blob: 3f1dd914bb696cf08287875d8e9c30689027fa24 [file] [log] [blame]
/*
* CAAM Secure Memory Storage Interface
* Copyright (C) 2008-2015 Freescale Semiconductor, Inc.
* Copyright 2018 NXP
*
* Loosely based on the SHW Keystore API for SCC/SCC2
* Experimental implementation and NOT intended for upstream use. Expect
* this interface to be amended significantly in the future once it becomes
* integrated into live applications.
*
* Known issues:
*
* - Executes one instance of an secure memory "driver". This is tied to the
* fact that job rings can't run as standalone instances in the present
* configuration.
*
* - It does not expose a userspace interface. The value of a userspace
* interface for access to secrets is a point for further architectural
* discussion.
*
* - Partition/permission management is not part of this interface. It
* depends on some level of "knowledge" agreed upon between bootloader,
* provisioning applications, and OS-hosted software (which uses this
* driver).
*
* - No means of identifying the location or purpose of secrets managed by
* this interface exists; "slot location" and format of a given secret
* needs to be agreed upon between bootloader, provisioner, and OS-hosted
* application.
*/
#include "compat.h"
#include "regs.h"
#include "jr.h"
#include "desc.h"
#include "intern.h"
#include "error.h"
#include "sm.h"
#include <linux/of_address.h>
#define SECMEM_KEYMOD_LEN 8
#define GENMEM_KEYMOD_LEN 16
#ifdef SM_DEBUG_CONT
void sm_show_page(struct device *dev, struct sm_page_descriptor *pgdesc)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
u32 i, *smdata;
dev_info(dev, "physical page %d content at 0x%08x\n",
pgdesc->phys_pagenum, pgdesc->pg_base);
smdata = pgdesc->pg_base;
for (i = 0; i < (smpriv->page_size / sizeof(u32)); i += 4)
dev_info(dev, "[0x%08x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
(u32)&smdata[i], smdata[i], smdata[i+1], smdata[i+2],
smdata[i+3]);
}
#endif
#define INITIAL_DESCSZ 16 /* size of tmp buffer for descriptor const. */
static __always_inline u32 sm_send_cmd(struct caam_drv_private_sm *smpriv,
struct caam_drv_private_jr *jrpriv,
u32 cmd, u32 *status)
{
void __iomem *write_address;
void __iomem *read_address;
if (smpriv->sm_reg_offset == SM_V1_OFFSET) {
struct caam_secure_mem_v1 *sm_regs_v1;
sm_regs_v1 = (struct caam_secure_mem_v1 *)
((void *)jrpriv->rregs + SM_V1_OFFSET);
write_address = &sm_regs_v1->sm_cmd;
read_address = &sm_regs_v1->sm_status;
} else if (smpriv->sm_reg_offset == SM_V2_OFFSET) {
struct caam_secure_mem_v2 *sm_regs_v2;
sm_regs_v2 = (struct caam_secure_mem_v2 *)
((void *)jrpriv->rregs + SM_V2_OFFSET);
write_address = &sm_regs_v2->sm_cmd;
read_address = &sm_regs_v2->sm_status;
} else {
return -EINVAL;
}
wr_reg32(write_address, cmd);
udelay(10);
/* Read until the command has terminated and the status is correct */
do {
*status = rd_reg32(read_address);
} while (((*status & SMCS_CMDERR_MASK) >> SMCS_CMDERR_SHIFT)
== SMCS_CMDERR_INCOMP);
return 0;
}
/*
* Construct a black key conversion job descriptor
*
* This function constructs a job descriptor capable of performing
* a key blackening operation on a plaintext secure memory resident object.
*
* - desc pointer to a pointer to the descriptor generated by this
* function. Caller will be responsible to kfree() this
* descriptor after execution.
* - key physical pointer to the plaintext, which will also hold
* the result. Since encryption occurs in place, caller must
* ensure that the space is large enough to accommodate the
* blackened key
* - keysz size of the plaintext
* - auth if a CCM-covered key is required, use KEY_COVER_CCM, else
* use KEY_COVER_ECB.
*
* KEY to key1 from @key_addr LENGTH 16 BYTES;
* FIFO STORE from key1[ecb] TO @key_addr LENGTH 16 BYTES;
*
* Note that this variant uses the JDKEK only; it does not accommodate the
* trusted key encryption key at this time.
