static LIST_HEAD(release_list); | 
|  | static DEFINE_SPINLOCK(release_list_lock); | 
|  | static void cgroup_release_agent(struct work_struct *work); | 
|  | static DECLARE_WORK(release_agent_work, cgroup_release_agent); | 
|  | static void check_for_release(struct cgroup *cgrp); | 
|  |  | 
|  | /* Link structure for associating css_set objects with cgroups */ | 
|  | struct cg_cgroup_link { | 
|  | /* | 
|  | * List running through cg_cgroup_links associated with a | 
|  | * cgroup, anchored on cgroup->css_sets | 
|  | */ | 
|  | struct list_head cgrp_link_list; | 
|  | /* | 
|  | * List running through cg_cgroup_links pointing at a | 
|  | * single css_set object, anchored on css_set->cg_links | 
|  | */ | 
|  | struct list_head cg_link_list; | 
|  | struct css_set *cg; | 
|  | }; | 
|  |  | 
|  | /* The default css_set - used by init and its children prior to any | 
|  | * hierarchies being mounted. It contains a pointer to the root state | 
|  | * for each subsystem. Also used to anchor the list of css_sets. Not | 
|  | * reference-counted, to improve performance when child cgroups | 
|  | * haven't been created. | 
|  | */ | 
|  |  | 
|  | static struct css_set init_css_set; | 
|  | static struct cg_cgroup_link init_css_set_link; | 
|  |  | 
|  | /* css_set_lock protects the list of css_set objects, and the | 
|  | * chain of tasks off each css_set.  Nests outside task->alloc_lock | 
|  | * due to cgroup_iter_start() */ | 
|  | static DEFINE_RWLOCK(css_set_lock); | 
|  | static int css_set_count; | 
|  |  | 
|  | /* hash table for cgroup groups. This improves the performance to | 
|  | * find an existing css_set */ | 
|  | #define CSS_SET_HASH_BITS	7 | 
|  | #define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS) | 
|  | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 
|  |  | 
|  | static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | 
|  | { | 
|  | int i; | 
|  | int index; | 
|  | unsigned long tmp = 0UL; | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) | 
|  | tmp += (unsigned long)css[i]; | 
|  | tmp = (tmp >> 16) ^ tmp; | 
|  |  | 
|  | index = hash_long(tmp, CSS_SET_HASH_BITS); | 
|  |  | 
|  | return &css_set_table[index]; | 
|  | } | 
|  |  | 
|  | /* We don't maintain the lists running through each css_set to its | 
|  | * task until after the first call to cgroup_iter_start(). This | 
|  | * reduces the fork()/exit() overhead for people who have cgroups | 
|  | * compiled into their kernel but not actually in use */ | 
|  | static int use_task_css_set_links __read_mostly; | 
|  |  | 
|  | /* When we create or destroy a css_set, the operation simply | 
|  | * takes/releases a reference count on all the cgroups referenced | 
|  | * by subsystems in this css_set. This can end up multiple-counting | 
|  | * some cgroups, but that's OK - the ref-count is just a | 
|  | * busy/not-busy indicator; ensuring that we only count each cgroup | 
|  | * once would require taking a global lock to ensure that no | 
|  | * subsystems moved between hierarchies while we were doing so. | 
|  | * | 
|  | * Possible TODO: decide at boot time based on the number of | 
|  | * registered subsystems and the number of CPUs or NUMA nodes whether | 
|  | * it's better for performance to ref-count every subsystem, or to | 
|  | * take a global lock and only add one ref count to each hierarchy. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * unlink a css_set from the list and free it | 
|  | */ | 
|  | static void unlink_css_set(struct css_set *cg) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | struct cg_cgroup_link *saved_link; | 
|  |  | 
|  | hlist_del(&cg->hlist); | 
|  | css_set_count--; | 
|  |  | 
|  | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | 
|  | cg_link_list) { | 
|  | list_del(&link->cg_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | kfree(link); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __put_css_set(struct css_set *cg, int taskexit) | 
|  | { | 
|  | int i; | 
|  | /* | 
|  | * Ensure that the refcount doesn't hit zero while any readers | 
|  | * can see it. Similar to atomic_dec_and_lock(), but for an | 
|  | * rwlock | 
|  | */ | 
|  | if (atomic_add_unless(&cg->refcount, -1, 1)) | 
|  | return; | 
|  | write_lock(&css_set_lock); | 
|  | if (!atomic_dec_and_test(&cg->refcount)) { | 
|  | write_unlock(&css_set_lock); | 
|  | return; | 
|  | } | 
|  | unlink_css_set(cg); | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup *cgrp = cg->subsys[i]->cgroup; | 
|  | if (atomic_dec_and_test(&cgrp->count) && | 
|  | notify_on_release(cgrp)) { | 
|  | if (taskexit) | 
|  | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | check_for_release(cgrp); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | kfree(cg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * refcounted get/put for css_set objects | 
|  | */ | 
|  | static inline void get_css_set(struct css_set *cg) | 
|  | { | 
|  | atomic_inc(&cg->refcount); | 
|  | } | 
|  |  | 
|  | static inline void put_css_set(struct css_set *cg) | 
|  | { | 
|  | __put_css_set(cg, 0); | 
|  | } | 
|  |  | 
|  | static inline void put_css_set_taskexit(struct css_set *cg) | 
|  | { | 
|  | __put_css_set(cg, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_existing_css_set() is a helper for | 
|  | * find_css_set(), and checks to see whether an existing | 
|  | * css_set is suitable. | 
|  | * | 
|  | * oldcg: the cgroup group that we're using before the cgroup | 
|  | * transition | 
|  | * | 
|  | * cgrp: the cgroup that we're moving into | 
|  | * | 
|  | * template: location in which to build the desired set of subsystem | 
|  | * state objects for the new cgroup group | 
|  | */ | 
|  | static struct css_set *find_existing_css_set( | 
|  | struct css_set *oldcg, | 
|  | struct cgroup *cgrp, | 
|  | struct cgroup_subsys_state *template[]) | 
|  | { | 
|  | int i; | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | struct hlist_head *hhead; | 
|  | struct hlist_node *node; | 
|  | struct css_set *cg; | 
|  |  | 
|  | /* Built the set of subsystem state objects that we want to | 
|  | * see in the new css_set */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | if (root->subsys_bits & (1UL << i)) { | 
|  | /* Subsystem is in this hierarchy. So we want | 
|  | * the subsystem state from the new | 
|  | * cgroup */ | 
|  | template[i] = cgrp->subsys[i]; | 
|  | } else { | 
|  | /* Subsystem is not in this hierarchy, so we | 
|  | * don't want to change the subsystem state */ | 
|  | template[i] = oldcg->subsys[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | hhead = css_set_hash(template); | 
|  | hlist_for_each_entry(cg, node, hhead, hlist) { | 
|  | if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 
|  | /* All subsystems matched */ | 
|  | return cg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No existing cgroup group matched */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_cg_links(struct list_head *tmp) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | struct cg_cgroup_link *saved_link; | 
|  |  | 
|  | list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { | 
|  | list_del(&link->cgrp_link_list); | 
|  | kfree(link); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate_cg_links() allocates "count" cg_cgroup_link structures | 
|  | * and chains them on tmp through their cgrp_link_list fields. Returns 0 on | 
|  | * success or a negative error | 
|  | */ | 
|  | static int allocate_cg_links(int count, struct list_head *tmp) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | int i; | 
|  | INIT_LIST_HEAD(tmp); | 
|  | for (i = 0; i < count; i++) { | 
|  | link = kmalloc(sizeof(*link), GFP_KERNEL); | 
|  | if (!link) { | 
|  | free_cg_links(tmp); | 
|  | return -ENOMEM; | 
|  | } | 
|  | list_add(&link->cgrp_link_list, tmp); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_css_set() takes an existing cgroup group and a | 
|  | * cgroup object, and returns a css_set object that's | 
|  | * equivalent to the old group, but with the given cgroup | 
|  | * substituted into the appropriate hierarchy. Must be called with | 
|  | * cgroup_mutex held | 
|  | */ | 
|  | static struct css_set *find_css_set( | 
|  | struct css_set *oldcg, struct cgroup *cgrp) | 
|  | { | 
|  | struct css_set *res; | 
|  | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 
|  | int i; | 
|  |  | 
|  | struct list_head tmp_cg_links; | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | struct hlist_head *hhead; | 
|  |  | 
|  | /* First see if we already have a cgroup group that matches | 
|  | * the desired set */ | 
|  | read_lock(&css_set_lock); | 
|  | res = find_existing_css_set(oldcg, cgrp, template); | 
|  | if (res) | 
|  | get_css_set(res); | 
|  | read_unlock(&css_set_lock); | 
|  |  | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | res = kmalloc(sizeof(*res), GFP_KERNEL); | 
|  | if (!res) | 
|  | return NULL; | 
|  |  | 
|  | /* Allocate all the cg_cgroup_link objects that we'll need */ | 
|  | if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { | 
|  | kfree(res); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | atomic_set(&res->refcount, 1); | 
|  | INIT_LIST_HEAD(&res->cg_links); | 
|  | INIT_LIST_HEAD(&res->tasks); | 
|  | INIT_HLIST_NODE(&res->hlist); | 
|  |  | 
|  | /* Copy the set of subsystem state objects generated in | 
|  | * find_existing_css_set() */ | 
|  | memcpy(res->subsys, template, sizeof(res->subsys)); | 
|  |  | 
|  | write_lock(&css_set_lock); | 
|  | /* Add reference counts and links from the new css_set. */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup *cgrp = res->subsys[i]->cgroup; | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | atomic_inc(&cgrp->count); | 
|  | /* | 
|  | * We want to add a link once per cgroup, so we | 
|  | * only do it for the first subsystem in each | 
|  | * hierarchy | 
|  | */ | 
|  | if (ss->root->subsys_list.next == &ss->sibling) { | 
|  | BUG_ON(list_empty(&tmp_cg_links)); | 
|  | link = list_entry(tmp_cg_links.next, | 
|  | struct cg_cgroup_link, | 
|  | cgrp_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | list_add(&link->cgrp_link_list, &cgrp->css_sets); | 
|  | link->cg = res; | 
|  | list_add(&link->cg_link_list, &res->cg_links); | 
|  | } | 
|  | } | 
|  | if (list_empty(&rootnode.subsys_list)) { | 
|  | link = list_entry(tmp_cg_links.next, | 
|  | struct cg_cgroup_link, | 
|  | cgrp_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | list_add(&link->cgrp_link_list, &dummytop->css_sets); | 
|  | link->cg = res; | 
|  | list_add(&link->cg_link_list, &res->cg_links); | 
|  | } | 
|  |  | 
|  | BUG_ON(!list_empty(&tmp_cg_links)); | 
|  |  | 
|  | css_set_count++; | 
|  |  | 
|  | /* Add this cgroup group to the hash table */ | 
|  | hhead = css_set_hash(res->subsys); | 
|  | hlist_add_head(&res->hlist, hhead); | 
|  |  | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is one global cgroup mutex. We also require taking | 
|  | * task_lock() when dereferencing a task's cgroup subsys pointers. | 
|  | * See "The task_lock() exception", at the end of this comment. | 
|  | * | 
|  | * A task must hold cgroup_mutex to modify cgroups. | 
|  | * | 
|  | * Any task can increment and decrement the count field without lock. | 
|  | * So in general, code holding cgroup_mutex can't rely on the count | 
|  | * field not changing.  However, if the count goes to zero, then only | 
|  | * cgroup_attach_task() can increment it again.  Because a count of zero | 
|  | * means that no tasks are currently attached, therefore there is no | 
|  | * way a task attached to that cgroup can fork (the other way to | 