*
*/
static int blacken_key_jobdesc(u32 **desc, void *key, u16 keysz, bool auth)
{
u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
u16 dsize, idx;
memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
idx = 1;
/* Load key to class 1 key register */
tmpdesc[idx++] = CMD_KEY | CLASS_1 | (keysz & KEY_LENGTH_MASK);
tmpdesc[idx++] = (uintptr_t)key;
/* ...and write back out via FIFO store*/
tmpdesc[idx] = CMD_FIFO_STORE | CLASS_1 | (keysz & KEY_LENGTH_MASK);
/* plus account for ECB/CCM option in FIFO_STORE */
if (auth == KEY_COVER_ECB)
tmpdesc[idx] |= FIFOST_TYPE_KEY_KEK;
else
tmpdesc[idx] |= FIFOST_TYPE_KEY_CCM_JKEK;
idx++;
tmpdesc[idx++] = (uintptr_t)key;
/* finish off the job header */
tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
dsize = idx * sizeof(u32);
/* now allocate execution buffer and coat it with executable */
tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
if (tdesc == NULL)
return 0;
memcpy(tdesc, tmpdesc, dsize);
*desc = tdesc;
return dsize;
}
/*
* Construct a blob encapsulation job descriptor
*
* This function dynamically constructs a blob encapsulation job descriptor
* from the following arguments:
*
* - desc pointer to a pointer to the descriptor generated by this
* function. Caller will be responsible to kfree() this
* descriptor after execution.
* - keymod Physical pointer to a key modifier, which must reside in a
* contiguous piece of memory. Modifier will be assumed to be
* 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long
* for a blob of type SM_GENMEM (see blobtype argument).
* - secretbuf Physical pointer to a secret, normally a black or red key,
* possibly residing within an accessible secure memory page,
* of the secret to be encapsulated to an output blob.
* - outbuf Physical pointer to the destination buffer to receive the
* encapsulated output. This buffer will need to be 48 bytes
* larger than the input because of the added encapsulation data.
* The generated descriptor will account for the increase in size,
* but the caller must also account for this increase in the
* buffer allocator.
* - secretsz Size of input secret, in bytes. This is limited to 65536
* less the size of blob overhead, since the length embeds into
* DECO pointer in/out instructions.
* - keycolor Determines if the source data is covered (black key) or
* plaintext (red key). RED_KEY or BLACK_KEY are defined in
* for this purpose.
* - blobtype Determine if encapsulated blob should be a secure memory
* blob (SM_SECMEM), with partition data embedded with key
* material, or a general memory blob (SM_GENMEM).
* - auth If BLACK_KEY source is covered via AES-CCM, specify
* KEY_COVER_CCM, else uses AES-ECB (KEY_COVER_ECB).
*
* Upon completion, desc points to a buffer containing a CAAM job
* descriptor which encapsulates data into an externally-storable blob
* suitable for use across power cycles.
*
* This is an example of a black key encapsulation job into a general memory
* blob. Notice the 16-byte key modifier in the LOAD instruction. Also note
* the output 48 bytes longer than the input:
*
* [00] B0800008 jobhdr: stidx=0 len=8
* [01] 14400010 ld: ccb2-key len=16 offs=0
* [02] 08144891 ptr->@0x08144891
* [03] F800003A seqoutptr: len=58
* [04] 01000000 out_ptr->@0x01000000
* [05] F000000A seqinptr: len=10
* [06] 09745090 in_ptr->@0x09745090
* [07] 870D0004 operation: encap blob reg=memory, black, format=normal
*
* This is an example of a red key encapsulation job for storing a red key
* into a secure memory blob. Note the 8 byte modifier on the 12 byte offset
* in the LOAD instruction; this accounts for blob permission storage:
*
* [00] B0800008 jobhdr: stidx=0 len=8
* [01] 14400C08 ld: ccb2-key len=8 offs=12
* [02] 087D0784 ptr->@0x087d0784
* [03] F8000050 seqoutptr: len=80
* [04] 09251BB2 out_ptr->@0x09251bb2
* [05] F0000020 seqinptr: len=32
* [06] 40000F31 in_ptr->@0x40000f31
* [07] 870D0008 operation: encap blob reg=memory, red, sec_mem,
* format=normal
*
* Note: this function only generates 32-bit pointers at present, and should
* be refactored using a scheme that allows both 32 and 64 bit addressing
*/
static int blob_encap_jobdesc(u32 **desc, dma_addr_t keymod,
void *secretbuf, dma_addr_t outbuf,
u16 secretsz, u8 keycolor, u8 blobtype, u8 auth)
{
u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
u16 dsize, idx;
memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
idx = 1;
/*
* Key modifier works differently for secure/general memory blobs
* This accounts for the permission/protection data encapsulated
* within the blob if a secure memory blob is requested
*/
if (blobtype == SM_SECMEM)
tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_KEY |
((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK)
| (8 & LDST_LEN_MASK);
else /* is general memory blob */
tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK);
tmpdesc[idx++] = (u32)keymod;
/*
* Encapsulation output must include space for blob key encryption
* key and MAC tag
*/
tmpdesc[idx++] = CMD_SEQ_OUT_PTR | (secretsz + BLOB_OVERHEAD);
tmpdesc[idx++] = (u32)outbuf;
/* Input data, should be somewhere in secure memory */
tmpdesc[idx++] = CMD_SEQ_IN_PTR | secretsz;
tmpdesc[idx++] = (uintptr_t)secretbuf;
/* Set blob encap, then color */
tmpdesc[idx] = CMD_OPERATION | OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB;
if (blobtype == SM_SECMEM)
tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM;
if (auth == KEY_COVER_CCM)
tmpdesc[idx] |= OP_PCL_BLOB_EKT;
if (keycolor == BLACK_KEY)
tmpdesc[idx] |= OP_PCL_BLOB_BLACK;
idx++;
tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
dsize = idx * sizeof(u32);
tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
if (tdesc == NULL)
return 0;
memcpy(tdesc, tmpdesc, dsize);
*desc = tdesc;
return dsize;
}
/*
* Construct a blob decapsulation job descriptor
*
* This function dynamically constructs a blob decapsulation job descriptor
* from the following arguments:
*
* - desc pointer to a pointer to the descriptor generated by this
* function. Caller will be responsible to kfree() this
* descriptor after execution.
* - keymod Physical pointer to a key modifier, which must reside in a
* contiguous piece of memory. Modifier will be assumed to be
* 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long
* for a blob of type SM_GENMEM (see blobtype argument).
* - blobbuf Physical pointer (into external memory) of the blob to
* be decapsulated. Blob must reside in a contiguous memory
* segment.
* - outbuf Physical pointer of the decapsulated output, possibly into
* a location within a secure memory page. Must be contiguous.
* - secretsz Size of encapsulated secret in bytes (not the size of the
* input blob).
* - keycolor Determines if decapsulated content is encrypted (BLACK_KEY)
* or left as plaintext (RED_KEY).
* - blobtype Determine if encapsulated blob should be a secure memory
* blob (SM_SECMEM), with partition data embedded with key
* material, or a general memory blob (SM_GENMEM).
* - auth If decapsulation path is specified by BLACK_KEY, then if
* AES-CCM is requested for key covering use KEY_COVER_CCM, else
* use AES-ECB (KEY_COVER_ECB).
*
* Upon completion, desc points to a buffer containing a CAAM job descriptor
* that decapsulates a key blob from external memory into a black (encrypted)
* key or red (plaintext) content.
*
* This is an example of a black key decapsulation job from a general memory
* blob. Notice the 16-byte key modifier in the LOAD instruction.
*
* [00] B0800008 jobhdr: stidx=0 len=8
* [01] 14400010 ld: ccb2-key len=16 offs=0
* [02] 08A63B7F ptr->@0x08a63b7f
* [03] F8000010 seqoutptr: len=16
* [04] 01000000 out_ptr->@0x01000000
* [05] F000003A seqinptr: len=58
* [06] 01000010 in_ptr->@0x01000010
* [07] 860D0004 operation: decap blob reg=memory, black, format=normal
*
* This is an example of a red key decapsulation job for restoring a red key
* from a secure memory blob. Note the 8 byte modifier on the 12 byte offset
* in the LOAD instruction:
*
* [00] B0800008 jobhdr: stidx=0 len=8
* [01] 14400C08 ld: ccb2-key len=8 offs=12
* [02] 01000000 ptr->@0x01000000
* [03] F8000020 seqoutptr: len=32
* [04] 400000E6 out_ptr->@0x400000e6
* [05] F0000050 seqinptr: len=80
* [06] 08F0C0EA in_ptr->@0x08f0c0ea
* [07] 860D0008 operation: decap blob reg=memory, red, sec_mem,
* format=normal
*
* Note: this function only generates 32-bit pointers at present, and should
* be refactored using a scheme that allows both 32 and 64 bit addressing
*/
static int blob_decap_jobdesc(u32 **desc, dma_addr_t keymod, dma_addr_t blobbuf,
u8 *outbuf, u16 secretsz, u8 keycolor,
u8 blobtype, u8 auth)
{
u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
u16 dsize, idx;
memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
idx = 1;
/* Load key modifier */
if (blobtype == SM_SECMEM)
tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_KEY |
((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK)
| (8 & LDST_LEN_MASK);
else /* is general memory blob */
tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK);
tmpdesc[idx++] = (u32)keymod;
/* Compensate BKEK + MAC tag over size of encapsulated secret */
tmpdesc[idx++] = CMD_SEQ_IN_PTR | (secretsz + BLOB_OVERHEAD);
tmpdesc[idx++] = (u32)blobbuf;
tmpdesc[idx++] = CMD_SEQ_OUT_PTR | secretsz;
tmpdesc[idx++] = (uintptr_t)outbuf;
/* Decapsulate from secure memory partition to black blob */
tmpdesc[idx] = CMD_OPERATION | OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB;
if (blobtype == SM_SECMEM)
tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM;
if (auth == KEY_COVER_CCM)
tmpdesc[idx] |= OP_PCL_BLOB_EKT;
if (keycolor == BLACK_KEY)
tmpdesc[idx] |= OP_PCL_BLOB_BLACK;
idx++;
tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
dsize = idx * sizeof(u32);
tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
if (tdesc == NULL)
return 0;
memcpy(tdesc, tmpdesc, dsize);
*desc = tdesc;
return dsize;
}
/*
* Pseudo-synchronous ring access functions for carrying out key
* encapsulation and decapsulation
*/
struct sm_key_job_result {
int error;
struct completion completion;
};
void sm_key_job_done(struct device *dev, u32 *desc, u32 err, void *context)
{
struct sm_key_job_result *res = context;
if (err)
caam_jr_strstatus(dev, err);
res->error = err; /* save off the error for postprocessing */