|  | * increment the count).  So code holding cgroup_mutex can safely | 
|  | * assume that if the count is zero, it will stay zero. Similarly, if | 
|  | * a task holds cgroup_mutex on a cgroup with zero count, it | 
|  | * knows that the cgroup won't be removed, as cgroup_rmdir() | 
|  | * needs that mutex. | 
|  | * | 
|  | * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't | 
|  | * (usually) take cgroup_mutex.  These are the two most performance | 
|  | * critical pieces of code here.  The exception occurs on cgroup_exit(), | 
|  | * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex | 
|  | * is taken, and if the cgroup count is zero, a usermode call made | 
|  | * to the release agent with the name of the cgroup (path relative to | 
|  | * the root of cgroup file system) as the argument. | 
|  | * | 
|  | * A cgroup can only be deleted if both its 'count' of using tasks | 
|  | * is zero, and its list of 'children' cgroups is empty.  Since all | 
|  | * tasks in the system use _some_ cgroup, and since there is always at | 
|  | * least one task in the system (init, pid == 1), therefore, top_cgroup | 
|  | * always has either children cgroups and/or using tasks.  So we don't | 
|  | * need a special hack to ensure that top_cgroup cannot be deleted. | 
|  | * | 
|  | *	The task_lock() exception | 
|  | * | 
|  | * The need for this exception arises from the action of | 
|  | * cgroup_attach_task(), which overwrites one tasks cgroup pointer with | 
|  | * another.  It does so using cgroup_mutex, however there are | 
|  | * several performance critical places that need to reference | 
|  | * task->cgroup without the expense of grabbing a system global | 
|  | * mutex.  Therefore except as noted below, when dereferencing or, as | 
|  | * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use | 
|  | * task_lock(), which acts on a spinlock (task->alloc_lock) already in | 
|  | * the task_struct routinely used for such matters. | 
|  | * | 
|  | * P.S.  One more locking exception.  RCU is used to guard the | 
|  | * update of a tasks cgroup pointer by cgroup_attach_task() | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * cgroup_lock - lock out any changes to cgroup structures | 
|  | * | 
|  | */ | 
|  | void cgroup_lock(void) | 
|  | { | 
|  | mutex_lock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_unlock - release lock on cgroup changes | 
|  | * | 
|  | * Undo the lock taken in a previous cgroup_lock() call. | 
|  | */ | 
|  | void cgroup_unlock(void) | 
|  | { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A couple of forward declarations required, due to cyclic reference loop: | 
|  | * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> | 
|  | * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations | 
|  | * -> cgroup_mkdir. | 
|  | */ | 
|  |  | 
|  | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 
|  | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 
|  | static int cgroup_populate_dir(struct cgroup *cgrp); | 
|  | static struct inode_operations cgroup_dir_inode_operations; | 
|  | static struct file_operations proc_cgroupstats_operations; | 
|  |  | 
|  | static struct backing_dev_info cgroup_backing_dev_info = { | 
|  | .capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK, | 
|  | }; | 
|  |  | 
|  | static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb) | 
|  | { | 
|  | struct inode *inode = new_inode(sb); | 
|  |  | 
|  | if (inode) { | 
|  | inode->i_mode = mode; | 
|  | inode->i_uid = current_fsuid(); | 
|  | inode->i_gid = current_fsgid(); | 
|  | inode->i_blocks = 0; | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  | inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call subsys's pre_destroy handler. | 
|  | * This is called before css refcnt check. | 
|  | */ | 
|  | static void cgroup_call_pre_destroy(struct cgroup *cgrp) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | for_each_subsys(cgrp->root, ss) | 
|  | if (ss->pre_destroy && cgrp->subsys[ss->subsys_id]) | 
|  | ss->pre_destroy(ss, cgrp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void cgroup_diput(struct dentry *dentry, struct inode *inode) | 
|  | { | 
|  | /* is dentry a directory ? if so, kfree() associated cgroup */ | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | struct cgroup *cgrp = dentry->d_fsdata; | 
|  | struct cgroup_subsys *ss; | 
|  | BUG_ON(!(cgroup_is_removed(cgrp))); | 
|  | /* It's possible for external users to be holding css | 
|  | * reference counts on a cgroup; css_put() needs to | 
|  | * be able to access the cgroup after decrementing | 
|  | * the reference count in order to know if it needs to | 
|  | * queue the cgroup to be handled by the release | 
|  | * agent */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | /* | 
|  | * Release the subsystem state objects. | 
|  | */ | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | if (cgrp->subsys[ss->subsys_id]) | 
|  | ss->destroy(ss, cgrp); | 
|  | } | 
|  |  | 
|  | cgrp->root->number_of_cgroups--; | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* Drop the active superblock reference that we took when we | 
|  | * created the cgroup */ | 
|  | deactivate_super(cgrp->root->sb); | 
|  |  | 
|  | kfree(cgrp); | 
|  | } | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | static void remove_dir(struct dentry *d) | 
|  | { | 
|  | struct dentry *parent = dget(d->d_parent); | 
|  |  | 
|  | d_delete(d); | 
|  | simple_rmdir(parent->d_inode, d); | 
|  | dput(parent); | 
|  | } | 
|  |  | 
|  | static void cgroup_clear_directory(struct dentry *dentry) | 
|  | { | 
|  | struct list_head *node; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); | 
|  | spin_lock(&dcache_lock); | 
|  | node = dentry->d_subdirs.next; | 
|  | while (node != &dentry->d_subdirs) { | 
|  | struct dentry *d = list_entry(node, struct dentry, d_u.d_child); | 
|  | list_del_init(node); | 
|  | if (d->d_inode) { | 
|  | /* This should never be called on a cgroup | 
|  | * directory with child cgroups */ | 
|  | BUG_ON(d->d_inode->i_mode & S_IFDIR); | 
|  | d = dget_locked(d); | 
|  | spin_unlock(&dcache_lock); | 
|  | d_delete(d); | 
|  | simple_unlink(dentry->d_inode, d); | 
|  | dput(d); | 
|  | spin_lock(&dcache_lock); | 
|  | } | 
|  | node = dentry->d_subdirs.next; | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE : the dentry must have been dget()'ed | 
|  | */ | 
|  | static void cgroup_d_remove_dir(struct dentry *dentry) | 
|  | { | 
|  | cgroup_clear_directory(dentry); | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | list_del_init(&dentry->d_u.d_child); | 
|  | spin_unlock(&dcache_lock); | 
|  | remove_dir(dentry); | 
|  | } | 
|  |  | 
|  | static int rebind_subsystems(struct cgroupfs_root *root, | 
|  | unsigned long final_bits) | 
|  | { | 
|  | unsigned long added_bits, removed_bits; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | int i; | 
|  |  | 
|  | removed_bits = root->actual_subsys_bits & ~final_bits; | 
|  | added_bits = final_bits & ~root->actual_subsys_bits; | 
|  | /* Check that any added subsystems are currently free */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | unsigned long bit = 1UL << i; | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (!(bit & added_bits)) | 
|  | continue; | 
|  | if (ss->root != &rootnode) { | 
|  | /* Subsystem isn't free */ | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Currently we don't handle adding/removing subsystems when | 
|  | * any child cgroups exist. This is theoretically supportable | 
|  | * but involves complex error handling, so it's being left until | 
|  | * later */ | 
|  | if (root->number_of_cgroups > 1) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Process each subsystem */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | unsigned long bit = 1UL << i; | 
|  | if (bit & added_bits) { | 
|  | /* We're binding this subsystem to this hierarchy */ | 
|  | BUG_ON(cgrp->subsys[i]); | 
|  | BUG_ON(!dummytop->subsys[i]); | 
|  | BUG_ON(dummytop->subsys[i]->cgroup != dummytop); | 
|  | cgrp->subsys[i] = dummytop->subsys[i]; | 
|  | cgrp->subsys[i]->cgroup = cgrp; | 
|  | list_add(&ss->sibling, &root->subsys_list); | 
|  | rcu_assign_pointer(ss->root, root); | 
|  | if (ss->bind) | 
|  | ss->bind(ss, cgrp); | 
|  |  | 
|  | } else if (bit & removed_bits) { | 
|  | /* We're removing this subsystem */ | 
|  | BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); | 
|  | BUG_ON(cgrp->subsys[i]->cgroup != cgrp); | 
|  | if (ss->bind) | 
|  | ss->bind(ss, dummytop); | 
|  | dummytop->subsys[i]->cgroup = dummytop; | 
|  | cgrp->subsys[i] = NULL; | 
|  | rcu_assign_pointer(subsys[i]->root, &rootnode); | 
|  | list_del(&ss->sibling); | 
|  | } else if (bit & final_bits) { | 
|  | /* Subsystem state should already exist */ | 
|  | BUG_ON(!cgrp->subsys[i]); | 
|  | } else { | 
|  | /* Subsystem state shouldn't exist */ | 
|  | BUG_ON(cgrp->subsys[i]); | 
|  | } | 
|  | } | 
|  | root->subsys_bits = root->actual_subsys_bits = final_bits; | 
|  | synchronize_rcu(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | 
|  | { | 
|  | struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | for_each_subsys(root, ss) | 
|  | seq_printf(seq, ",%s", ss->name); | 
|  | if (test_bit(ROOT_NOPREFIX, &root->flags)) | 
|  | seq_puts(seq, ",noprefix"); | 
|  | if (strlen(root->release_agent_path)) | 
|  | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct cgroup_sb_opts { | 
|  | unsigned long subsys_bits; | 
|  | unsigned long flags; | 
|  | char *release_agent; | 
|  | }; | 
|  |  | 
|  | /* Convert a hierarchy specifier into a bitmask of subsystems and | 
|  | * flags. */ | 
|  | static int parse_cgroupfs_options(char *data, | 
|  | struct cgroup_sb_opts *opts) | 
|  | { | 
|  | char *token, *o = data ?: "all"; | 
|  |  | 
|  | opts->subsys_bits = 0; | 
|  | opts->flags = 0; | 
|  | opts->release_agent = NULL; | 
|  |  | 
|  | while ((token = strsep(&o, ",")) != NULL) { | 
|  | if (!*token) | 
|  | return -EINVAL; | 
|  | if (!strcmp(token, "all")) { | 
|  | /* Add all non-disabled subsystems */ | 
|  | int i; | 
|  | opts->subsys_bits = 0; | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (!ss->disabled) | 
|  | opts->subsys_bits |= 1ul << i; | 
|  | } | 
|  | } else if (!strcmp(token, "noprefix")) { | 
|  | set_bit(ROOT_NOPREFIX, &opts->flags); | 
|  | } else if (!strncmp(token, "release_agent=", 14)) { | 
|  | /* Specifying two release agents is forbidden */ | 
|  | if (opts->release_agent) | 
|  | return -EINVAL; | 
|  | opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 
|  | if (!opts->release_agent) | 
|  | return -ENOMEM; | 
|  | strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 
|  | opts->release_agent[PATH_MAX - 1] = 0; | 
|  | } else { | 
|  | struct cgroup_subsys *ss; | 
|  | int i; | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | ss = subsys[i]; | 
|  | if (!strcmp(token, ss->name)) { | 
|  | if (!ss->disabled) | 
|  | set_bit(i, &opts->subsys_bits); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == CGROUP_SUBSYS_COUNT) | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We can't have an empty hierarchy */ | 
|  | if (!opts->subsys_bits) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_remount(struct super_block *sb, int *flags, char *data) | 
|  | { | 
|  | int ret = 0; | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | struct cgroup_sb_opts opts; | 
|  |  | 
|  | mutex_lock(&cgrp->dentry->d_inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | /* See what subsystems are wanted */ | 
|  | ret = parse_cgroupfs_options(data, &opts); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Don't allow flags to change at remount */ | 