complete(&res->completion); /* mark us complete */
}
static int sm_key_job(struct device *ksdev, u32 *jobdesc)
{
struct sm_key_job_result testres = {0};
struct caam_drv_private_sm *kspriv;
int rtn = 0;
kspriv = dev_get_drvdata(ksdev);
init_completion(&testres.completion);
rtn = caam_jr_enqueue(kspriv->smringdev, jobdesc, sm_key_job_done,
&testres);
if (rtn)
goto exit;
wait_for_completion_interruptible(&testres.completion);
rtn = testres.error;
exit:
return rtn;
}
/*
* Following section establishes the default methods for keystore access
* They are NOT intended for use external to this module
*
* In the present version, these are the only means for the higher-level
* interface to deal with the mechanics of accessing the phyiscal keystore
*/
int slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
u32 i;
#ifdef SM_DEBUG
dev_info(dev, "slot_alloc(): requesting slot for %d bytes\n", size);
#endif
if (size > smpriv->slot_size)
return -EKEYREJECTED;
for (i = 0; i < ksdata->slot_count; i++) {
if (ksdata->slot[i].allocated == 0) {
ksdata->slot[i].allocated = 1;
(*slot) = i;
#ifdef SM_DEBUG
dev_info(dev, "slot_alloc(): new slot %d allocated\n",
*slot);
#endif
return 0;
}
}
return -ENOSPC;
}
EXPORT_SYMBOL(slot_alloc);
int slot_dealloc(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
u8 __iomem *slotdata;
#ifdef SM_DEBUG
dev_info(dev, "slot_dealloc(): releasing slot %d\n", slot);
#endif
if (slot >= ksdata->slot_count)
return -EINVAL;
slotdata = ksdata->base_address + slot * smpriv->slot_size;
if (ksdata->slot[slot].allocated == 1) {
/* Forcibly overwrite the data from the keystore */
memset_io(ksdata->base_address + slot * smpriv->slot_size, 0,
smpriv->slot_size);
ksdata->slot[slot].allocated = 0;
#ifdef SM_DEBUG
dev_info(dev, "slot_dealloc(): slot %d released\n", slot);
#endif
return 0;
}
return -EINVAL;
}
EXPORT_SYMBOL(slot_dealloc);
void *slot_get_address(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
if (slot >= ksdata->slot_count)
return NULL;
#ifdef SM_DEBUG
dev_info(dev, "slot_get_address(): slot %d is 0x%08x\n", slot,
(u32)ksdata->base_address + slot * smpriv->slot_size);
#endif
return ksdata->base_address + slot * smpriv->slot_size;
}
void *slot_get_physical(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
if (slot >= ksdata->slot_count)
return NULL;
#ifdef SM_DEBUG
dev_info(dev, "slot_get_physical(): slot %d is 0x%08x\n", slot,
(u32)ksdata->phys_address + slot * smpriv->slot_size);
#endif
return ksdata->phys_address + slot * smpriv->slot_size;
}
u32 slot_get_base(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
/*
* There could potentially be more than one secure partition object
* associated with this keystore. For now, there is just one.
*/
(void)slot;
#ifdef SM_DEBUG
dev_info(dev, "slot_get_base(): slot %d = 0x%08x\n",
slot, (u32)ksdata->base_address);
#endif
return (uintptr_t)(ksdata->base_address);
}
u32 slot_get_offset(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
if (slot >= ksdata->slot_count)
return -EINVAL;
#ifdef SM_DEBUG
dev_info(dev, "slot_get_offset(): slot %d = %d\n", slot,
slot * smpriv->slot_size);
#endif
return slot * smpriv->slot_size;
}
u32 slot_get_slot_size(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
#ifdef SM_DEBUG
dev_info(dev, "slot_get_slot_size(): slot %d = %d\n", slot,
smpriv->slot_size);
#endif
/* All slots are the same size in the default implementation */
return smpriv->slot_size;
}
int kso_init_data(struct device *dev, u32 unit)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *keystore_data = NULL;
u32 slot_count;
u32 keystore_data_size;
/*
* Calculate the required size of the keystore data structure, based
* on the number of keys that can fit in the partition.
*/
slot_count = smpriv->page_size / smpriv->slot_size;
#ifdef SM_DEBUG
dev_info(dev, "kso_init_data: %d slots initializing\n", slot_count);
#endif
keystore_data_size = sizeof(struct keystore_data) +
slot_count *
sizeof(struct keystore_data_slot_info);
keystore_data = kzalloc(keystore_data_size, GFP_KERNEL);
if (!keystore_data)
return -ENOMEM;
#ifdef SM_DEBUG
dev_info(dev, "kso_init_data: keystore data size = %d\n",
keystore_data_size);
#endif
/*
* Place the slot information structure directly after the keystore data
* structure.
*/
keystore_data->slot = (struct keystore_data_slot_info *)
(keystore_data + 1);
keystore_data->slot_count = slot_count;
smpriv->pagedesc[unit].ksdata = keystore_data;
smpriv->pagedesc[unit].ksdata->base_address =
smpriv->pagedesc[unit].pg_base;
smpriv->pagedesc[unit].ksdata->phys_address =
smpriv->pagedesc[unit].pg_phys;
return 0;
}
void kso_cleanup_data(struct device *dev, u32 unit)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
struct keystore_data *keystore_data = NULL;
if (smpriv->pagedesc[unit].ksdata != NULL)
keystore_data = smpriv->pagedesc[unit].ksdata;
/* Release the allocated keystore management data */
kfree(smpriv->pagedesc[unit].ksdata);
return;
}
/*
* Keystore management section
*/
void sm_init_keystore(struct device *dev)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
smpriv->data_init = kso_init_data;
smpriv->data_cleanup = kso_cleanup_data;
smpriv->slot_alloc = slot_alloc;
smpriv->slot_dealloc = slot_dealloc;
smpriv->slot_get_address = slot_get_address;
smpriv->slot_get_physical = slot_get_physical;
smpriv->slot_get_base = slot_get_base;
smpriv->slot_get_offset = slot_get_offset;
smpriv->slot_get_slot_size = slot_get_slot_size;
#ifdef SM_DEBUG
dev_info(dev, "sm_init_keystore(): handlers installed\n");
#endif
}
EXPORT_SYMBOL(sm_init_keystore);
/* Return available pages/units */
u32 sm_detect_keystore_units(struct device *dev)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
return smpriv->localpages;
}
EXPORT_SYMBOL(sm_detect_keystore_units);
/*
* Do any keystore specific initializations
*/
int sm_establish_keystore(struct device *dev, u32 unit)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
#ifdef SM_DEBUG
dev_info(dev, "sm_establish_keystore(): unit %d initializing\n", unit);
#endif
if (smpriv->data_init == NULL)
return -EINVAL;
/* Call the data_init function for any user setup */
return smpriv->data_init(dev, unit);
}
EXPORT_SYMBOL(sm_establish_keystore);
void sm_release_keystore(struct device *dev, u32 unit)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
#ifdef SM_DEBUG
dev_info(dev, "sm_establish_keystore(): unit %d releasing\n", unit);
#endif
if ((smpriv != NULL) && (smpriv->data_cleanup != NULL))
smpriv->data_cleanup(dev, unit);
return;
}
EXPORT_SYMBOL(sm_release_keystore);
/*
* Subsequent interfacce (sm_keystore_*) forms the accessor interfacce to
* the keystore
*/
int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = -EINVAL;
spin_lock(&smpriv->kslock);
if ((smpriv->slot_alloc == NULL) ||
(smpriv->pagedesc[unit].ksdata == NULL))
goto out;
retval = smpriv->slot_alloc(dev, unit, size, slot);
out:
spin_unlock(&smpriv->kslock);
return retval;
}
EXPORT_SYMBOL(sm_keystore_slot_alloc);
int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = -EINVAL;
spin_lock(&smpriv->kslock);
if ((smpriv->slot_alloc == NULL) ||
(smpriv->pagedesc[unit].ksdata == NULL))
goto out;
retval = smpriv->slot_dealloc(dev, unit, slot);
out:
spin_unlock(&smpriv->kslock);
return retval;
}
EXPORT_SYMBOL(sm_keystore_slot_dealloc);
int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot,
const u8 *key_data, u32 key_length)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = -EINVAL;
u32 slot_size;
u8 __iomem *slot_location;
spin_lock(&smpriv->kslock);
slot_size = smpriv->slot_get_slot_size(dev, unit, slot);
if (key_length > slot_size) {
retval = -EFBIG;
goto out;
}
slot_location = smpriv->slot_get_address(dev, unit, slot);
memcpy_toio(slot_location, key_data, key_length);
retval = 0;
out:
spin_unlock(&smpriv->kslock);
return retval;
}
EXPORT_SYMBOL(sm_keystore_slot_load);
int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot,
u32 key_length, u8 *key_data)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = -EINVAL;
u8 __iomem *slot_addr;
u32 slot_size;
spin_lock(&smpriv->kslock);
slot_addr = smpriv->slot_get_address(dev, unit, slot);
slot_size = smpriv->slot_get_slot_size(dev, unit, slot);
if (key_length > slot_size) {
retval = -EKEYREJECTED;
goto out;
}
memcpy_fromio(key_data, slot_addr, key_length);
retval = 0;
out:
spin_unlock(&smpriv->kslock);
return retval;
}
EXPORT_SYMBOL(sm_keystore_slot_read);
/*
* Blacken a clear key in a slot. Operates "in place".