|  | if (opts.flags != root->flags) { | 
|  | ret = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = rebind_subsystems(root, opts.subsys_bits); | 
|  |  | 
|  | /* (re)populate subsystem files */ | 
|  | if (!ret) | 
|  | cgroup_populate_dir(cgrp); | 
|  |  | 
|  | if (opts.release_agent) | 
|  | strcpy(root->release_agent_path, opts.release_agent); | 
|  | out_unlock: | 
|  | if (opts.release_agent) | 
|  | kfree(opts.release_agent); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct super_operations cgroup_ops = { | 
|  | .statfs = simple_statfs, | 
|  | .drop_inode = generic_delete_inode, | 
|  | .show_options = cgroup_show_options, | 
|  | .remount_fs = cgroup_remount, | 
|  | }; | 
|  |  | 
|  | static void init_cgroup_housekeeping(struct cgroup *cgrp) | 
|  | { | 
|  | INIT_LIST_HEAD(&cgrp->sibling); | 
|  | INIT_LIST_HEAD(&cgrp->children); | 
|  | INIT_LIST_HEAD(&cgrp->css_sets); | 
|  | INIT_LIST_HEAD(&cgrp->release_list); | 
|  | init_rwsem(&cgrp->pids_mutex); | 
|  | } | 
|  | static void init_cgroup_root(struct cgroupfs_root *root) | 
|  | { | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | INIT_LIST_HEAD(&root->subsys_list); | 
|  | INIT_LIST_HEAD(&root->root_list); | 
|  | root->number_of_cgroups = 1; | 
|  | cgrp->root = root; | 
|  | cgrp->top_cgroup = cgrp; | 
|  | init_cgroup_housekeeping(cgrp); | 
|  | } | 
|  |  | 
|  | static int cgroup_test_super(struct super_block *sb, void *data) | 
|  | { | 
|  | struct cgroupfs_root *new = data; | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  |  | 
|  | /* First check subsystems */ | 
|  | if (new->subsys_bits != root->subsys_bits) | 
|  | return 0; | 
|  |  | 
|  | /* Next check flags */ | 
|  | if (new->flags != root->flags) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cgroup_set_super(struct super_block *sb, void *data) | 
|  | { | 
|  | int ret; | 
|  | struct cgroupfs_root *root = data; | 
|  |  | 
|  | ret = set_anon_super(sb, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sb->s_fs_info = root; | 
|  | root->sb = sb; | 
|  |  | 
|  | sb->s_blocksize = PAGE_CACHE_SIZE; | 
|  | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
|  | sb->s_magic = CGROUP_SUPER_MAGIC; | 
|  | sb->s_op = &cgroup_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_get_rootdir(struct super_block *sb) | 
|  | { | 
|  | struct inode *inode = | 
|  | cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); | 
|  | struct dentry *dentry; | 
|  |  | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | inode->i_op = &cgroup_dir_inode_operations; | 
|  | /* directories start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | dentry = d_alloc_root(inode); | 
|  | if (!dentry) { | 
|  | iput(inode); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sb->s_root = dentry; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_get_sb(struct file_system_type *fs_type, | 
|  | int flags, const char *unused_dev_name, | 
|  | void *data, struct vfsmount *mnt) | 
|  | { | 
|  | struct cgroup_sb_opts opts; | 
|  | int ret = 0; | 
|  | struct super_block *sb; | 
|  | struct cgroupfs_root *root; | 
|  | struct list_head tmp_cg_links; | 
|  |  | 
|  | /* First find the desired set of subsystems */ | 
|  | ret = parse_cgroupfs_options(data, &opts); | 
|  | if (ret) { | 
|  | if (opts.release_agent) | 
|  | kfree(opts.release_agent); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | root = kzalloc(sizeof(*root), GFP_KERNEL); | 
|  | if (!root) { | 
|  | if (opts.release_agent) | 
|  | kfree(opts.release_agent); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | init_cgroup_root(root); | 
|  | root->subsys_bits = opts.subsys_bits; | 
|  | root->flags = opts.flags; | 
|  | if (opts.release_agent) { | 
|  | strcpy(root->release_agent_path, opts.release_agent); | 
|  | kfree(opts.release_agent); | 
|  | } | 
|  |  | 
|  | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 
|  |  | 
|  | if (IS_ERR(sb)) { | 
|  | kfree(root); | 
|  | return PTR_ERR(sb); | 
|  | } | 
|  |  | 
|  | if (sb->s_fs_info != root) { | 
|  | /* Reusing an existing superblock */ | 
|  | BUG_ON(sb->s_root == NULL); | 
|  | kfree(root); | 
|  | root = NULL; | 
|  | } else { | 
|  | /* New superblock */ | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | struct inode *inode; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sb->s_root != NULL); | 
|  |  | 
|  | ret = cgroup_get_rootdir(sb); | 
|  | if (ret) | 
|  | goto drop_new_super; | 
|  | inode = sb->s_root->d_inode; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * We're accessing css_set_count without locking | 
|  | * css_set_lock here, but that's OK - it can only be | 
|  | * increased by someone holding cgroup_lock, and | 
|  | * that's us. The worst that can happen is that we | 
|  | * have some link structures left over | 
|  | */ | 
|  | ret = allocate_cg_links(css_set_count, &tmp_cg_links); | 
|  | if (ret) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto drop_new_super; | 
|  | } | 
|  |  | 
|  | ret = rebind_subsystems(root, root->subsys_bits); | 
|  | if (ret == -EBUSY) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | goto free_cg_links; | 
|  | } | 
|  |  | 
|  | /* EBUSY should be the only error here */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  | list_add(&root->root_list, &roots); | 
|  | root_count++; | 
|  |  | 
|  | sb->s_root->d_fsdata = &root->top_cgroup; | 
|  | root->top_cgroup.dentry = sb->s_root; | 
|  |  | 
|  | /* Link the top cgroup in this hierarchy into all | 
|  | * the css_set objects */ | 
|  | write_lock(&css_set_lock); | 
|  | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { | 
|  | struct hlist_head *hhead = &css_set_table[i]; | 
|  | struct hlist_node *node; | 
|  | struct css_set *cg; | 
|  |  | 
|  | hlist_for_each_entry(cg, node, hhead, hlist) { | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | BUG_ON(list_empty(&tmp_cg_links)); | 
|  | link = list_entry(tmp_cg_links.next, | 
|  | struct cg_cgroup_link, | 
|  | cgrp_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | link->cg = cg; | 
|  | list_add(&link->cgrp_link_list, | 
|  | &root->top_cgroup.css_sets); | 
|  | list_add(&link->cg_link_list, &cg->cg_links); | 
|  | } | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | free_cg_links(&tmp_cg_links); | 
|  |  | 
|  | BUG_ON(!list_empty(&cgrp->sibling)); | 
|  | BUG_ON(!list_empty(&cgrp->children)); | 
|  | BUG_ON(root->number_of_cgroups != 1); | 
|  |  | 
|  | cgroup_populate_dir(cgrp); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | return simple_set_mnt(mnt, sb); | 
|  |  | 
|  | free_cg_links: | 
|  | free_cg_links(&tmp_cg_links); | 
|  | drop_new_super: | 
|  | up_write(&sb->s_umount); | 
|  | deactivate_super(sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cgroup_kill_sb(struct super_block *sb) { | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | int ret; | 
|  | struct cg_cgroup_link *link; | 
|  | struct cg_cgroup_link *saved_link; | 
|  |  | 
|  | BUG_ON(!root); | 
|  |  | 
|  | BUG_ON(root->number_of_cgroups != 1); | 
|  | BUG_ON(!list_empty(&cgrp->children)); | 
|  | BUG_ON(!list_empty(&cgrp->sibling)); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | /* Rebind all subsystems back to the default hierarchy */ | 
|  | ret = rebind_subsystems(root, 0); | 
|  | /* Shouldn't be able to fail ... */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  | /* | 
|  | * Release all the links from css_sets to this hierarchy's | 
|  | * root cgroup | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  |  | 
|  | list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, | 
|  | cgrp_link_list) { | 
|  | list_del(&link->cg_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | kfree(link); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | if (!list_empty(&root->root_list)) { | 
|  | list_del(&root->root_list); | 
|  | root_count--; | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | kfree(root); | 
|  | kill_litter_super(sb); | 
|  | } | 
|  |  | 
|  | static struct file_system_type cgroup_fs_type = { | 
|  | .name = "cgroup", | 
|  | .get_sb = cgroup_get_sb, | 
|  | .kill_sb = cgroup_kill_sb, | 
|  | }; | 
|  |  | 
|  | static inline struct cgroup *__d_cgrp(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | static inline struct cftype *__d_cft(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_path - generate the path of a cgroup | 
|  | * @cgrp: the cgroup in question | 
|  | * @buf: the buffer to write the path into | 
|  | * @buflen: the length of the buffer | 
|  | * | 
|  | * Called with cgroup_mutex held. Writes path of cgroup into buf. | 
|  | * Returns 0 on success, -errno on error. | 
|  | */ | 
|  | int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | 
|  | { | 
|  | char *start; | 
|  |  | 
|  | if (cgrp == dummytop) { | 
|  | /* | 
|  | * Inactive subsystems have no dentry for their root | 
|  | * cgroup | 
|  | */ | 
|  | strcpy(buf, "/"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | start = buf + buflen; | 
|  |  | 
|  | *--start = '\0'; | 
|  | for (;;) { | 
|  | int len = cgrp->dentry->d_name.len; | 
|  | if ((start -= len) < buf) | 
|  | return -ENAMETOOLONG; | 
|  | memcpy(start, cgrp->dentry->d_name.name, len); | 
|  | cgrp = cgrp->parent; | 
|  | if (!cgrp) | 
|  | break; | 
|  | if (!cgrp->parent) | 
|  | continue; | 
|  | if (--start < buf) | 
|  | return -ENAMETOOLONG; | 
|  | *start = '/'; | 
|  | } | 
|  | memmove(buf, start, buf + buflen - start); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the first subsystem attached to a cgroup's hierarchy, and | 
|  | * its subsystem id. | 
|  | */ | 
|  |  | 
|  | static void get_first_subsys(const struct cgroup *cgrp, | 
|  | struct cgroup_subsys_state **css, int *subsys_id) | 
|  | { | 
|  | const struct cgroupfs_root *root = cgrp->root; | 
|  | const struct cgroup_subsys *test_ss; | 
|  | BUG_ON(list_empty(&root->subsys_list)); | 
|  | test_ss = list_entry(root->subsys_list.next, | 
|  | struct cgroup_subsys, sibling); | 
|  | if (css) { | 
|  | *css = cgrp->subsys[test_ss->subsys_id]; | 
|  | BUG_ON(!*css); | 
|  | } | 
|  | if (subsys_id) | 
|  | *subsys_id = test_ss->subsys_id; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 
|  | * @cgrp: the cgroup the task is attaching to | 
|  | * @tsk: the task to be attached | 
|  | * | 
|  | * Call holding cgroup_mutex. May take task_lock of | 
|  | * the task 'tsk' during call. | 
|  | */ | 
|  | int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | 
|  | { | 
|  | int retval = 0; | 
|  | struct cgroup_subsys *ss; | 
|  | struct cgroup *oldcgrp; | 
|  | struct css_set *cg = tsk->cgroups; | 
|  | struct css_set *newcg; | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | int subsys_id; | 
|  |  | 
|  | get_first_subsys(cgrp, NULL, &subsys_id); | 
|  |  | 
|  | /* Nothing to do if the task is already in that cgroup */ | 
|  | oldcgrp = task_cgroup(tsk, subsys_id); | 
|  | if (cgrp == oldcgrp) | 
|  | return 0; | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->can_attach) { | 
|  | retval = ss->can_attach(ss, cgrp, tsk); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locate or allocate a new css_set for this task, | 
|  | * based on its final set of cgroups | 
|  | */ | 
|  | newcg = find_css_set(cg, cgrp); | 
|  | if (!newcg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | task_lock(tsk); | 
|  | if (tsk->flags & PF_EXITING) { | 
|  | task_unlock(tsk); | 
|  | put_css_set(newcg); | 
|  | return -ESRCH; | 
|  | } | 
|  | rcu_assign_pointer(tsk->cgroups, newcg); | 
|  | task_unlock(tsk); | 
|  |  | 
|  | /* Update the css_set linked lists if we're using them */ | 