* Limited to class 1 keys at the present time
*/
int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot,
u16 key_length, u8 keyauth)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = 0;
u8 __iomem *slotaddr;
void *slotphys;
u32 dsize, jstat;
u32 __iomem *coverdesc = NULL;
/* Get the address of the object in the slot */
slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
slotphys = (u8 *)smpriv->slot_get_physical(dev, unit, slot);
dsize = blacken_key_jobdesc(&coverdesc, slotphys, key_length, keyauth);
if (!dsize)
return -ENOMEM;
jstat = sm_key_job(dev, coverdesc);
if (jstat)
retval = -EIO;
kfree(coverdesc);
return retval;
}
EXPORT_SYMBOL(sm_keystore_cover_key);
/* Export a black/red key to a blob in external memory */
int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot, u8 keycolor,
u8 keyauth, u8 *outbuf, u16 keylen, u8 *keymod)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = 0;
u8 __iomem *slotaddr, *lkeymod;
u8 __iomem *slotphys;
dma_addr_t keymod_dma, outbuf_dma;
u32 dsize, jstat;
u32 __iomem *encapdesc = NULL;
struct device *dev_for_dma_op;
/* Use the ring as device for DMA operations */
dev_for_dma_op = smpriv->smringdev;
/* Get the base address(es) of the specified slot */
slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
slotphys = smpriv->slot_get_physical(dev, unit, slot);
/* Allocate memory for key modifier compatible with DMA */
lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA);
if (!lkeymod) {
retval = (-ENOMEM);
goto exit;
}
/* Get DMA address for the key modifier */
keymod_dma = dma_map_single(dev_for_dma_op, lkeymod,
SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
if (dma_mapping_error(dev_for_dma_op, keymod_dma)) {
dev_err(dev, "unable to map keymod: %p\n", lkeymod);
retval = (-ENOMEM);
goto free_keymod;
}
/* Copy the keymod and synchronize the DMA */
memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN);
dma_sync_single_for_device(dev_for_dma_op, keymod_dma,
SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
/* Get DMA address for the destination */
outbuf_dma = dma_map_single(dev_for_dma_op, outbuf,
keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE);
if (dma_mapping_error(dev_for_dma_op, outbuf_dma)) {
dev_err(dev, "unable to map outbuf: %p\n", outbuf);
retval = (-ENOMEM);
goto unmap_keymod;
}
/* Build the encapsulation job descriptor */
dsize = blob_encap_jobdesc(&encapdesc, keymod_dma, slotphys, outbuf_dma,
keylen, keycolor, SM_SECMEM, keyauth);
if (!dsize) {
dev_err(dev, "can't alloc an encapsulation descriptor\n");
retval = -ENOMEM;
goto unmap_outbuf;
}
/* Run the job */
jstat = sm_key_job(dev, encapdesc);
if (jstat) {
retval = (-EIO);
goto free_desc;
}
/* Synchronize the data received */
dma_sync_single_for_cpu(dev_for_dma_op, outbuf_dma,
keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE);
free_desc:
kfree(encapdesc);
unmap_outbuf:
dma_unmap_single(dev_for_dma_op, outbuf_dma, keylen + BLOB_OVERHEAD,
DMA_FROM_DEVICE);
unmap_keymod:
dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN,
DMA_TO_DEVICE);
free_keymod:
kfree(lkeymod);
exit:
return retval;
}
EXPORT_SYMBOL(sm_keystore_slot_export);
/* Import a black/red key from a blob residing in external memory */
int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot, u8 keycolor,
u8 keyauth, u8 *inbuf, u16 keylen, u8 *keymod)
{
struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
int retval = 0;
u8 __iomem *slotaddr, *lkeymod;
u8 __iomem *slotphys;
dma_addr_t keymod_dma, inbuf_dma;
u32 dsize, jstat;
u32 __iomem *decapdesc = NULL;
struct device *dev_for_dma_op;
/* Use the ring as device for DMA operations */
dev_for_dma_op = smpriv->smringdev;
/* Get the base address(es) of the specified slot */
slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
slotphys = smpriv->slot_get_physical(dev, unit, slot);
/* Allocate memory for key modifier compatible with DMA */
lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA);
if (!lkeymod) {
retval = (-ENOMEM);
goto exit;
}
/* Get DMA address for the key modifier */
keymod_dma = dma_map_single(dev_for_dma_op, lkeymod,
SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
if (dma_mapping_error(dev_for_dma_op, keymod_dma)) {
dev_err(dev, "unable to map keymod: %p\n", lkeymod);
retval = (-ENOMEM);
goto free_keymod;
}
/* Copy the keymod and synchronize the DMA */
memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN);
dma_sync_single_for_device(dev_for_dma_op, keymod_dma,
SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
/* Get DMA address for the input */
inbuf_dma = dma_map_single(dev_for_dma_op, inbuf,
keylen + BLOB_OVERHEAD, DMA_TO_DEVICE);
if (dma_mapping_error(dev_for_dma_op, inbuf_dma)) {
dev_err(dev, "unable to map inbuf: %p\n", (void *)inbuf_dma);
retval = (-ENOMEM);
goto unmap_keymod;
}
/* synchronize the DMA */
dma_sync_single_for_device(dev_for_dma_op, inbuf_dma,
keylen + BLOB_OVERHEAD, DMA_TO_DEVICE);
/* Build the encapsulation job descriptor */
dsize = blob_decap_jobdesc(&decapdesc, keymod_dma, inbuf_dma, slotphys,
keylen, keycolor, SM_SECMEM, keyauth);
if (!dsize) {
dev_err(dev, "can't alloc a decapsulation descriptor\n");
retval = -ENOMEM;
goto unmap_inbuf;
}
/* Run the job */
jstat = sm_key_job(dev, decapdesc);
/*
* May want to expand upon error meanings a bit. Any CAAM status
* is reported as EIO, but we might want to look for something more
* meaningful for something like an ICV error on restore, otherwise
* the caller is left guessing.
*/
if (jstat) {
retval = (-EIO);
goto free_desc;
}
free_desc:
kfree(decapdesc);
unmap_inbuf:
dma_unmap_single(dev_for_dma_op, inbuf_dma, keylen + BLOB_OVERHEAD,
DMA_TO_DEVICE);
unmap_keymod:
dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN,
DMA_TO_DEVICE);
free_keymod:
kfree(lkeymod);
exit:
return retval;
}
EXPORT_SYMBOL(sm_keystore_slot_import);
/*
* Initialization/shutdown subsystem
* Assumes statically-invoked startup/shutdown from the controller driver
* for the present time, to be reworked when a device tree becomes
* available. This code will not modularize in present form.
*
* Also, simply uses ring 0 for execution at the present
*/
int caam_sm_startup(struct platform_device *pdev)
{
struct device *ctrldev, *smdev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_sm *smpriv;
struct caam_drv_private_jr *jrpriv; /* need this for reg page */
struct platform_device *sm_pdev;
struct sm_page_descriptor *lpagedesc;
u32 page, pgstat, lpagect, detectedpage, smvid, smpart;
int ret = 0;
struct device_node *np;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
/*
* If ctrlpriv is NULL, it's probably because the caam driver wasn't
* properly initialized (e.g. RNG4 init failed). Thus, bail out here.
*/
if (!ctrlpriv) {
ret = -ENODEV;
goto exit;
}
/*
* Set up the private block for secure memory
* Only one instance is possible
*/
smpriv = kzalloc(sizeof(struct caam_drv_private_sm), GFP_KERNEL);
if (smpriv == NULL) {
dev_err(ctrldev, "can't alloc private mem for secure memory\n");
ret = -ENOMEM;
goto exit;
}
smpriv->parentdev = ctrldev; /* copy of parent dev is handy */
spin_lock_init(&smpriv->kslock);
/* Create the dev */
np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm");
if (np)
of_node_clear_flag(np, OF_POPULATED);
sm_pdev = of_platform_device_create(np, "caam_sm", ctrldev);
if (sm_pdev == NULL) {
ret = -EINVAL;
goto free_smpriv;
}
/* Save a pointer to the platform device for Secure Memory */
smpriv->sm_pdev = sm_pdev;
smdev = &sm_pdev->dev;
dev_set_drvdata(smdev, smpriv);
ctrlpriv->smdev = smdev;
/* Set the Secure Memory Register Map Version */
if (ctrlpriv->has_seco) {
int i = ctrlpriv->first_jr_index;
smvid = rd_reg32(&ctrlpriv->jr[i]->perfmon.smvid);
smpart = rd_reg32(&ctrlpriv->jr[i]->perfmon.smpart);
} else {
smvid = rd_reg32(&ctrlpriv->ctrl->perfmon.smvid);
smpart = rd_reg32(&ctrlpriv->ctrl->perfmon.smpart);
}
if (smvid < SMVID_V2)
smpriv->sm_reg_offset = SM_V1_OFFSET;
else
smpriv->sm_reg_offset = SM_V2_OFFSET;
/*
* Collect configuration limit data for reference
* This batch comes from the partition data/vid registers in perfmon
*/
smpriv->max_pages = ((smpart & SMPART_MAX_NUMPG_MASK) >>
SMPART_MAX_NUMPG_SHIFT) + 1;
smpriv->top_partition = ((smpart & SMPART_MAX_PNUM_MASK) >>
SMPART_MAX_PNUM_SHIFT) + 1;
smpriv->top_page = ((smpart & SMPART_MAX_PG_MASK) >>
SMPART_MAX_PG_SHIFT) + 1;
smpriv->page_size = 1024 << ((smvid & SMVID_PG_SIZE_MASK) >>
SMVID_PG_SIZE_SHIFT);
smpriv->slot_size = 1 << CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE;
#ifdef SM_DEBUG
dev_info(smdev, "max pages = %d, top partition = %d\n",
smpriv->max_pages, smpriv->top_partition);
dev_info(smdev, "top page = %d, page size = %d (total = %d)\n",
smpriv->top_page, smpriv->page_size,
smpriv->top_page * smpriv->page_size);
dev_info(smdev, "selected slot size = %d\n", smpriv->slot_size);
#endif
/*
* Now probe for partitions/pages to which we have access. Note that
* these have likely been set up by a bootloader or platform
* provisioning application, so we have to assume that we "inherit"
* a configuration and work within the constraints of what it might be.