|  | write_lock(&css_set_lock); | 
|  | if (!list_empty(&tsk->cg_list)) { | 
|  | list_del(&tsk->cg_list); | 
|  | list_add(&tsk->cg_list, &newcg->tasks); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->attach) | 
|  | ss->attach(ss, cgrp, oldcgrp, tsk); | 
|  | } | 
|  | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 
|  | synchronize_rcu(); | 
|  | put_css_set(cg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex | 
|  | * held. May take task_lock of task | 
|  | */ | 
|  | static int attach_task_by_pid(struct cgroup *cgrp, u64 pid) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  | int ret; | 
|  |  | 
|  | if (pid) { | 
|  | rcu_read_lock(); | 
|  | tsk = find_task_by_vpid(pid); | 
|  | if (!tsk || tsk->flags & PF_EXITING) { | 
|  | rcu_read_unlock(); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | tcred = __task_cred(tsk); | 
|  | if (cred->euid && | 
|  | cred->euid != tcred->uid && | 
|  | cred->euid != tcred->suid) { | 
|  | rcu_read_unlock(); | 
|  | return -EACCES; | 
|  | } | 
|  | get_task_struct(tsk); | 
|  | rcu_read_unlock(); | 
|  | } else { | 
|  | tsk = current; | 
|  | get_task_struct(tsk); | 
|  | } | 
|  |  | 
|  | ret = cgroup_attach_task(cgrp, tsk); | 
|  | put_task_struct(tsk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | 
|  | { | 
|  | int ret; | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | ret = attach_task_by_pid(cgrp, pid); | 
|  | cgroup_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* The various types of files and directories in a cgroup file system */ | 
|  | enum cgroup_filetype { | 
|  | FILE_ROOT, | 
|  | FILE_DIR, | 
|  | FILE_TASKLIST, | 
|  | FILE_NOTIFY_ON_RELEASE, | 
|  | FILE_RELEASE_AGENT, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 
|  | * @cgrp: the cgroup to be checked for liveness | 
|  | * | 
|  | * On success, returns true; the lock should be later released with | 
|  | * cgroup_unlock(). On failure returns false with no lock held. | 
|  | */ | 
|  | bool cgroup_lock_live_group(struct cgroup *cgrp) | 
|  | { | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if (cgroup_is_removed(cgrp)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, | 
|  | const char *buffer) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | strcpy(cgrp->root->release_agent_path, buffer); | 
|  | cgroup_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | seq_puts(seq, cgrp->root->release_agent_path); | 
|  | seq_putc(seq, '\n'); | 
|  | cgroup_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* A buffer size big enough for numbers or short strings */ | 
|  | #define CGROUP_LOCAL_BUFFER_SIZE 64 | 
|  |  | 
|  | static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | char buffer[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | int retval = 0; | 
|  | char *end; | 
|  |  | 
|  | if (!nbytes) | 
|  | return -EINVAL; | 
|  | if (nbytes >= sizeof(buffer)) | 
|  | return -E2BIG; | 
|  | if (copy_from_user(buffer, userbuf, nbytes)) | 
|  | return -EFAULT; | 
|  |  | 
|  | buffer[nbytes] = 0;     /* nul-terminate */ | 
|  | strstrip(buffer); | 
|  | if (cft->write_u64) { | 
|  | u64 val = simple_strtoull(buffer, &end, 0); | 
|  | if (*end) | 
|  | return -EINVAL; | 
|  | retval = cft->write_u64(cgrp, cft, val); | 
|  | } else { | 
|  | s64 val = simple_strtoll(buffer, &end, 0); | 
|  | if (*end) | 
|  | return -EINVAL; | 
|  | retval = cft->write_s64(cgrp, cft, val); | 
|  | } | 
|  | if (!retval) | 
|  | retval = nbytes; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | int retval = 0; | 
|  | size_t max_bytes = cft->max_write_len; | 
|  | char *buffer = local_buffer; | 
|  |  | 
|  | if (!max_bytes) | 
|  | max_bytes = sizeof(local_buffer) - 1; | 
|  | if (nbytes >= max_bytes) | 
|  | return -E2BIG; | 
|  | /* Allocate a dynamic buffer if we need one */ | 
|  | if (nbytes >= sizeof(local_buffer)) { | 
|  | buffer = kmalloc(nbytes + 1, GFP_KERNEL); | 
|  | if (buffer == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { | 
|  | retval = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buffer[nbytes] = 0;     /* nul-terminate */ | 
|  | strstrip(buffer); | 
|  | retval = cft->write_string(cgrp, cft, buffer); | 
|  | if (!retval) | 
|  | retval = nbytes; | 
|  | out: | 
|  | if (buffer != local_buffer) | 
|  | kfree(buffer); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_file_write(struct file *file, const char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (!cft || cgroup_is_removed(cgrp)) | 
|  | return -ENODEV; | 
|  | if (cft->write) | 
|  | return cft->write(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->write_u64 || cft->write_s64) | 
|  | return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->write_string) | 
|  | return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->trigger) { | 
|  | int ret = cft->trigger(cgrp, (unsigned int)cft->private); | 
|  | return ret ? ret : nbytes; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | u64 val = cft->read_u64(cgrp, cft); | 
|  | int len = sprintf(tmp, "%llu\n", (unsigned long long) val); | 
|  |  | 
|  | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | s64 val = cft->read_s64(cgrp, cft); | 
|  | int len = sprintf(tmp, "%lld\n", (long long) val); | 
|  |  | 
|  | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_file_read(struct file *file, char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (!cft || cgroup_is_removed(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (cft->read) | 
|  | return cft->read(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->read_u64) | 
|  | return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->read_s64) | 
|  | return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * seqfile ops/methods for returning structured data. Currently just | 
|  | * supports string->u64 maps, but can be extended in future. | 
|  | */ | 
|  |  | 
|  | struct cgroup_seqfile_state { | 
|  | struct cftype *cft; | 
|  | struct cgroup *cgroup; | 
|  | }; | 
|  |  | 
|  | static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) | 
|  | { | 
|  | struct seq_file *sf = cb->state; | 
|  | return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); | 
|  | } | 
|  |  | 
|  | static int cgroup_seqfile_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | struct cgroup_seqfile_state *state = m->private; | 
|  | struct cftype *cft = state->cft; | 
|  | if (cft->read_map) { | 
|  | struct cgroup_map_cb cb = { | 
|  | .fill = cgroup_map_add, | 
|  | .state = m, | 
|  | }; | 
|  | return cft->read_map(state->cgroup, cft, &cb); | 
|  | } | 
|  | return cft->read_seq_string(state->cgroup, cft, m); | 
|  | } | 
|  |  | 
|  | static int cgroup_seqfile_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct seq_file *seq = file->private_data; | 
|  | kfree(seq->private); | 
|  | return single_release(inode, file); | 
|  | } | 
|  |  | 
|  | static struct file_operations cgroup_seqfile_operations = { | 
|  | .read = seq_read, | 
|  | .write = cgroup_file_write, | 
|  | .llseek = seq_lseek, | 
|  | .release = cgroup_seqfile_release, | 
|  | }; | 
|  |  | 
|  | static int cgroup_file_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | int err; | 
|  | struct cftype *cft; | 
|  |  | 
|  | err = generic_file_open(inode, file); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | cft = __d_cft(file->f_dentry); | 
|  | if (!cft) | 
|  | return -ENODEV; | 
|  | if (cft->read_map || cft->read_seq_string) { | 
|  | struct cgroup_seqfile_state *state = | 
|  | kzalloc(sizeof(*state), GFP_USER); | 
|  | if (!state) | 
|  | return -ENOMEM; | 
|  | state->cft = cft; | 
|  | state->cgroup = __d_cgrp(file->f_dentry->d_parent); | 
|  | file->f_op = &cgroup_seqfile_operations; | 
|  | err = single_open(file, cgroup_seqfile_show, state); | 
|  | if (err < 0) | 
|  | kfree(state); | 
|  | } else if (cft->open) | 
|  | err = cft->open(inode, file); | 
|  | else | 
|  | err = 0; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cgroup_file_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | if (cft->release) | 
|  | return cft->release(inode, file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_rename - Only allow simple rename of directories in place. | 
|  | */ | 
|  | static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | 
|  | struct inode *new_dir, struct dentry *new_dentry) | 
|  | { | 
|  | if (!S_ISDIR(old_dentry->d_inode->i_mode)) | 
|  | return -ENOTDIR; | 
|  | if (new_dentry->d_inode) | 
|  | return -EEXIST; | 
|  | if (old_dir != new_dir) | 
|  | return -EIO; | 
|  | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); | 
|  | } | 
|  |  | 
|  | static struct file_operations cgroup_file_operations = { | 
|  | .read = cgroup_file_read, | 
|  | .write = cgroup_file_write, | 
|  | .llseek = generic_file_llseek, | 
|  | .open = cgroup_file_open, | 
|  | .release = cgroup_file_release, | 
|  | }; | 
|  |  | 
|  | static struct inode_operations cgroup_dir_inode_operations = { | 
|  | .lookup = simple_lookup, | 
|  | .mkdir = cgroup_mkdir, | 
|  | .rmdir = cgroup_rmdir, | 
|  | .rename = cgroup_rename, | 
|  | }; | 
|  |  | 
|  | static int cgroup_create_file(struct dentry *dentry, int mode, | 
|  | struct super_block *sb) | 
|  | { | 
|  | static struct dentry_operations cgroup_dops = { | 
|  | .d_iput = cgroup_diput, | 
|  | }; | 
|  |  | 
|  | struct inode *inode; | 
|  |  | 
|  | if (!dentry) | 
|  | return -ENOENT; | 
|  | if (dentry->d_inode) | 
|  | return -EEXIST; | 
|  |  | 
|  | inode = cgroup_new_inode(mode, sb); | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (S_ISDIR(mode)) { | 
|  | inode->i_op = &cgroup_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  |  | 
|  | /* start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  |  | 
|  | /* start with the directory inode held, so that we can | 
|  | * populate it without racing with another mkdir */ | 
|  | mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); | 
|  | } else if (S_ISREG(mode)) { | 
|  | inode->i_size = 0; | 
|  | inode->i_fop = &cgroup_file_operations; | 
|  | } | 
|  | dentry->d_op = &cgroup_dops; | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry);	/* Extra count - pin the dentry in core */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_create_dir - create a directory for an object. | 
|  | * @cgrp: the cgroup we create the directory for. It must have a valid | 
|  | *        ->parent field. And we are going to fill its ->dentry field. | 
|  | * @dentry: dentry of the new cgroup | 
|  | * @mode: mode to set on new directory. | 
|  | */ | 
|  | static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, | 
|  | int mode) | 
|  | { | 
|  | struct dentry *parent; | 
|  | int error = 0; | 
|  |  | 
|  | parent = cgrp->parent->dentry; | 
|  | error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); | 
|  | if (!error) { | 
|  | dentry->d_fsdata = cgrp; | 
|  | inc_nlink(parent->d_inode); | 
|  | cgrp->dentry = dentry; | 
|  | dget(dentry); | 
|  | } | 
|  | dput(dentry); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int cgroup_add_file(struct cgroup *cgrp, | 
|  | struct cgroup_subsys *subsys, | 
|  | const struct cftype *cft) | 
|  | { | 
|  | struct dentry *dir = cgrp->dentry; | 
|  | struct dentry *dentry; | 
|  | int error; | 
|  |  | 
|  | char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; | 
|  | if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { | 
|  | strcpy(name, subsys->name); | 
|  | strcat(name, "."); | 
|  | } | 
|  | strcat(name, cft->name); | 
|  | BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); | 
|  | dentry = lookup_one_len(name, dir, strlen(name)); | 
|  | if (!IS_ERR(dentry)) { | 
|  | error = cgroup_create_file(dentry, 0644 | S_IFREG, | 
|  | cgrp->root->sb); | 
|  | if (!error) | 
|  | dentry->d_fsdata = (void *)cft; | 
|  | dput(dentry); | 
|  | } else | 
|  | error = PTR_ERR(dentry); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int cgroup_add_files(struct cgroup *cgrp, | 
|  | struct cgroup_subsys *subsys, | 
|  | const struct cftype cft[], | 
|  | int count) | 
|  | { | 
|  | int i, err; | 
|  | for (i = 0; i < count; i++) { | 
|  | err = cgroup_add_file(cgrp, subsys, &cft[i]); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_task_count - count the number of tasks in a cgroup. | 
|  | * @cgrp: the cgroup in question | 
|  | * | 
|  | * Return the number of tasks in the cgroup. | 
|  | */ | 
|  | int cgroup_task_count(const struct cgroup *cgrp) | 
|  | { | 
|  | int count = 0; | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { | 
|  | count += atomic_read(&link->cg->refcount); | 
|  | } | 
|  | read_unlock(&css_set_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance a list_head iterator.  The iterator should be positioned at | 
|  | * the start of a css_set | 
|  | */ | 
|  | static void cgroup_advance_iter(struct cgroup *cgrp, | 
|  | struct cgroup_iter *it) | 
|  | { | 
|  | struct list_head *l = it->cg_link; | 
|  | struct cg_cgroup_link *link; | 
|  | struct css_set *cg; | 
|  |  | 
|  | /* Advance to the next non-empty css_set */ | 
|  | do { | 
|  | l = l->next; | 
|  | if (l == &cgrp->css_sets) { | 
|  | it->cg_link = NULL; | 
|  | return; | 
|  | } | 
|  | link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); | 
|  | cg = link->cg; | 
|  | } while (list_empty(&cg->tasks)); | 
|  | it->cg_link = l; | 
|  | it->task = cg->tasks.next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To reduce the fork() overhead for systems that are not actually | 
|  | * using their cgroups capability, we don't maintain the lists running | 
|  | * through each css_set to its tasks until we see the list actually | 
|  | * used - in other words after the first call to cgroup_iter_start(). | 
|  | * | 
|  | * The tasklist_lock is not held here, as do_each_thread() and | 
|  | * while_each_thread() are protected by RCU. | 
|  | */ | 
|  | static void cgroup_enable_task_cg_lists(void) | 
|  | { | 
|  | struct task_struct *p, *g; | 
|  | write_lock(&css_set_lock); | 
|  | use_task_css_set_links = 1; | 
|  | do_each_thread(g, p) { | 
|  | task_lock(p); | 
|  | /* | 
|  | * We should check if the process is exiting, otherwise | 
|  | * it will race with cgroup_exit() in that the list | 
|  | * entry won't be deleted though the process has exited. | 
|  | */ | 
|  | if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) | 
|  | list_add(&p->cg_list, &p->cgroups->tasks); | 
|  | task_unlock(p); | 
|  | } while_each_thread(g, p); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | { | 
|  | /* | 
|  | * The first time anyone tries to iterate across a cgroup, | 
|  | * we need to enable the list linking each css_set to its | 
|  | * tasks, and fix up all existing tasks. | 
|  | */ | 
|  | if (!use_task_css_set_links) | 
|  | cgroup_enable_task_cg_lists(); | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | it->cg_link = &cgrp->css_sets; | 
|  | cgroup_advance_iter(cgrp, it); | 
|  | } | 
|  |  | 
|  | struct task_struct *cgroup_iter_next(struct cgroup *cgrp, | 
|  | struct cgroup_iter *it) | 
|  | { | 
|  | struct task_struct *res; | 
|  | struct list_head *l = it->task; | 
|  |  | 
|  | /* If the iterator cg is NULL, we have no tasks */ | 
|  | if (!it->cg_link) | 
|  | return NULL; | 
|  | res = list_entry(l, struct task_struct, cg_list); | 
|  | /* Advance iterator to find next entry */ | 
|  | l = l->next; | 
|  | if (l == &res->cgroups->tasks) { | 
|  | /* We reached the end of this task list - move on to | 
|  | * the next cg_cgroup_link */ | 
|  | cgroup_advance_iter(cgrp, it); | 
|  | } else { | 
|  | it->task = l; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | { | 
|  | read_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | static inline int started_after_time(struct task_struct *t1, | 
|  | struct timespec *time, | 
|  | struct task_struct *t2) | 
|  | { | 
|  | int start_diff = timespec_compare(&t1->start_time, time); | 
|  | if (start_diff > 0) { | 
|  | return 1; | 
|  | } else if (start_diff < 0) { | 
|  | return 0; | 
|  | } else { | 
|  | /* | 
|  | * Arbitrarily, if two processes started at the same | 
|  | * time, we'll say that the lower pointer value | 
|  | * started first. Note that t2 may have exited by now | 
|  | * so this may not be a valid pointer any longer, but | 
|  | * that's fine - it still serves to distinguish | 
|  | * between two tasks started (effectively) simultaneously. | 
|  | */ | 
|  | return t1 > t2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is a callback from heap_insert() and is used to order | 
|  | * the heap. | 
|  | * In this case we order the heap in descending task start time. | 
|  | */ | 
|  | static inline int started_after(void *p1, void *p2) | 
|  | { | 
|  | struct task_struct *t1 = p1; | 
|  | struct task_struct *t2 = p2; | 
|  | return started_after_time(t1, &t2->start_time, t2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_scan_tasks - iterate though all the tasks in a cgroup | 
|  | * @scan: struct cgroup_scanner containing arguments for the scan | 
|  | * | 
|  | * Arguments include pointers to callback functions test_task() and | 
|  | * process_task(). | 
|  | * Iterate through all the tasks in a cgroup, calling test_task() for each, | 
|  | * and if it returns true, call process_task() for it also. | 
|  | * The test_task pointer may be NULL, meaning always true (select all tasks). | 
|  | * Effectively duplicates cgroup_iter_{start,next,end}() | 
|  | * but does not lock css_set_lock for the call to process_task(). | 
|  | * The struct cgroup_scanner may be embedded in any structure of the caller's | 
|  | * creation. | 
|  | * It is guaranteed that process_task() will act on every task that | 
|  | * is a member of the cgroup for the duration of this call. This | 
|  | * function may or may not call process_task() for tasks that exit | 
|  | * or move to a different cgroup during the call, or are forked or | 
|  | * move into the cgroup during the call. | 
|  | * | 
|  | * Note that test_task() may be called with locks held, and may in some | 
|  | * situations be called multiple times for the same task, so it should | 
|  | * be cheap. | 
|  | * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been | 
|  | * pre-allocated and will be used for heap operations (and its "gt" member will | 
|  | * be overwritten), else a temporary heap will be used (allocation of which | 
|  | * may cause this function to fail). | 
|  | */ | 
|  | int cgroup_scan_tasks(struct cgroup_scanner *scan) | 
|  | { | 
|  | int retval, i; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *p, *dropped; | 
|  | /* Never dereference latest_task, since it's not refcounted */ | 
|  | struct task_struct *latest_task = NULL; | 
|  | struct ptr_heap tmp_heap; | 
|  | struct ptr_heap *heap; | 
|  | struct timespec latest_time = { 0, 0 }; | 
|  |  | 
|  | if (scan->heap) { | 
|  | /* The caller supplied our heap and pre-allocated its memory */ | 
|  | heap = scan->heap; | 
|  | heap->gt = &started_after; | 
|  | } else { | 
|  | /* We need to allocate our own heap memory */ | 
|  | heap = &tmp_heap; | 
|  | retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); | 
|  | if (retval) | 
|  | /* cannot allocate the heap */ | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * Scan tasks in the cgroup, using the scanner's "test_task" callback | 
|  | * to determine which are of interest, and using the scanner's | 
|  | * "process_task" callback to process any of them that need an update. | 
|  | * Since we don't want to hold any locks during the task updates, | 
|  | * gather tasks to be processed in a heap structure. | 
|  | * The heap is sorted by descending task start time. | 
|  | * If the statically-sized heap fills up, we overflow tasks that | 
|  | * started later, and in future iterations only consider tasks that | 
|  | * started after the latest task in the previous pass. This | 
|  | * guarantees forward progress and that we don't miss any tasks. | 
|  | */ | 
|  | heap->size = 0; | 
|  | cgroup_iter_start(scan->cg, &it); | 
|  | while ((p = cgroup_iter_next(scan->cg, &it))) { | 
|  | /* | 
|  | * Only affect tasks that qualify per the caller's callback, | 
|  | * if he provided one | 
|  | */ | 
|  | if (scan->test_task && !scan->test_task(p, scan)) | 
|  | continue; | 
|  | /* | 
|  | * Only process tasks that started after the last task | 
|  | * we processed | 
|  | */ | 
|  | if (!started_after_time(p, &latest_time, latest_task)) | 
|  | continue; | 
|  | dropped = heap_insert(heap, p); | 
|  | if (dropped == NULL) { | 
|  | /* | 
|  | * The new task was inserted; the heap wasn't | 
|  | * previously full | 
|  | */ | 
|  | get_task_struct(p); | 
|  | } else if (dropped != p) { | 
|  | /* | 
|  | * The new task was inserted, and pushed out a | 
|  | * different task | 
|  | */ | 
|  | get_task_struct(p); | 
|  | put_task_struct(dropped); | 
|  | } | 
|  | /* | 
|  | * Else the new task was newer than anything already in | 
|  | * the heap and wasn't inserted | 
|  | */ | 
|  | } | 
|  | cgroup_iter_end(scan->cg, &it); | 
|  |  | 
|  | if (heap->size) { | 
|  | for (i = 0; i < heap->size; i++) { | 
|  | struct task_struct *q = heap->ptrs[i]; | 
|  | if (i == 0) { | 
|  | latest_time = q->start_time; | 
|  | latest_task = q; | 
|  | } | 
|  | /* Process the task per the caller's callback */ | 
|  | scan->process_task(q, scan); | 
|  | put_task_struct(q); | 
|  | } | 
|  | /* | 
|  | * If we had to process any tasks at all, scan again | 
|  | * in case some of them were in the middle of forking | 
|  | * children that didn't get processed. | 
|  | * Not the most efficient way to do it, but it avoids | 
|  | * having to take callback_mutex in the fork path | 
|  | */ | 
|  | goto again; | 
|  | } | 
|  | if (heap == &tmp_heap) | 
|  | heap_free(&tmp_heap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stuff for reading the 'tasks' file. | 
|  | * | 
|  | * Reading this file can return large amounts of data if a cgroup has | 
|  | * *lots* of attached tasks. So it may need several calls to read(), | 
|  | * but we cannot guarantee that the information we produce is correct | 
|  | * unless we produce it entirely atomically. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 
|  | * 'cgrp'.  Return actual number of pids loaded.  No need to | 
|  | * task_lock(p) when reading out p->cgroup, since we're in an RCU | 
|  | * read section, so the css_set can't go away, and is | 
|  | * immutable after creation. | 
|  | */ | 
|  | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 
|  | { | 
|  | int n = 0; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *tsk; | 
|  | cgroup_iter_start(cgrp, &it); | 
|  | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
|  | if (unlikely(n == npids)) | 
|  | break; | 
|  | pidarray[n++] = task_pid_vnr(tsk); | 
|  | } | 
|  | cgroup_iter_end(cgrp, &it); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroupstats_build - build and fill cgroupstats | 
|  | * @stats: cgroupstats to fill information into | 
|  | * @dentry: A dentry entry belonging to the cgroup for which stats have | 
|  | * been requested. | 
|  | * | 
|  | * Build and fill cgroupstats so that taskstats can export it to user | 
|  | * space. | 
|  | */ | 
|  | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct cgroup *cgrp; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | /* | 
|  | * Validate dentry by checking the superblock operations, | 
|  | * and make sure it's a directory. | 
|  | */ | 
|  | if (dentry->d_sb->s_op != &cgroup_ops || | 
|  | !S_ISDIR(dentry->d_inode->i_mode)) | 
|  | goto err; | 
|  |  | 
|  | ret = 0; | 
|  | cgrp = dentry->d_fsdata; | 
|  | rcu_read_lock(); | 
|  |  | 
|  | cgroup_iter_start(cgrp, &it); | 
|  | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
|  | switch (tsk->state) { | 
|  | case TASK_RUNNING: | 
|  | stats->nr_running++; | 
|  | break; | 
|  | case TASK_INTERRUPTIBLE: | 
|  | stats->nr_sleeping++; | 
|  | break; | 
|  | case TASK_UNINTERRUPTIBLE: | 
|  | stats->nr_uninterruptible++; | 
|  | break; | 
|  | case TASK_STOPPED: | 
|  | stats->nr_stopped++; | 
|  | break; | 
|  | default: | 
|  | if (delayacct_is_task_waiting_on_io(tsk)) | 
|  | stats->nr_io_wait++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | cgroup_iter_end(cgrp, &it); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cmppid(const void *a, const void *b) | 
|  | { | 
|  | return *(pid_t *)a - *(pid_t *)b; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * seq_file methods for the "tasks" file. The seq_file position is the | 
|  | * next pid to display; the seq_file iterator is a pointer to the pid | 
|  | * in the cgroup->tasks_pids array. | 
|  | */ | 
|  |  | 
|  | static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | 
|  | { | 
|  | /* | 
|  | * Initially we receive a position value that corresponds to | 
|  | * one more than the last pid shown (or 0 on the first call or | 
|  | * after a seek to the start). Use a binary-search to find the | 
|  | * next pid to display, if any | 
|  | */ | 
|  | struct cgroup *cgrp = s->private; | 
|  | int index = 0, pid = *pos; | 
|  | int *iter; | 
|  |  | 
|  | down_read(&cgrp->pids_mutex); | 
|  | if (pid) { | 
|  | int end = cgrp->pids_length; | 
|  |  | 
|  | while (index < end) { | 
|  | int mid = (index + end) / 2; | 
|  | if (cgrp->tasks_pids[mid] == pid) { | 
|  | index = mid; | 
|  | break; | 
|  | } else if (cgrp->tasks_pids[mid] <= pid) | 
|  | index = mid + 1; | 
|  | else | 
|  | end = mid; | 
|  | } | 
|  | } | 
|  | /* If we're off the end of the array, we're done */ | 
|  | if (index >= cgrp->pids_length) | 
|  | return NULL; | 
|  | /* Update the abstract position to be the actual pid that we found */ | 
|  | iter = cgrp->tasks_pids + index; | 
|  | *pos = *iter; | 
|  | return iter; | 
|  | } | 
|  |  | 
|  | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 
|  | { | 
|  | struct cgroup *cgrp = s->private; | 
|  | up_read(&cgrp->pids_mutex); | 
|  | } | 
|  |  | 
|  | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 
|  | { | 
|  | struct cgroup *cgrp = s->private; | 
|  | int *p = v; | 
|  | int *end = cgrp->tasks_pids + cgrp->pids_length; | 
|  |  | 
|  | /* | 
|  | * Advance to the next pid in the array. If this goes off the | 
|  | * end, we're done | 
|  | */ | 
|  | p++; | 
|  | if (p >= end) { | 
|  | return NULL; | 
|  | } else { | 
|  | *pos = *p; | 
|  | return p; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cgroup_tasks_show(struct seq_file *s, void *v) | 
|  | { | 
|  | return seq_printf(s, "%d\n", *(int *)v); | 
|  | } | 
|  |  | 
|  | static struct seq_operations cgroup_tasks_seq_operations = { | 
|  | .start = cgroup_tasks_start, | 
|  | .stop = cgroup_tasks_stop, | 
|  | .next = cgroup_tasks_next, | 
|  | .show = cgroup_tasks_show, | 
|  | }; | 
|  |  | 
|  | static void release_cgroup_pid_array(struct cgroup *cgrp) | 
|  | { | 
|  | down_write(&cgrp->pids_mutex); | 
|  | BUG_ON(!cgrp->pids_use_count); | 
|  | if (!--cgrp->pids_use_count) { | 
|  | kfree(cgrp->tasks_pids); | 
|  | cgrp->tasks_pids = NULL; | 
|  | cgrp->pids_length = 0; | 
|  | } | 
|  | up_write(&cgrp->pids_mutex); | 
|  | } | 
|  |  | 
|  | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  |  | 
|  | release_cgroup_pid_array(cgrp); | 
|  | return seq_release(inode, file); | 
|  | } | 
|  |  | 
|  | static struct file_operations cgroup_tasks_operations = { | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .write = cgroup_file_write, | 
|  | .release = cgroup_tasks_release, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Handle an open on 'tasks' file.  Prepare an array containing the | 
|  | * process id's of tasks currently attached to the cgroup being opened. | 
|  | */ | 
|  |  | 
|  | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 
|  | { | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  | pid_t *pidarray; | 
|  | int npids; | 
|  | int retval; | 
|  |  | 
|  | /* Nothing to do for write-only files */ | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If cgroup gets more users after we read count, we won't have | 
|  | * enough space - tough.  This race is indistinguishable to the | 
|  | * caller from the case that the additional cgroup users didn't | 
|  | * show up until sometime later on. | 
|  | */ | 
|  | npids = cgroup_task_count(cgrp); | 
|  | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | 
|  | if (!pidarray) | 
|  | return -ENOMEM; | 
|  | npids = pid_array_load(pidarray, npids, cgrp); | 
|  | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | 
|  |  | 
|  | /* | 
|  | * Store the array in the cgroup, freeing the old | 
|  | * array if necessary | 
|  | */ | 
|  | down_write(&cgrp->pids_mutex); | 
|  | kfree(cgrp->tasks_pids); | 
|  | cgrp->tasks_pids = pidarray; | 
|  | cgrp->pids_length = npids; | 
|  | cgrp->pids_use_count++; | 
|  | up_write(&cgrp->pids_mutex); | 
|  |  | 
|  | file->f_op = &cgroup_tasks_operations; | 
|  |  | 
|  | retval = seq_open(file, &cgroup_tasks_seq_operations); | 
|  | if (retval) { | 
|  | release_cgroup_pid_array(cgrp); | 
|  | return retval; | 
|  | } | 
|  | ((struct seq_file *)file->private_data)->private = cgrp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return notify_on_release(cgrp); | 
|  | } | 
|  |  | 
|  | static int cgroup_write_notify_on_release(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | clear_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | if (val) | 
|  | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | else | 
|  | clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for the common functions, 'private' gives the type of file | 
|  | */ | 
|  | static struct cftype files[] = { | 
|  | { | 
|  | .name = "tasks", | 
|  | .open = cgroup_tasks_open, | 
|  | .write_u64 = cgroup_tasks_write, | 
|  | .release = cgroup_tasks_release, | 
|  | .private = FILE_TASKLIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "notify_on_release", | 
|  | .read_u64 = cgroup_read_notify_on_release, | 
|  | .write_u64 = cgroup_write_notify_on_release, | 
|  | .private = FILE_NOTIFY_ON_RELEASE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_release_agent = { | 
|  | .name = "release_agent", | 
|  | .read_seq_string = cgroup_release_agent_show, | 
|  | .write_string = cgroup_release_agent_write, | 
|  | .max_write_len = PATH_MAX, | 
|  | .private = FILE_RELEASE_AGENT, | 
|  | }; | 
|  |  | 
|  | static int cgroup_populate_dir(struct cgroup *cgrp) | 
|  | { | 
|  | int err; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | /* First clear out any existing files */ | 
|  | cgroup_clear_directory(cgrp->dentry); | 
|  |  | 
|  | err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (cgrp == cgrp->top_cgroup) { | 
|  | if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_cgroup_css(struct cgroup_subsys_state *css, | 
|  | struct cgroup_subsys *ss, | 
|  | struct cgroup *cgrp) | 
|  | { | 
|  | css->cgroup = cgrp; | 
|  | atomic_set(&css->refcnt, 0); | 
|  | css->flags = 0; | 
|  | if (cgrp == dummytop) | 
|  | set_bit(CSS_ROOT, &css->flags); | 
|  | BUG_ON(cgrp->subsys[ss->subsys_id]); | 
|  | cgrp->subsys[ss->subsys_id] = css; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_create - create a cgroup | 
|  | * @parent: cgroup that will be parent of the new cgroup | 
|  | * @dentry: dentry of the new cgroup | 
|  | * @mode: mode to set on new inode | 
|  | * | 
|  | * Must be called with the mutex on the parent inode held | 
|  | */ | 
|  | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, | 
|  | int mode) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct cgroupfs_root *root = parent->root; | 
|  | int err = 0; | 
|  | struct cgroup_subsys *ss; | 
|  | struct super_block *sb = root->sb; | 
|  |  | 
|  | cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); | 
|  | if (!cgrp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Grab a reference on the superblock so the hierarchy doesn't | 
|  | * get deleted on unmount if there are child cgroups.  This | 
|  | * can be done outside cgroup_mutex, since the sb can't | 
|  | * disappear while someone has an open control file on the | 
|  | * fs */ | 
|  | atomic_inc(&sb->s_active); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | init_cgroup_housekeeping(cgrp); | 
|  |  | 
|  | cgrp->parent = parent; | 
|  | cgrp->root = parent->root; | 
|  | cgrp->top_cgroup = parent->top_cgroup; | 
|  |  | 
|  | if (notify_on_release(parent)) | 
|  | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | struct cgroup_subsys_state *css = ss->create(ss, cgrp); | 
|  | if (IS_ERR(css)) { | 
|  | err = PTR_ERR(css); | 
|  | goto err_destroy; | 
|  | } | 
|  | init_cgroup_css(css, ss, cgrp); | 
|  | } | 
|  |  | 
|  | list_add(&cgrp->sibling, &cgrp->parent->children); | 
|  | root->number_of_cgroups++; | 
|  |  | 
|  | err = cgroup_create_dir(cgrp, dentry, mode); | 
|  | if (err < 0) | 
|  | goto err_remove; | 
|  |  | 
|  | /* The cgroup directory was pre-locked for us */ | 
|  | BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); | 
|  |  | 
|  | err = cgroup_populate_dir(cgrp); | 
|  | /* If err < 0, we have a half-filled directory - oh well ;) */ | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_remove: | 
|  |  | 
|  | list_del(&cgrp->sibling); | 
|  | root->number_of_cgroups--; | 
|  |  | 
|  | err_destroy: | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | if (cgrp->subsys[ss->subsys_id]) | 
|  | ss->destroy(ss, cgrp); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* Release the reference count that we took on the superblock */ | 
|  | deactivate_super(sb); | 
|  |  | 
|  | kfree(cgrp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode) | 
|  | { | 
|  | struct cgroup *c_parent = dentry->d_parent->d_fsdata; | 
|  |  | 
|  | /* the vfs holds inode->i_mutex already */ | 
|  | return cgroup_create(c_parent, dentry, mode | S_IFDIR); | 
|  | } | 
|  |  | 
|  | static int cgroup_has_css_refs(struct cgroup *cgrp) | 
|  | { | 
|  | /* Check the reference count on each subsystem. Since we | 
|  | * already established that there are no tasks in the | 
|  | * cgroup, if the css refcount is also 0, then there should | 
|  | * be no outstanding references, so the subsystem is safe to | 
|  | * destroy. We scan across all subsystems rather than using | 
|  | * the per-hierarchy linked list of mounted subsystems since | 
|  | * we can be called via check_for_release() with no | 
|  | * synchronization other than RCU, and the subsystem linked | 
|  | * list isn't RCU-safe */ | 
|  | int i; | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | struct cgroup_subsys_state *css; | 
|  | /* Skip subsystems not in this hierarchy */ | 
|  | if (ss->root != cgrp->root) | 
|  | continue; | 
|  | css = cgrp->subsys[ss->subsys_id]; | 
|  | /* When called from check_for_release() it's possible | 
|  | * that by this point the cgroup has been removed | 
|  | * and the css deleted. But a false-positive doesn't | 
|  | * matter, since it can only happen if the cgroup | 
|  | * has been deleted and hence no longer needs the | 
|  | * release agent to be called anyway. */ | 
|  | if (css && atomic_read(&css->refcnt)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) | 
|  | { | 
|  | struct cgroup *cgrp = dentry->d_fsdata; | 
|  | struct dentry *d; | 
|  | struct cgroup *parent; | 
|  | struct super_block *sb; | 
|  | struct cgroupfs_root *root; | 
|  |  | 
|  | /* the vfs holds both inode->i_mutex already */ | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if (atomic_read(&cgrp->count) != 0) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  | if (!list_empty(&cgrp->children)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * Call pre_destroy handlers of subsys. Notify subsystems | 
|  | * that rmdir() request comes. | 
|  | */ | 
|  | cgroup_call_pre_destroy(cgrp); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | parent = cgrp->parent; | 
|  | root = cgrp->root; | 
|  | sb = root->sb; | 
|  |  | 
|  | if (atomic_read(&cgrp->count) | 
|  | || !list_empty(&cgrp->children) | 
|  | || cgroup_has_css_refs(cgrp)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | spin_lock(&release_list_lock); | 
|  | set_bit(CGRP_REMOVED, &cgrp->flags); | 
|  | if (!list_empty(&cgrp->release_list)) | 
|  | list_del(&cgrp->release_list); | 
|  | spin_unlock(&release_list_lock); | 
|  | /* delete my sibling from parent->children */ | 
|  | list_del(&cgrp->sibling); | 
|  | spin_lock(&cgrp->dentry->d_lock); | 
|  | d = dget(cgrp->dentry); | 
|  | spin_unlock(&d->d_lock); | 
|  |  | 
|  | cgroup_d_remove_dir(d); | 
|  | dput(d); | 
|  |  | 
|  | set_bit(CGRP_RELEASABLE, &parent->flags); | 
|  | check_for_release(parent); | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init cgroup_init_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); | 
|  |  | 
|  | /* Create the top cgroup state for this subsystem */ | 
|  | ss->root = &rootnode; | 
|  | css = ss->create(ss, dummytop); | 
|  | /* We don't handle early failures gracefully */ | 
|  | BUG_ON(IS_ERR(css)); | 
|  | init_cgroup_css(css, ss, dummytop); | 
|  |  | 
|  | /* Update the init_css_set to contain a subsys | 
|  | * pointer to this state - since the subsystem is | 
|  | * newly registered, all tasks and hence the | 
|  | * init_css_set is in the subsystem's top cgroup. */ | 
|  | init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; | 
|  |  | 
|  | need_forkexit_callback |= ss->fork || ss->exit; | 
|  | need_mm_owner_callback |= !!ss->mm_owner_changed; | 
|  |  | 
|  | /* At system boot, before all subsystems have been | 
|  | * registered, no tasks have been forked, so we don't | 
|  | * need to invoke fork callbacks here. */ | 
|  | BUG_ON(!list_empty(&init_task.tasks)); | 
|  |  | 
|  | ss->active = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_init_early - cgroup initialization at system boot | 
|  | * | 
|  | * Initialize cgroups at system boot, and initialize any | 
|  | * subsystems that request early init. | 
|  | */ | 
|  | int __init cgroup_init_early(void) | 
|  | { | 
|  | int i; | 
|  | atomic_set(&init_css_set.refcount, 1); | 
|  | INIT_LIST_HEAD(&init_css_set.cg_links); | 
|  | INIT_LIST_HEAD(&init_css_set.tasks); | 
|  | INIT_HLIST_NODE(&init_css_set.hlist); | 
|  | css_set_count = 1; | 
|  | init_cgroup_root(&rootnode); | 
|  | list_add(&rootnode.root_list, &roots); | 
|  | root_count = 1; | 
|  | init_task.cgroups = &init_css_set; | 
|  |  | 
|  | init_css_set_link.cg = &init_css_set; | 
|  | list_add(&init_css_set_link.cgrp_link_list, | 
|  | &rootnode.top_cgroup.css_sets); | 
|  | list_add(&init_css_set_link.cg_link_list, | 
|  | &init_css_set.cg_links); | 
|  |  | 
|  | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) | 
|  | INIT_HLIST_HEAD(&css_set_table[i]); | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  |  | 
|  | BUG_ON(!ss->name); | 
|  | BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); | 
|  | BUG_ON(!ss->create); | 
|  | BUG_ON(!ss->destroy); | 
|  | if (ss->subsys_id != i) { | 
|  | printk(KERN_ERR "cgroup: Subsys %s id == %d\n", | 
|  | ss->name, ss->subsys_id); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (ss->early_init) | 
|  | cgroup_init_subsys(ss); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_init - cgroup initialization | 
|  | * | 
|  | * Register cgroup filesystem and /proc file, and initialize | 
|  | * any subsystems that didn't request early init. | 
|  | */ | 
|  | int __init cgroup_init(void) | 
|  | { | 
|  | int err; | 
|  | int i; | 
|  | struct hlist_head *hhead; | 
|  |  | 
|  | err = bdi_init(&cgroup_backing_dev_info); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (!ss->early_init) | 
|  | cgroup_init_subsys(ss); | 
|  | } | 
|  |  | 
|  | /* Add init_css_set to the hash table */ | 
|  | hhead = css_set_hash(init_css_set.subsys); | 
|  | hlist_add_head(&init_css_set.hlist, hhead); | 
|  |  | 
|  | err = register_filesystem(&cgroup_fs_type); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); | 
|  |  | 
|  | out: | 
|  | if (err) | 
|  | bdi_destroy(&cgroup_backing_dev_info); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * proc_cgroup_show() | 
|  | *  - Print task's cgroup paths into seq_file, one line for each hierarchy | 
|  | *  - Used for /proc/<pid>/cgroup. | 
|  | *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it | 
|  | *    doesn't really matter if tsk->cgroup changes after we read it, | 
|  | *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it | 
|  | *    anyway.  No need to check that tsk->cgroup != NULL, thanks to | 
|  | *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks | 
|  | *    cgroup to top_cgroup. | 
|  | */ | 
|  |  | 
|  | /* TODO: Use a proper seq_file iterator */ | 
|  | static int proc_cgroup_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct task_struct *tsk; | 
|  | char *buf; | 
|  | int retval; | 
|  | struct cgroupfs_root *root; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | goto out; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | pid = m->private; | 
|  | tsk = get_pid_task(pid, PIDTYPE_PID); | 
|  | if (!tsk) | 
|  | goto out_free; | 
|  |  | 
|  | retval = 0; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | for_each_root(root) { | 
|  | struct cgroup_subsys *ss; | 
|  | struct cgroup *cgrp; | 
|  | int subsys_id; | 
|  | int count = 0; | 
|  |  | 
|  | /* Skip this hierarchy if it has no active subsystems */ | 
|  | if (!root->actual_subsys_bits) | 
|  | continue; | 
|  | seq_printf(m, "%lu:", root->subsys_bits); | 
|  | for_each_subsys(root, ss) | 
|  | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 
|  | seq_putc(m, ':'); | 
|  | get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 
|  | cgrp = task_cgroup(tsk, subsys_id); | 
|  | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 
|  | if (retval < 0) | 
|  | goto out_unlock; | 
|  | seq_puts(m, buf); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | put_task_struct(tsk); | 
|  | out_free: | 
|  | kfree(buf); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cgroup_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct pid *pid = PROC_I(inode)->pid; | 
|  | return single_open(file, proc_cgroup_show, pid); | 
|  | } | 
|  |  | 
|  | struct file_operations proc_cgroup_operations = { | 
|  | .open		= cgroup_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | /* Display information about each subsystem and each hierarchy */ | 
|  | static int proc_cgroupstats_show(struct seq_file *m, void *v) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | seq_printf(m, "%s\t%lu\t%d\t%d\n", | 
|  | ss->name, ss->root->subsys_bits, | 
|  | ss->root->number_of_cgroups, !ss->disabled); | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroupstats_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, proc_cgroupstats_show, NULL); | 
|  | } | 
|  |  | 
|  | static struct file_operations proc_cgroupstats_operations = { | 
|  | .open = cgroupstats_open, | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_fork - attach newly forked task to its parents cgroup. | 
|  | * @child: pointer to task_struct of forking parent process. | 
|  | * | 
|  | * Description: A task inherits its parent's cgroup at fork(). | 
|  | * | 
|  | * A pointer to the shared css_set was automatically copied in | 
|  | * fork.c by dup_task_struct().  However, we ignore that copy, since | 
|  | * it was not made under the protection of RCU or cgroup_mutex, so | 
|  | * might no longer be a valid cgroup pointer.  cgroup_attach_task() might | 
|  | * have already changed current->cgroups, allowing the previously | 
|  | * referenced cgroup group to be removed and freed. | 
|  | * | 
|  | * At the point that cgroup_fork() is called, 'current' is the parent | 
|  | * task, and the passed argument 'child' points to the child task. | 
|  | */ | 
|  | void cgroup_fork(struct task_struct *child) | 
|  | { | 
|  | task_lock(current); | 
|  | child->cgroups = current->cgroups; | 
|  | get_css_set(child->cgroups); | 
|  | task_unlock(current); | 
|  | INIT_LIST_HEAD(&child->cg_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_fork_callbacks - run fork callbacks | 
|  | * @child: the new task | 
|  | * | 
|  | * Called on a new task very soon before adding it to the | 
|  | * tasklist. No need to take any locks since no-one can | 
|  | * be operating on this task. | 
|  | */ | 
|  | void cgroup_fork_callbacks(struct task_struct *child) | 
|  | { | 
|  | if (need_forkexit_callback) { | 
|  | int i; | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss->fork) | 
|  | ss->fork(ss, child); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MM_OWNER | 
|  | /** | 
|  | * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes | 
|  | * @p: the new owner | 
|  | * | 
|  | * Called on every change to mm->owner. mm_init_owner() does not | 
|  | * invoke this routine, since it assigns the mm->owner the first time | 
|  | * and does not change it. | 
|  | * | 
|  | * The callbacks are invoked with mmap_sem held in read mode. | 
|  | */ | 
|  | void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new) | 
|  | { | 
|  | struct cgroup *oldcgrp, *newcgrp = NULL; | 
|  |  | 
|  | if (need_mm_owner_callback) { | 
|  | int i; | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | oldcgrp = task_cgroup(old, ss->subsys_id); | 
|  | if (new) | 
|  | newcgrp = task_cgroup(new, ss->subsys_id); | 
|  | if (oldcgrp == newcgrp) | 
|  | continue; | 
|  | if (ss->mm_owner_changed) | 
|  | ss->mm_owner_changed(ss, oldcgrp, newcgrp, new); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_MM_OWNER */ | 
|  |  | 
|  | /** | 
|  | * cgroup_post_fork - called on a new task after adding it to the task list | 
|  | * @child: the task in question | 
|  | * | 
|  | * Adds the task to the list running through its css_set if necessary. | 
|  | * Has to be after the task is visible on the task list in case we race | 
|  | * with the first call to cgroup_iter_start() - to guarantee that the | 
|  | * new task ends up on its list. | 
|  | */ | 
|  | void cgroup_post_fork(struct task_struct *child) | 
|  | { | 
|  | if (use_task_css_set_links) { | 
|  | write_lock(&css_set_lock); | 
|  | if (list_empty(&child->cg_list)) | 
|  | list_add(&child->cg_list, &child->cgroups->tasks); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  | } | 
|  | /** | 
|  | * cgroup_exit - detach cgroup from exiting task | 
|  | * @tsk: pointer to task_struct of exiting process | 
|  | * @run_callback: run exit callbacks? | 
|  | * | 
|  | * Description: Detach cgroup from @tsk and release it. | 
|  | * | 
|  | * Note that cgroups marked notify_on_release force every task in | 
|  | * them to take the global cgroup_mutex mutex when exiting. | 
|  | * This could impact scaling on very large systems.  Be reluctant to | 
|  | * use notify_on_release cgroups where very high task exit scaling | 
|  | * is required on large systems. | 
|  | * | 
|  | * the_top_cgroup_hack: | 
|  | * | 
|  | *    Set the exiting tasks cgroup to the root cgroup (top_cgroup). | 
|  | * | 
|  | *    We call cgroup_exit() while the task is still competent to | 
|  | *    handle notify_on_release(), then leave the task attached to the | 
|  | *    root cgroup in each hierarchy for the remainder of its exit. | 
|  | * | 
|  | *    To do this properly, we would increment the reference count on | 
|  | *    top_cgroup, and near the very end of the kernel/exit.c do_exit() | 
|  | *    code we would add a second cgroup function call, to drop that | 
|  | *    reference.  This would just create an unnecessary hot spot on | 
|  | *    the top_cgroup reference count, to no avail. | 
|  | * | 
|  | *    Normally, holding a reference to a cgroup without bumping its | 
|  | *    count is unsafe.   The cgroup could go away, or someone could | 
|  | *    attach us to a different cgroup, decrementing the count on | 
|  | *    the first cgroup that we never incremented.  But in this case, | 
|  | *    top_cgroup isn't going away, and either task has PF_EXITING set, | 
|  | *    which wards off any cgroup_attach_task() attempts, or task is a failed | 
|  | *    fork, never visible to cgroup_attach_task. | 
|  | */ | 
|  | void cgroup_exit(struct task_struct *tsk, int run_callbacks) | 
|  | { | 
|  | int i; | 
|  | struct css_set *cg; | 
|  |  | 
|  | if (run_callbacks && need_forkexit_callback) { | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss->exit) | 
|  | ss->exit(ss, tsk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink from the css_set task list if necessary. | 
|  | * Optimistically check cg_list before taking | 
|  | * css_set_lock | 
|  | */ | 
|  | if (!list_empty(&tsk->cg_list)) { | 
|  | write_lock(&css_set_lock); | 
|  | if (!list_empty(&tsk->cg_list)) | 
|  | list_del(&tsk->cg_list); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | /* Reassign the task to the init_css_set. */ | 
|  | task_lock(tsk); | 
|  | cg = tsk->cgroups; | 
|  | tsk->cgroups = &init_css_set; | 
|  | task_unlock(tsk); | 
|  | if (cg) | 
|  | put_css_set_taskexit(cg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_clone - clone the cgroup the given subsystem is attached to | 
|  | * @tsk: the task to be moved | 
|  | * @subsys: the given subsystem | 
|  | * @nodename: the name for the new cgroup | 
|  | * | 
|  | * Duplicate the current cgroup in the hierarchy that the given | 
|  | * subsystem is attached to, and move this task into the new | 
|  | * child. | 
|  | */ | 
|  | int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys, | 
|  | char *nodename) | 
|  | { | 
|  | struct dentry *dentry; | 
|  | int ret = 0; | 
|  | struct cgroup *parent, *child; | 
|  | struct inode *inode; | 
|  | struct css_set *cg; | 
|  | struct cgroupfs_root *root; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | /* We shouldn't be called by an unregistered subsystem */ | 
|  | BUG_ON(!subsys->active); | 
|  |  | 
|  | /* First figure out what hierarchy and cgroup we're dealing | 
|  | * with, and pin them so we can drop cgroup_mutex */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | again: | 
|  | root = subsys->root; | 
|  | if (root == &rootnode) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  | cg = tsk->cgroups; | 
|  | parent = task_cgroup(tsk, subsys->subsys_id); | 
|  |  | 
|  | /* Pin the hierarchy */ | 
|  | atomic_inc(&parent->root->sb->s_active); | 
|  |  | 
|  | /* Keep the cgroup alive */ | 
|  | get_css_set(cg); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* Now do the VFS work to create a cgroup */ | 
|  | inode = parent->dentry->d_inode; | 
|  |  | 
|  | /* Hold the parent directory mutex across this operation to | 
|  | * stop anyone else deleting the new cgroup */ | 
|  | mutex_lock(&inode->i_mutex); | 
|  | dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename)); | 
|  | if (IS_ERR(dentry)) { | 
|  | printk(KERN_INFO | 
|  | "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename, | 
|  | PTR_ERR(dentry)); | 
|  | ret = PTR_ERR(dentry); | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* Create the cgroup directory, which also creates the cgroup */ | 
|  | ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755); | 
|  | child = __d_cgrp(dentry); | 
|  | dput(dentry); | 
|  | if (ret) { | 
|  | printk(KERN_INFO | 
|  | "Failed to create cgroup %s: %d\n", nodename, | 
|  | ret); | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | if (!child) { | 
|  | printk(KERN_INFO | 
|  | "Couldn't find new cgroup %s\n", nodename); | 
|  | ret = -ENOMEM; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* The cgroup now exists. Retake cgroup_mutex and check | 
|  | * that we're still in the same state that we thought we | 
|  | * were. */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if ((root != subsys->root) || | 
|  | (parent != task_cgroup(tsk, subsys->subsys_id))) { | 
|  | /* Aargh, we raced ... */ | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | put_css_set(cg); | 
|  |  | 
|  | deactivate_super(parent->root->sb); | 
|  | /* The cgroup is still accessible in the VFS, but | 
|  | * we're not going to try to rmdir() it at this | 
|  | * point. */ | 
|  | printk(KERN_INFO | 
|  | "Race in cgroup_clone() - leaking cgroup %s\n", | 
|  | nodename); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* do any required auto-setup */ | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->post_clone) | 
|  | ss->post_clone(ss, child); | 
|  | } | 
|  |  | 
|  | /* All seems fine. Finish by moving the task into the new cgroup */ | 
|  | ret = cgroup_attach_task(child, tsk); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | out_release: | 
|  | mutex_unlock(&inode->i_mutex); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | put_css_set(cg); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | deactivate_super(parent->root->sb); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp | 
|  | * @cgrp: the cgroup in question | 
|  | * | 
|  | * See if @cgrp is a descendant of the current task's cgroup in | 
|  | * the appropriate hierarchy. | 
|  | * | 
|  | * If we are sending in dummytop, then presumably we are creating | 
|  | * the top cgroup in the subsystem. | 
|  | * | 
|  | * Called only by the ns (nsproxy) cgroup. | 
|  | */ | 
|  | int cgroup_is_descendant(const struct cgroup *cgrp) | 
|  | { | 
|  | int ret; | 
|  | struct cgroup *target; | 
|  | int subsys_id; | 
|  |  | 
|  | if (cgrp == dummytop) | 
|  | return 1; | 
|  |  | 
|  | get_first_subsys(cgrp, NULL, &subsys_id); | 
|  | target = task_cgroup(current, subsys_id); | 
|  | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 
|  | cgrp = cgrp->parent; | 
|  | ret = (cgrp == target); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void check_for_release(struct cgroup *cgrp) | 
|  | { | 
|  | /* All of these checks rely on RCU to keep the cgroup | 
|  | * structure alive */ | 
|  | if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) | 
|  | && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { | 
|  | /* Control Group is currently removeable. If it's not | 
|  | * already queued for a userspace notification, queue | 
|  | * it now */ | 
|  | int need_schedule_work = 0; | 
|  | spin_lock(&release_list_lock); | 
|  | if (!cgroup_is_removed(cgrp) && | 
|  | list_empty(&cgrp->release_list)) { | 
|  | list_add(&cgrp->release_list, &release_list); | 
|  | need_schedule_work = 1; | 
|  | } | 
|  | spin_unlock(&release_list_lock); | 
|  | if (need_schedule_work) | 
|  | schedule_work(&release_agent_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __css_put(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct cgroup *cgrp = css->cgroup; | 
|  | rcu_read_lock(); | 
|  | if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) { | 
|  | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | check_for_release(cgrp); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify userspace when a cgroup is released, by running the | 
|  | * configured release agent with the name of the cgroup (path | 
|  | * relative to the root of cgroup file system) as the argument. | 
|  | * | 
|  | * Most likely, this user command will try to rmdir this cgroup. | 
|  | * | 
|  | * This races with the possibility that some other task will be | 
|  | * attached to this cgroup before it is removed, or that some other | 
|  | * user task will 'mkdir' a child cgroup of this cgroup.  That's ok. | 
|  | * The presumed 'rmdir' will fail quietly if this cgroup is no longer | 
|  | * unused, and this cgroup will be reprieved from its death sentence, | 
|  | * to continue to serve a useful existence.  Next time it's released, | 
|  | * we will get notified again, if it still has 'notify_on_release' set. | 
|  | * | 
|  | * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which | 
|  | * means only wait until the task is successfully execve()'d.  The | 
|  | * separate release agent task is forked by call_usermodehelper(), | 
|  | * then control in this thread returns here, without waiting for the | 
|  | * release agent task.  We don't bother to wait because the caller of | 
|  | * this routine has no use for the exit status of the release agent | 
|  | * task, so no sense holding our caller up for that. | 
|  | */ | 
|  | static void cgroup_release_agent(struct work_struct *work) | 
|  | { | 
|  | BUG_ON(work != &release_agent_work); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | spin_lock(&release_list_lock); | 
|  | while (!list_empty(&release_list)) { | 
|  | char *argv[3], *envp[3]; | 
|  | int i; | 
|  | char *pathbuf = NULL, *agentbuf = NULL; | 
|  | struct cgroup *cgrp = list_entry(release_list.next, | 
|  | struct cgroup, | 
|  | release_list); | 
|  | list_del_init(&cgrp->release_list); | 
|  | spin_unlock(&release_list_lock); | 
|  | pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!pathbuf) | 
|  | goto continue_free; | 
|  | if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) | 
|  | goto continue_free; | 
|  | agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); | 
|  | if (!agentbuf) | 
|  | goto continue_free; | 
|  |  | 
|  | i = 0; | 
|  | argv[i++] = agentbuf; | 
|  | argv[i++] = pathbuf; | 
|  | argv[i] = NULL; | 
|  |  | 
|  | i = 0; | 
|  | /* minimal command environment */ | 
|  | envp[i++] = "HOME=/"; | 
|  | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | 
|  | envp[i] = NULL; | 
|  |  | 
|  | /* Drop the lock while we invoke the usermode helper, | 
|  | * since the exec could involve hitting disk and hence | 
|  | * be a slow process */ | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | continue_free: | 
|  | kfree(pathbuf); | 
|  | kfree(agentbuf); | 
|  | spin_lock(&release_list_lock); | 
|  | } | 
|  | spin_unlock(&release_list_lock); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | static int __init cgroup_disable(char *str) | 
|  | { | 
|  | int i; | 
|  | char *token; | 
|  |  | 
|  | while ((token = strsep(&str, ",")) != NULL) { | 
|  | if (!*token) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  |  | 
|  | if (!strcmp(token, ss->name)) { | 
|  | ss->disabled = 1; | 
|  | printk(KERN_INFO "Disabling %s control group" | 
|  | " subsystem\n", ss->name); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("cgroup_disable=", cgroup_disable); |