*
* Assume use of the zeroth ring in the present iteration (until
* we can divorce the controller and ring drivers, and then assign
* an SM instance to any ring instance).
*/
smpriv->smringdev = caam_jr_alloc();
if (!smpriv->smringdev) {
dev_err(smdev, "Device for job ring not created\n");
ret = -ENODEV;
goto unregister_smpdev;
}
jrpriv = dev_get_drvdata(smpriv->smringdev);
lpagect = 0;
pgstat = 0;
lpagedesc = kzalloc(sizeof(struct sm_page_descriptor)
* smpriv->max_pages, GFP_KERNEL);
if (lpagedesc == NULL) {
ret = -ENOMEM;
goto free_smringdev;
}
for (page = 0; page < smpriv->max_pages; page++) {
u32 page_ownership;
if (sm_send_cmd(smpriv, jrpriv,
((page << SMC_PAGE_SHIFT) & SMC_PAGE_MASK) |
(SMC_CMD_PAGE_INQUIRY & SMC_CMD_MASK),
&pgstat)) {
ret = -EINVAL;
goto free_lpagedesc;
}
page_ownership = (pgstat & SMCS_PGWON_MASK) >> SMCS_PGOWN_SHIFT;
if ((page_ownership == SMCS_PGOWN_OWNED)
|| (page_ownership == SMCS_PGOWN_NOOWN)) {
/* page allocated */
lpagedesc[page].phys_pagenum =
(pgstat & SMCS_PAGE_MASK) >> SMCS_PAGE_SHIFT;
lpagedesc[page].own_part =
(pgstat & SMCS_PART_SHIFT) >> SMCS_PART_MASK;
lpagedesc[page].pg_base = (u8 *)ctrlpriv->sm_base +
(smpriv->page_size * page);
if (ctrlpriv->has_seco) {
/* FIXME: get different addresses viewed by CPU and CAAM from
* platform property
*/
lpagedesc[page].pg_phys = (u8 *)0x20800000 +
(smpriv->page_size * page);
} else {
lpagedesc[page].pg_phys =
(u8 *) ctrlpriv->sm_phy +
(smpriv->page_size * page);
}
lpagect++;
#ifdef SM_DEBUG
dev_info(smdev,
"physical page %d, owning partition = %d\n",
lpagedesc[page].phys_pagenum,
lpagedesc[page].own_part);
#endif
}
}
smpriv->pagedesc = kzalloc(sizeof(struct sm_page_descriptor) * lpagect,
GFP_KERNEL);
if (smpriv->pagedesc == NULL) {
ret = -ENOMEM;
goto free_lpagedesc;
}
smpriv->localpages = lpagect;
detectedpage = 0;
for (page = 0; page < smpriv->max_pages; page++) {
if (lpagedesc[page].pg_base != NULL) { /* e.g. live entry */
memcpy(&smpriv->pagedesc[detectedpage],
&lpagedesc[page],
sizeof(struct sm_page_descriptor));
#ifdef SM_DEBUG_CONT
sm_show_page(smdev, &smpriv->pagedesc[detectedpage]);
#endif
detectedpage++;
}
}
kfree(lpagedesc);
sm_init_keystore(smdev);
goto exit;
free_lpagedesc:
kfree(lpagedesc);
free_smringdev:
caam_jr_free(smpriv->smringdev);
unregister_smpdev:
of_device_unregister(smpriv->sm_pdev);
free_smpriv:
kfree(smpriv);
exit:
return ret;
}
void caam_sm_shutdown(struct platform_device *pdev)
{
struct device *ctrldev, *smdev;
struct caam_drv_private *priv;
struct caam_drv_private_sm *smpriv;
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
smdev = priv->smdev;
/* Return if resource not initialized by startup */
if (smdev == NULL)
return;
smpriv = dev_get_drvdata(smdev);
caam_jr_free(smpriv->smringdev);
/* Remove Secure Memory Platform Device */
of_device_unregister(smpriv->sm_pdev);
kfree(smpriv->pagedesc);
kfree(smpriv);
}
EXPORT_SYMBOL(caam_sm_shutdown);
static void __exit caam_sm_exit(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev)
return;
of_node_put(dev_node);
caam_sm_shutdown(pdev);
return;
}
static int __init caam_sm_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
/*
* Do of_find_compatible_node() then of_find_device_by_node()
* once a functional device tree is available
*/
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node) {
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
if (!dev_node)
return -ENODEV;
}
pdev = of_find_device_by_node(dev_node);
if (!pdev)
return -ENODEV;
of_node_get(dev_node);
caam_sm_startup(pdev);
return 0;
}
module_init(caam_sm_init);
module_exit(caam_sm_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("FSL CAAM Secure Memory / Keystore");
MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD");