| /* |
| * CAAM Secure Memory Storage Interface |
| * Copyright (C) 2008-2015 Freescale Semiconductor, Inc. |
| * Copyright 2018 NXP |
| * |
| * Loosely based on the SHW Keystore API for SCC/SCC2 |
| * Experimental implementation and NOT intended for upstream use. Expect |
| * this interface to be amended significantly in the future once it becomes |
| * integrated into live applications. |
| * |
| * Known issues: |
| * |
| * - Executes one instance of an secure memory "driver". This is tied to the |
| * fact that job rings can't run as standalone instances in the present |
| * configuration. |
| * |
| * - It does not expose a userspace interface. The value of a userspace |
| * interface for access to secrets is a point for further architectural |
| * discussion. |
| * |
| * - Partition/permission management is not part of this interface. It |
| * depends on some level of "knowledge" agreed upon between bootloader, |
| * provisioning applications, and OS-hosted software (which uses this |
| * driver). |
| * |
| * - No means of identifying the location or purpose of secrets managed by |
| * this interface exists; "slot location" and format of a given secret |
| * needs to be agreed upon between bootloader, provisioner, and OS-hosted |
| * application. |
| */ |
| |
| #include "compat.h" |
| #include "regs.h" |
| #include "jr.h" |
| #include "desc.h" |
| #include "intern.h" |
| #include "error.h" |
| #include "sm.h" |
| #include <linux/of_address.h> |
| |
| #define SECMEM_KEYMOD_LEN 8 |
| #define GENMEM_KEYMOD_LEN 16 |
| |
| #ifdef SM_DEBUG_CONT |
| void sm_show_page(struct device *dev, struct sm_page_descriptor *pgdesc) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| u32 i, *smdata; |
| |
| dev_info(dev, "physical page %d content at 0x%08x\n", |
| pgdesc->phys_pagenum, pgdesc->pg_base); |
| smdata = pgdesc->pg_base; |
| for (i = 0; i < (smpriv->page_size / sizeof(u32)); i += 4) |
| dev_info(dev, "[0x%08x] 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| (u32)&smdata[i], smdata[i], smdata[i+1], smdata[i+2], |
| smdata[i+3]); |
| } |
| #endif |
| |
| #define INITIAL_DESCSZ 16 /* size of tmp buffer for descriptor const. */ |
| |
| static __always_inline u32 sm_send_cmd(struct caam_drv_private_sm *smpriv, |
| struct caam_drv_private_jr *jrpriv, |
| u32 cmd, u32 *status) |
| { |
| void __iomem *write_address; |
| void __iomem *read_address; |
| |
| if (smpriv->sm_reg_offset == SM_V1_OFFSET) { |
| struct caam_secure_mem_v1 *sm_regs_v1; |
| sm_regs_v1 = (struct caam_secure_mem_v1 *) |
| ((void *)jrpriv->rregs + SM_V1_OFFSET); |
| write_address = &sm_regs_v1->sm_cmd; |
| read_address = &sm_regs_v1->sm_status; |
| |
| } else if (smpriv->sm_reg_offset == SM_V2_OFFSET) { |
| struct caam_secure_mem_v2 *sm_regs_v2; |
| sm_regs_v2 = (struct caam_secure_mem_v2 *) |
| ((void *)jrpriv->rregs + SM_V2_OFFSET); |
| write_address = &sm_regs_v2->sm_cmd; |
| read_address = &sm_regs_v2->sm_status; |
| |
| } else { |
| return -EINVAL; |
| } |
| |
| wr_reg32(write_address, cmd); |
| |
| udelay(10); |
| |
| /* Read until the command has terminated and the status is correct */ |
| do { |
| *status = rd_reg32(read_address); |
| } while (((*status & SMCS_CMDERR_MASK) >> SMCS_CMDERR_SHIFT) |
| == SMCS_CMDERR_INCOMP); |
| |
| return 0; |
| } |
| /* |
| * Construct a black key conversion job descriptor |
| * |
| * This function constructs a job descriptor capable of performing |
| * a key blackening operation on a plaintext secure memory resident object. |
| * |
| * - desc pointer to a pointer to the descriptor generated by this |
| * function. Caller will be responsible to kfree() this |
| * descriptor after execution. |
| * - key physical pointer to the plaintext, which will also hold |
| * the result. Since encryption occurs in place, caller must |
| * ensure that the space is large enough to accommodate the |
| * blackened key |
| * - keysz size of the plaintext |
| * - auth if a CCM-covered key is required, use KEY_COVER_CCM, else |
| * use KEY_COVER_ECB. |
| * |
| * KEY to key1 from @key_addr LENGTH 16 BYTES; |
| * FIFO STORE from key1[ecb] TO @key_addr LENGTH 16 BYTES; |
| * |
| * Note that this variant uses the JDKEK only; it does not accommodate the |
| * trusted key encryption key at this time. |
| * |
| */ |
| static int blacken_key_jobdesc(u32 **desc, void *key, u16 keysz, bool auth) |
| { |
| u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; |
| u16 dsize, idx; |
| |
| memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); |
| idx = 1; |
| |
| /* Load key to class 1 key register */ |
| tmpdesc[idx++] = CMD_KEY | CLASS_1 | (keysz & KEY_LENGTH_MASK); |
| tmpdesc[idx++] = (uintptr_t)key; |
| |
| /* ...and write back out via FIFO store*/ |
| tmpdesc[idx] = CMD_FIFO_STORE | CLASS_1 | (keysz & KEY_LENGTH_MASK); |
| |
| /* plus account for ECB/CCM option in FIFO_STORE */ |
| if (auth == KEY_COVER_ECB) |
| tmpdesc[idx] |= FIFOST_TYPE_KEY_KEK; |
| else |
| tmpdesc[idx] |= FIFOST_TYPE_KEY_CCM_JKEK; |
| |
| idx++; |
| tmpdesc[idx++] = (uintptr_t)key; |
| |
| /* finish off the job header */ |
| tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); |
| dsize = idx * sizeof(u32); |
| |
| /* now allocate execution buffer and coat it with executable */ |
| tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); |
| if (tdesc == NULL) |
| return 0; |
| |
| memcpy(tdesc, tmpdesc, dsize); |
| *desc = tdesc; |
| |
| return dsize; |
| } |
| |
| /* |
| * Construct a blob encapsulation job descriptor |
| * |
| * This function dynamically constructs a blob encapsulation job descriptor |
| * from the following arguments: |
| * |
| * - desc pointer to a pointer to the descriptor generated by this |
| * function. Caller will be responsible to kfree() this |
| * descriptor after execution. |
| * - keymod Physical pointer to a key modifier, which must reside in a |
| * contiguous piece of memory. Modifier will be assumed to be |
| * 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long |
| * for a blob of type SM_GENMEM (see blobtype argument). |
| * - secretbuf Physical pointer to a secret, normally a black or red key, |
| * possibly residing within an accessible secure memory page, |
| * of the secret to be encapsulated to an output blob. |
| * - outbuf Physical pointer to the destination buffer to receive the |
| * encapsulated output. This buffer will need to be 48 bytes |
| * larger than the input because of the added encapsulation data. |
| * The generated descriptor will account for the increase in size, |
| * but the caller must also account for this increase in the |
| * buffer allocator. |
| * - secretsz Size of input secret, in bytes. This is limited to 65536 |
| * less the size of blob overhead, since the length embeds into |
| * DECO pointer in/out instructions. |
| * - keycolor Determines if the source data is covered (black key) or |
| * plaintext (red key). RED_KEY or BLACK_KEY are defined in |
| * for this purpose. |
| * - blobtype Determine if encapsulated blob should be a secure memory |
| * blob (SM_SECMEM), with partition data embedded with key |
| * material, or a general memory blob (SM_GENMEM). |
| * - auth If BLACK_KEY source is covered via AES-CCM, specify |
| * KEY_COVER_CCM, else uses AES-ECB (KEY_COVER_ECB). |
| * |
| * Upon completion, desc points to a buffer containing a CAAM job |
| * descriptor which encapsulates data into an externally-storable blob |
| * suitable for use across power cycles. |
| * |
| * This is an example of a black key encapsulation job into a general memory |
| * blob. Notice the 16-byte key modifier in the LOAD instruction. Also note |
| * the output 48 bytes longer than the input: |
| * |
| * [00] B0800008 jobhdr: stidx=0 len=8 |
| * [01] 14400010 ld: ccb2-key len=16 offs=0 |
| * [02] 08144891 ptr->@0x08144891 |
| * [03] F800003A seqoutptr: len=58 |
| * [04] 01000000 out_ptr->@0x01000000 |
| * [05] F000000A seqinptr: len=10 |
| * [06] 09745090 in_ptr->@0x09745090 |
| * [07] 870D0004 operation: encap blob reg=memory, black, format=normal |
| * |
| * This is an example of a red key encapsulation job for storing a red key |
| * into a secure memory blob. Note the 8 byte modifier on the 12 byte offset |
| * in the LOAD instruction; this accounts for blob permission storage: |
| * |
| * [00] B0800008 jobhdr: stidx=0 len=8 |
| * [01] 14400C08 ld: ccb2-key len=8 offs=12 |
| * [02] 087D0784 ptr->@0x087d0784 |
| * [03] F8000050 seqoutptr: len=80 |
| * [04] 09251BB2 out_ptr->@0x09251bb2 |
| * [05] F0000020 seqinptr: len=32 |
| * [06] 40000F31 in_ptr->@0x40000f31 |
| * [07] 870D0008 operation: encap blob reg=memory, red, sec_mem, |
| * format=normal |
| * |
| * Note: this function only generates 32-bit pointers at present, and should |
| * be refactored using a scheme that allows both 32 and 64 bit addressing |
| */ |
| |
| static int blob_encap_jobdesc(u32 **desc, dma_addr_t keymod, |
| void *secretbuf, dma_addr_t outbuf, |
| u16 secretsz, u8 keycolor, u8 blobtype, u8 auth) |
| { |
| u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; |
| u16 dsize, idx; |
| |
| memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); |
| idx = 1; |
| |
| /* |
| * Key modifier works differently for secure/general memory blobs |
| * This accounts for the permission/protection data encapsulated |
| * within the blob if a secure memory blob is requested |
| */ |
| if (blobtype == SM_SECMEM) |
| tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | |
| LDST_SRCDST_BYTE_KEY | |
| ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK) |
| | (8 & LDST_LEN_MASK); |
| else /* is general memory blob */ |
| tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | |
| LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK); |
| |
| tmpdesc[idx++] = (u32)keymod; |
| |
| /* |
| * Encapsulation output must include space for blob key encryption |
| * key and MAC tag |
| */ |
| tmpdesc[idx++] = CMD_SEQ_OUT_PTR | (secretsz + BLOB_OVERHEAD); |
| tmpdesc[idx++] = (u32)outbuf; |
| |
| /* Input data, should be somewhere in secure memory */ |
| tmpdesc[idx++] = CMD_SEQ_IN_PTR | secretsz; |
| tmpdesc[idx++] = (uintptr_t)secretbuf; |
| |
| /* Set blob encap, then color */ |
| tmpdesc[idx] = CMD_OPERATION | OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB; |
| |
| if (blobtype == SM_SECMEM) |
| tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM; |
| |
| if (auth == KEY_COVER_CCM) |
| tmpdesc[idx] |= OP_PCL_BLOB_EKT; |
| |
| if (keycolor == BLACK_KEY) |
| tmpdesc[idx] |= OP_PCL_BLOB_BLACK; |
| |
| idx++; |
| tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); |
| dsize = idx * sizeof(u32); |
| |
| tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); |
| if (tdesc == NULL) |
| return 0; |
| |
| memcpy(tdesc, tmpdesc, dsize); |
| *desc = tdesc; |
| return dsize; |
| } |
| |
| /* |
| * Construct a blob decapsulation job descriptor |
| * |
| * This function dynamically constructs a blob decapsulation job descriptor |
| * from the following arguments: |
| * |
| * - desc pointer to a pointer to the descriptor generated by this |
| * function. Caller will be responsible to kfree() this |
| * descriptor after execution. |
| * - keymod Physical pointer to a key modifier, which must reside in a |
| * contiguous piece of memory. Modifier will be assumed to be |
| * 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long |
| * for a blob of type SM_GENMEM (see blobtype argument). |
| * - blobbuf Physical pointer (into external memory) of the blob to |
| * be decapsulated. Blob must reside in a contiguous memory |
| * segment. |
| * - outbuf Physical pointer of the decapsulated output, possibly into |
| * a location within a secure memory page. Must be contiguous. |
| * - secretsz Size of encapsulated secret in bytes (not the size of the |
| * input blob). |
| * - keycolor Determines if decapsulated content is encrypted (BLACK_KEY) |
| * or left as plaintext (RED_KEY). |
| * - blobtype Determine if encapsulated blob should be a secure memory |
| * blob (SM_SECMEM), with partition data embedded with key |
| * material, or a general memory blob (SM_GENMEM). |
| * - auth If decapsulation path is specified by BLACK_KEY, then if |
| * AES-CCM is requested for key covering use KEY_COVER_CCM, else |
| * use AES-ECB (KEY_COVER_ECB). |
| * |
| * Upon completion, desc points to a buffer containing a CAAM job descriptor |
| * that decapsulates a key blob from external memory into a black (encrypted) |
| * key or red (plaintext) content. |
| * |
| * This is an example of a black key decapsulation job from a general memory |
| * blob. Notice the 16-byte key modifier in the LOAD instruction. |
| * |
| * [00] B0800008 jobhdr: stidx=0 len=8 |
| * [01] 14400010 ld: ccb2-key len=16 offs=0 |
| * [02] 08A63B7F ptr->@0x08a63b7f |
| * [03] F8000010 seqoutptr: len=16 |
| * [04] 01000000 out_ptr->@0x01000000 |
| * [05] F000003A seqinptr: len=58 |
| * [06] 01000010 in_ptr->@0x01000010 |
| * [07] 860D0004 operation: decap blob reg=memory, black, format=normal |
| * |
| * This is an example of a red key decapsulation job for restoring a red key |
| * from a secure memory blob. Note the 8 byte modifier on the 12 byte offset |
| * in the LOAD instruction: |
| * |
| * [00] B0800008 jobhdr: stidx=0 len=8 |
| * [01] 14400C08 ld: ccb2-key len=8 offs=12 |
| * [02] 01000000 ptr->@0x01000000 |
| * [03] F8000020 seqoutptr: len=32 |
| * [04] 400000E6 out_ptr->@0x400000e6 |
| * [05] F0000050 seqinptr: len=80 |
| * [06] 08F0C0EA in_ptr->@0x08f0c0ea |
| * [07] 860D0008 operation: decap blob reg=memory, red, sec_mem, |
| * format=normal |
| * |
| * Note: this function only generates 32-bit pointers at present, and should |
| * be refactored using a scheme that allows both 32 and 64 bit addressing |
| */ |
| |
| static int blob_decap_jobdesc(u32 **desc, dma_addr_t keymod, dma_addr_t blobbuf, |
| u8 *outbuf, u16 secretsz, u8 keycolor, |
| u8 blobtype, u8 auth) |
| { |
| u32 *tdesc, tmpdesc[INITIAL_DESCSZ]; |
| u16 dsize, idx; |
| |
| memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32)); |
| idx = 1; |
| |
| /* Load key modifier */ |
| if (blobtype == SM_SECMEM) |
| tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | |
| LDST_SRCDST_BYTE_KEY | |
| ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK) |
| | (8 & LDST_LEN_MASK); |
| else /* is general memory blob */ |
| tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB | |
| LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK); |
| |
| tmpdesc[idx++] = (u32)keymod; |
| |
| /* Compensate BKEK + MAC tag over size of encapsulated secret */ |
| tmpdesc[idx++] = CMD_SEQ_IN_PTR | (secretsz + BLOB_OVERHEAD); |
| tmpdesc[idx++] = (u32)blobbuf; |
| tmpdesc[idx++] = CMD_SEQ_OUT_PTR | secretsz; |
| tmpdesc[idx++] = (uintptr_t)outbuf; |
| |
| /* Decapsulate from secure memory partition to black blob */ |
| tmpdesc[idx] = CMD_OPERATION | OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB; |
| |
| if (blobtype == SM_SECMEM) |
| tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM; |
| |
| if (auth == KEY_COVER_CCM) |
| tmpdesc[idx] |= OP_PCL_BLOB_EKT; |
| |
| if (keycolor == BLACK_KEY) |
| tmpdesc[idx] |= OP_PCL_BLOB_BLACK; |
| |
| idx++; |
| tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK); |
| dsize = idx * sizeof(u32); |
| |
| tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA); |
| if (tdesc == NULL) |
| return 0; |
| |
| memcpy(tdesc, tmpdesc, dsize); |
| *desc = tdesc; |
| return dsize; |
| } |
| |
| /* |
| * Pseudo-synchronous ring access functions for carrying out key |
| * encapsulation and decapsulation |
| */ |
| |
| struct sm_key_job_result { |
| int error; |
| struct completion completion; |
| }; |
| |
| void sm_key_job_done(struct device *dev, u32 *desc, u32 err, void *context) |
| { |
| struct sm_key_job_result *res = context; |
| |
| if (err) |
| caam_jr_strstatus(dev, err); |
| |
| res->error = err; /* save off the error for postprocessing */ |
| |
| complete(&res->completion); /* mark us complete */ |
| } |
| |
| static int sm_key_job(struct device *ksdev, u32 *jobdesc) |
| { |
| struct sm_key_job_result testres = {0}; |
| struct caam_drv_private_sm *kspriv; |
| int rtn = 0; |
| |
| kspriv = dev_get_drvdata(ksdev); |
| |
| init_completion(&testres.completion); |
| |
| rtn = caam_jr_enqueue(kspriv->smringdev, jobdesc, sm_key_job_done, |
| &testres); |
| if (rtn) |
| goto exit; |
| |
| wait_for_completion_interruptible(&testres.completion); |
| rtn = testres.error; |
| |
| exit: |
| return rtn; |
| } |
| |
| /* |
| * Following section establishes the default methods for keystore access |
| * They are NOT intended for use external to this module |
| * |
| * In the present version, these are the only means for the higher-level |
| * interface to deal with the mechanics of accessing the phyiscal keystore |
| */ |
| |
| |
| int slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; |
| u32 i; |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_alloc(): requesting slot for %d bytes\n", size); |
| #endif |
| |
| if (size > smpriv->slot_size) |
| return -EKEYREJECTED; |
| |
| for (i = 0; i < ksdata->slot_count; i++) { |
| if (ksdata->slot[i].allocated == 0) { |
| ksdata->slot[i].allocated = 1; |
| (*slot) = i; |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_alloc(): new slot %d allocated\n", |
| *slot); |
| #endif |
| return 0; |
| } |
| } |
| |
| return -ENOSPC; |
| } |
| EXPORT_SYMBOL(slot_alloc); |
| |
| int slot_dealloc(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; |
| u8 __iomem *slotdata; |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_dealloc(): releasing slot %d\n", slot); |
| #endif |
| if (slot >= ksdata->slot_count) |
| return -EINVAL; |
| slotdata = ksdata->base_address + slot * smpriv->slot_size; |
| |
| if (ksdata->slot[slot].allocated == 1) { |
| /* Forcibly overwrite the data from the keystore */ |
| memset_io(ksdata->base_address + slot * smpriv->slot_size, 0, |
| smpriv->slot_size); |
| |
| ksdata->slot[slot].allocated = 0; |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_dealloc(): slot %d released\n", slot); |
| #endif |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(slot_dealloc); |
| |
| void *slot_get_address(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; |
| |
| if (slot >= ksdata->slot_count) |
| return NULL; |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_get_address(): slot %d is 0x%08x\n", slot, |
| (u32)ksdata->base_address + slot * smpriv->slot_size); |
| #endif |
| |
| return ksdata->base_address + slot * smpriv->slot_size; |
| } |
| |
| void *slot_get_physical(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; |
| |
| if (slot >= ksdata->slot_count) |
| return NULL; |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_get_physical(): slot %d is 0x%08x\n", slot, |
| (u32)ksdata->phys_address + slot * smpriv->slot_size); |
| #endif |
| |
| return ksdata->phys_address + slot * smpriv->slot_size; |
| } |
| |
| u32 slot_get_base(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; |
| |
| /* |
| * There could potentially be more than one secure partition object |
| * associated with this keystore. For now, there is just one. |
| */ |
| |
| (void)slot; |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_get_base(): slot %d = 0x%08x\n", |
| slot, (u32)ksdata->base_address); |
| #endif |
| |
| return (uintptr_t)(ksdata->base_address); |
| } |
| |
| u32 slot_get_offset(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata; |
| |
| if (slot >= ksdata->slot_count) |
| return -EINVAL; |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_get_offset(): slot %d = %d\n", slot, |
| slot * smpriv->slot_size); |
| #endif |
| |
| return slot * smpriv->slot_size; |
| } |
| |
| u32 slot_get_slot_size(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "slot_get_slot_size(): slot %d = %d\n", slot, |
| smpriv->slot_size); |
| #endif |
| /* All slots are the same size in the default implementation */ |
| return smpriv->slot_size; |
| } |
| |
| |
| |
| int kso_init_data(struct device *dev, u32 unit) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *keystore_data = NULL; |
| u32 slot_count; |
| u32 keystore_data_size; |
| |
| /* |
| * Calculate the required size of the keystore data structure, based |
| * on the number of keys that can fit in the partition. |
| */ |
| slot_count = smpriv->page_size / smpriv->slot_size; |
| #ifdef SM_DEBUG |
| dev_info(dev, "kso_init_data: %d slots initializing\n", slot_count); |
| #endif |
| |
| keystore_data_size = sizeof(struct keystore_data) + |
| slot_count * |
| sizeof(struct keystore_data_slot_info); |
| |
| keystore_data = kzalloc(keystore_data_size, GFP_KERNEL); |
| |
| if (!keystore_data) |
| return -ENOMEM; |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "kso_init_data: keystore data size = %d\n", |
| keystore_data_size); |
| #endif |
| |
| /* |
| * Place the slot information structure directly after the keystore data |
| * structure. |
| */ |
| keystore_data->slot = (struct keystore_data_slot_info *) |
| (keystore_data + 1); |
| keystore_data->slot_count = slot_count; |
| |
| smpriv->pagedesc[unit].ksdata = keystore_data; |
| smpriv->pagedesc[unit].ksdata->base_address = |
| smpriv->pagedesc[unit].pg_base; |
| smpriv->pagedesc[unit].ksdata->phys_address = |
| smpriv->pagedesc[unit].pg_phys; |
| |
| return 0; |
| } |
| |
| void kso_cleanup_data(struct device *dev, u32 unit) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| struct keystore_data *keystore_data = NULL; |
| |
| if (smpriv->pagedesc[unit].ksdata != NULL) |
| keystore_data = smpriv->pagedesc[unit].ksdata; |
| |
| /* Release the allocated keystore management data */ |
| kfree(smpriv->pagedesc[unit].ksdata); |
| |
| return; |
| } |
| |
| |
| |
| /* |
| * Keystore management section |
| */ |
| |
| void sm_init_keystore(struct device *dev) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| |
| smpriv->data_init = kso_init_data; |
| smpriv->data_cleanup = kso_cleanup_data; |
| smpriv->slot_alloc = slot_alloc; |
| smpriv->slot_dealloc = slot_dealloc; |
| smpriv->slot_get_address = slot_get_address; |
| smpriv->slot_get_physical = slot_get_physical; |
| smpriv->slot_get_base = slot_get_base; |
| smpriv->slot_get_offset = slot_get_offset; |
| smpriv->slot_get_slot_size = slot_get_slot_size; |
| #ifdef SM_DEBUG |
| dev_info(dev, "sm_init_keystore(): handlers installed\n"); |
| #endif |
| } |
| EXPORT_SYMBOL(sm_init_keystore); |
| |
| /* Return available pages/units */ |
| u32 sm_detect_keystore_units(struct device *dev) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| |
| return smpriv->localpages; |
| } |
| EXPORT_SYMBOL(sm_detect_keystore_units); |
| |
| /* |
| * Do any keystore specific initializations |
| */ |
| int sm_establish_keystore(struct device *dev, u32 unit) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "sm_establish_keystore(): unit %d initializing\n", unit); |
| #endif |
| |
| if (smpriv->data_init == NULL) |
| return -EINVAL; |
| |
| /* Call the data_init function for any user setup */ |
| return smpriv->data_init(dev, unit); |
| } |
| EXPORT_SYMBOL(sm_establish_keystore); |
| |
| void sm_release_keystore(struct device *dev, u32 unit) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| |
| #ifdef SM_DEBUG |
| dev_info(dev, "sm_establish_keystore(): unit %d releasing\n", unit); |
| #endif |
| if ((smpriv != NULL) && (smpriv->data_cleanup != NULL)) |
| smpriv->data_cleanup(dev, unit); |
| |
| return; |
| } |
| EXPORT_SYMBOL(sm_release_keystore); |
| |
| /* |
| * Subsequent interfacce (sm_keystore_*) forms the accessor interfacce to |
| * the keystore |
| */ |
| int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = -EINVAL; |
| |
| spin_lock(&smpriv->kslock); |
| |
| if ((smpriv->slot_alloc == NULL) || |
| (smpriv->pagedesc[unit].ksdata == NULL)) |
| goto out; |
| |
| retval = smpriv->slot_alloc(dev, unit, size, slot); |
| |
| out: |
| spin_unlock(&smpriv->kslock); |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_slot_alloc); |
| |
| int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = -EINVAL; |
| |
| spin_lock(&smpriv->kslock); |
| |
| if ((smpriv->slot_alloc == NULL) || |
| (smpriv->pagedesc[unit].ksdata == NULL)) |
| goto out; |
| |
| retval = smpriv->slot_dealloc(dev, unit, slot); |
| out: |
| spin_unlock(&smpriv->kslock); |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_slot_dealloc); |
| |
| int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot, |
| const u8 *key_data, u32 key_length) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = -EINVAL; |
| u32 slot_size; |
| u8 __iomem *slot_location; |
| |
| spin_lock(&smpriv->kslock); |
| |
| slot_size = smpriv->slot_get_slot_size(dev, unit, slot); |
| |
| if (key_length > slot_size) { |
| retval = -EFBIG; |
| goto out; |
| } |
| |
| slot_location = smpriv->slot_get_address(dev, unit, slot); |
| |
| memcpy_toio(slot_location, key_data, key_length); |
| |
| retval = 0; |
| |
| out: |
| spin_unlock(&smpriv->kslock); |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_slot_load); |
| |
| int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot, |
| u32 key_length, u8 *key_data) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = -EINVAL; |
| u8 __iomem *slot_addr; |
| u32 slot_size; |
| |
| spin_lock(&smpriv->kslock); |
| |
| slot_addr = smpriv->slot_get_address(dev, unit, slot); |
| slot_size = smpriv->slot_get_slot_size(dev, unit, slot); |
| |
| if (key_length > slot_size) { |
| retval = -EKEYREJECTED; |
| goto out; |
| } |
| |
| memcpy_fromio(key_data, slot_addr, key_length); |
| retval = 0; |
| |
| out: |
| spin_unlock(&smpriv->kslock); |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_slot_read); |
| |
| /* |
| * Blacken a clear key in a slot. Operates "in place". |
| * Limited to class 1 keys at the present time |
| */ |
| int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot, |
| u16 key_length, u8 keyauth) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = 0; |
| u8 __iomem *slotaddr; |
| void *slotphys; |
| u32 dsize, jstat; |
| u32 __iomem *coverdesc = NULL; |
| |
| /* Get the address of the object in the slot */ |
| slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot); |
| slotphys = (u8 *)smpriv->slot_get_physical(dev, unit, slot); |
| |
| dsize = blacken_key_jobdesc(&coverdesc, slotphys, key_length, keyauth); |
| if (!dsize) |
| return -ENOMEM; |
| jstat = sm_key_job(dev, coverdesc); |
| if (jstat) |
| retval = -EIO; |
| |
| kfree(coverdesc); |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_cover_key); |
| |
| /* Export a black/red key to a blob in external memory */ |
| int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot, u8 keycolor, |
| u8 keyauth, u8 *outbuf, u16 keylen, u8 *keymod) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = 0; |
| u8 __iomem *slotaddr, *lkeymod; |
| u8 __iomem *slotphys; |
| dma_addr_t keymod_dma, outbuf_dma; |
| u32 dsize, jstat; |
| u32 __iomem *encapdesc = NULL; |
| struct device *dev_for_dma_op; |
| |
| /* Use the ring as device for DMA operations */ |
| dev_for_dma_op = smpriv->smringdev; |
| |
| /* Get the base address(es) of the specified slot */ |
| slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot); |
| slotphys = smpriv->slot_get_physical(dev, unit, slot); |
| |
| /* Allocate memory for key modifier compatible with DMA */ |
| lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA); |
| if (!lkeymod) { |
| retval = (-ENOMEM); |
| goto exit; |
| } |
| |
| /* Get DMA address for the key modifier */ |
| keymod_dma = dma_map_single(dev_for_dma_op, lkeymod, |
| SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); |
| if (dma_mapping_error(dev_for_dma_op, keymod_dma)) { |
| dev_err(dev, "unable to map keymod: %p\n", lkeymod); |
| retval = (-ENOMEM); |
| goto free_keymod; |
| } |
| |
| /* Copy the keymod and synchronize the DMA */ |
| memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN); |
| dma_sync_single_for_device(dev_for_dma_op, keymod_dma, |
| SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); |
| |
| /* Get DMA address for the destination */ |
| outbuf_dma = dma_map_single(dev_for_dma_op, outbuf, |
| keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE); |
| if (dma_mapping_error(dev_for_dma_op, outbuf_dma)) { |
| dev_err(dev, "unable to map outbuf: %p\n", outbuf); |
| retval = (-ENOMEM); |
| goto unmap_keymod; |
| } |
| |
| /* Build the encapsulation job descriptor */ |
| dsize = blob_encap_jobdesc(&encapdesc, keymod_dma, slotphys, outbuf_dma, |
| keylen, keycolor, SM_SECMEM, keyauth); |
| if (!dsize) { |
| dev_err(dev, "can't alloc an encapsulation descriptor\n"); |
| retval = -ENOMEM; |
| goto unmap_outbuf; |
| } |
| |
| /* Run the job */ |
| jstat = sm_key_job(dev, encapdesc); |
| if (jstat) { |
| retval = (-EIO); |
| goto free_desc; |
| } |
| |
| /* Synchronize the data received */ |
| dma_sync_single_for_cpu(dev_for_dma_op, outbuf_dma, |
| keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE); |
| |
| free_desc: |
| kfree(encapdesc); |
| |
| unmap_outbuf: |
| dma_unmap_single(dev_for_dma_op, outbuf_dma, keylen + BLOB_OVERHEAD, |
| DMA_FROM_DEVICE); |
| |
| unmap_keymod: |
| dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN, |
| DMA_TO_DEVICE); |
| |
| free_keymod: |
| kfree(lkeymod); |
| |
| exit: |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_slot_export); |
| |
| /* Import a black/red key from a blob residing in external memory */ |
| int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot, u8 keycolor, |
| u8 keyauth, u8 *inbuf, u16 keylen, u8 *keymod) |
| { |
| struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev); |
| int retval = 0; |
| u8 __iomem *slotaddr, *lkeymod; |
| u8 __iomem *slotphys; |
| dma_addr_t keymod_dma, inbuf_dma; |
| u32 dsize, jstat; |
| u32 __iomem *decapdesc = NULL; |
| struct device *dev_for_dma_op; |
| |
| /* Use the ring as device for DMA operations */ |
| dev_for_dma_op = smpriv->smringdev; |
| |
| /* Get the base address(es) of the specified slot */ |
| slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot); |
| slotphys = smpriv->slot_get_physical(dev, unit, slot); |
| |
| /* Allocate memory for key modifier compatible with DMA */ |
| lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA); |
| if (!lkeymod) { |
| retval = (-ENOMEM); |
| goto exit; |
| } |
| |
| /* Get DMA address for the key modifier */ |
| keymod_dma = dma_map_single(dev_for_dma_op, lkeymod, |
| SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); |
| if (dma_mapping_error(dev_for_dma_op, keymod_dma)) { |
| dev_err(dev, "unable to map keymod: %p\n", lkeymod); |
| retval = (-ENOMEM); |
| goto free_keymod; |
| } |
| |
| /* Copy the keymod and synchronize the DMA */ |
| memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN); |
| dma_sync_single_for_device(dev_for_dma_op, keymod_dma, |
| SECMEM_KEYMOD_LEN, DMA_TO_DEVICE); |
| |
| /* Get DMA address for the input */ |
| inbuf_dma = dma_map_single(dev_for_dma_op, inbuf, |
| keylen + BLOB_OVERHEAD, DMA_TO_DEVICE); |
| if (dma_mapping_error(dev_for_dma_op, inbuf_dma)) { |
| dev_err(dev, "unable to map inbuf: %p\n", (void *)inbuf_dma); |
| retval = (-ENOMEM); |
| goto unmap_keymod; |
| } |
| |
| /* synchronize the DMA */ |
| dma_sync_single_for_device(dev_for_dma_op, inbuf_dma, |
| keylen + BLOB_OVERHEAD, DMA_TO_DEVICE); |
| |
| /* Build the encapsulation job descriptor */ |
| dsize = blob_decap_jobdesc(&decapdesc, keymod_dma, inbuf_dma, slotphys, |
| keylen, keycolor, SM_SECMEM, keyauth); |
| if (!dsize) { |
| dev_err(dev, "can't alloc a decapsulation descriptor\n"); |
| retval = -ENOMEM; |
| goto unmap_inbuf; |
| } |
| |
| /* Run the job */ |
| jstat = sm_key_job(dev, decapdesc); |
| |
| /* |
| * May want to expand upon error meanings a bit. Any CAAM status |
| * is reported as EIO, but we might want to look for something more |
| * meaningful for something like an ICV error on restore, otherwise |
| * the caller is left guessing. |
| */ |
| if (jstat) { |
| retval = (-EIO); |
| goto free_desc; |
| } |
| |
| free_desc: |
| kfree(decapdesc); |
| |
| unmap_inbuf: |
| dma_unmap_single(dev_for_dma_op, inbuf_dma, keylen + BLOB_OVERHEAD, |
| DMA_TO_DEVICE); |
| |
| unmap_keymod: |
| dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN, |
| DMA_TO_DEVICE); |
| |
| free_keymod: |
| kfree(lkeymod); |
| |
| exit: |
| return retval; |
| } |
| EXPORT_SYMBOL(sm_keystore_slot_import); |
| |
| /* |
| * Initialization/shutdown subsystem |
| * Assumes statically-invoked startup/shutdown from the controller driver |
| * for the present time, to be reworked when a device tree becomes |
| * available. This code will not modularize in present form. |
| * |
| * Also, simply uses ring 0 for execution at the present |
| */ |
| |
| int caam_sm_startup(struct platform_device *pdev) |
| { |
| struct device *ctrldev, *smdev; |
| struct caam_drv_private *ctrlpriv; |
| struct caam_drv_private_sm *smpriv; |
| struct caam_drv_private_jr *jrpriv; /* need this for reg page */ |
| struct platform_device *sm_pdev; |
| struct sm_page_descriptor *lpagedesc; |
| u32 page, pgstat, lpagect, detectedpage, smvid, smpart; |
| int ret = 0; |
| |
| struct device_node *np; |
| ctrldev = &pdev->dev; |
| ctrlpriv = dev_get_drvdata(ctrldev); |
| |
| /* |
| * If ctrlpriv is NULL, it's probably because the caam driver wasn't |
| * properly initialized (e.g. RNG4 init failed). Thus, bail out here. |
| */ |
| if (!ctrlpriv) { |
| ret = -ENODEV; |
| goto exit; |
| } |
| |
| /* |
| * Set up the private block for secure memory |
| * Only one instance is possible |
| */ |
| smpriv = kzalloc(sizeof(struct caam_drv_private_sm), GFP_KERNEL); |
| if (smpriv == NULL) { |
| dev_err(ctrldev, "can't alloc private mem for secure memory\n"); |
| ret = -ENOMEM; |
| goto exit; |
| } |
| smpriv->parentdev = ctrldev; /* copy of parent dev is handy */ |
| spin_lock_init(&smpriv->kslock); |
| |
| /* Create the dev */ |
| np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm"); |
| if (np) |
| of_node_clear_flag(np, OF_POPULATED); |
| sm_pdev = of_platform_device_create(np, "caam_sm", ctrldev); |
| |
| if (sm_pdev == NULL) { |
| ret = -EINVAL; |
| goto free_smpriv; |
| } |
| |
| /* Save a pointer to the platform device for Secure Memory */ |
| smpriv->sm_pdev = sm_pdev; |
| smdev = &sm_pdev->dev; |
| dev_set_drvdata(smdev, smpriv); |
| ctrlpriv->smdev = smdev; |
| |
| /* Set the Secure Memory Register Map Version */ |
| if (ctrlpriv->has_seco) { |
| int i = ctrlpriv->first_jr_index; |
| |
| smvid = rd_reg32(&ctrlpriv->jr[i]->perfmon.smvid); |
| smpart = rd_reg32(&ctrlpriv->jr[i]->perfmon.smpart); |
| |
| } else { |
| smvid = rd_reg32(&ctrlpriv->ctrl->perfmon.smvid); |
| smpart = rd_reg32(&ctrlpriv->ctrl->perfmon.smpart); |
| |
| } |
| |
| if (smvid < SMVID_V2) |
| smpriv->sm_reg_offset = SM_V1_OFFSET; |
| else |
| smpriv->sm_reg_offset = SM_V2_OFFSET; |
| |
| /* |
| * Collect configuration limit data for reference |
| * This batch comes from the partition data/vid registers in perfmon |
| */ |
| smpriv->max_pages = ((smpart & SMPART_MAX_NUMPG_MASK) >> |
| SMPART_MAX_NUMPG_SHIFT) + 1; |
| smpriv->top_partition = ((smpart & SMPART_MAX_PNUM_MASK) >> |
| SMPART_MAX_PNUM_SHIFT) + 1; |
| smpriv->top_page = ((smpart & SMPART_MAX_PG_MASK) >> |
| SMPART_MAX_PG_SHIFT) + 1; |
| smpriv->page_size = 1024 << ((smvid & SMVID_PG_SIZE_MASK) >> |
| SMVID_PG_SIZE_SHIFT); |
| smpriv->slot_size = 1 << CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE; |
| |
| #ifdef SM_DEBUG |
| dev_info(smdev, "max pages = %d, top partition = %d\n", |
| smpriv->max_pages, smpriv->top_partition); |
| dev_info(smdev, "top page = %d, page size = %d (total = %d)\n", |
| smpriv->top_page, smpriv->page_size, |
| smpriv->top_page * smpriv->page_size); |
| dev_info(smdev, "selected slot size = %d\n", smpriv->slot_size); |
| #endif |
| |
| /* |
| * Now probe for partitions/pages to which we have access. Note that |
| * these have likely been set up by a bootloader or platform |
| * provisioning application, so we have to assume that we "inherit" |
| * a configuration and work within the constraints of what it might be. |
| * |
| * Assume use of the zeroth ring in the present iteration (until |
| * we can divorce the controller and ring drivers, and then assign |
| * an SM instance to any ring instance). |
| */ |
| smpriv->smringdev = caam_jr_alloc(); |
| if (!smpriv->smringdev) { |
| dev_err(smdev, "Device for job ring not created\n"); |
| ret = -ENODEV; |
| goto unregister_smpdev; |
| } |
| |
| jrpriv = dev_get_drvdata(smpriv->smringdev); |
| lpagect = 0; |
| pgstat = 0; |
| lpagedesc = kzalloc(sizeof(struct sm_page_descriptor) |
| * smpriv->max_pages, GFP_KERNEL); |
| if (lpagedesc == NULL) { |
| ret = -ENOMEM; |
| goto free_smringdev; |
| } |
| |
| for (page = 0; page < smpriv->max_pages; page++) { |
| u32 page_ownership; |
| |
| if (sm_send_cmd(smpriv, jrpriv, |
| ((page << SMC_PAGE_SHIFT) & SMC_PAGE_MASK) | |
| (SMC_CMD_PAGE_INQUIRY & SMC_CMD_MASK), |
| &pgstat)) { |
| ret = -EINVAL; |
| goto free_lpagedesc; |
| } |
| |
| page_ownership = (pgstat & SMCS_PGWON_MASK) >> SMCS_PGOWN_SHIFT; |
| if ((page_ownership == SMCS_PGOWN_OWNED) |
| || (page_ownership == SMCS_PGOWN_NOOWN)) { |
| /* page allocated */ |
| lpagedesc[page].phys_pagenum = |
| (pgstat & SMCS_PAGE_MASK) >> SMCS_PAGE_SHIFT; |
| lpagedesc[page].own_part = |
| (pgstat & SMCS_PART_SHIFT) >> SMCS_PART_MASK; |
| lpagedesc[page].pg_base = (u8 *)ctrlpriv->sm_base + |
| (smpriv->page_size * page); |
| if (ctrlpriv->has_seco) { |
| /* FIXME: get different addresses viewed by CPU and CAAM from |
| * platform property |
| */ |
| lpagedesc[page].pg_phys = (u8 *)0x20800000 + |
| (smpriv->page_size * page); |
| } else { |
| lpagedesc[page].pg_phys = |
| (u8 *) ctrlpriv->sm_phy + |
| (smpriv->page_size * page); |
| } |
| lpagect++; |
| #ifdef SM_DEBUG |
| dev_info(smdev, |
| "physical page %d, owning partition = %d\n", |
| lpagedesc[page].phys_pagenum, |
| lpagedesc[page].own_part); |
| #endif |
| } |
| } |
| |
| smpriv->pagedesc = kzalloc(sizeof(struct sm_page_descriptor) * lpagect, |
| GFP_KERNEL); |
| if (smpriv->pagedesc == NULL) { |
| ret = -ENOMEM; |
| goto free_lpagedesc; |
| } |
| smpriv->localpages = lpagect; |
| |
| detectedpage = 0; |
| for (page = 0; page < smpriv->max_pages; page++) { |
| if (lpagedesc[page].pg_base != NULL) { /* e.g. live entry */ |
| memcpy(&smpriv->pagedesc[detectedpage], |
| &lpagedesc[page], |
| sizeof(struct sm_page_descriptor)); |
| #ifdef SM_DEBUG_CONT |
| sm_show_page(smdev, &smpriv->pagedesc[detectedpage]); |
| #endif |
| detectedpage++; |
| } |
| } |
| |
| kfree(lpagedesc); |
| |
| sm_init_keystore(smdev); |
| |
| goto exit; |
| |
| free_lpagedesc: |
| kfree(lpagedesc); |
| free_smringdev: |
| caam_jr_free(smpriv->smringdev); |
| unregister_smpdev: |
| of_device_unregister(smpriv->sm_pdev); |
| free_smpriv: |
| kfree(smpriv); |
| |
| exit: |
| return ret; |
| } |
| |
| void caam_sm_shutdown(struct platform_device *pdev) |
| { |
| struct device *ctrldev, *smdev; |
| struct caam_drv_private *priv; |
| struct caam_drv_private_sm *smpriv; |
| |
| ctrldev = &pdev->dev; |
| priv = dev_get_drvdata(ctrldev); |
| smdev = priv->smdev; |
| |
| /* Return if resource not initialized by startup */ |
| if (smdev == NULL) |
| return; |
| |
| smpriv = dev_get_drvdata(smdev); |
| |
| caam_jr_free(smpriv->smringdev); |
| |
| /* Remove Secure Memory Platform Device */ |
| of_device_unregister(smpriv->sm_pdev); |
| |
| kfree(smpriv->pagedesc); |
| kfree(smpriv); |
| } |
| EXPORT_SYMBOL(caam_sm_shutdown); |
| |
| static void __exit caam_sm_exit(void) |
| { |
| struct device_node *dev_node; |
| struct platform_device *pdev; |
| |
| dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); |
| if (!dev_node) { |
| dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); |
| if (!dev_node) |
| return; |
| } |
| |
| pdev = of_find_device_by_node(dev_node); |
| if (!pdev) |
| return; |
| |
| of_node_put(dev_node); |
| |
| caam_sm_shutdown(pdev); |
| |
| return; |
| } |
| |
| static int __init caam_sm_init(void) |
| { |
| struct device_node *dev_node; |
| struct platform_device *pdev; |
| |
| /* |
| * Do of_find_compatible_node() then of_find_device_by_node() |
| * once a functional device tree is available |
| */ |
| dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); |
| if (!dev_node) { |
| dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); |
| if (!dev_node) |
| return -ENODEV; |
| } |
| |
| pdev = of_find_device_by_node(dev_node); |
| if (!pdev) |
| return -ENODEV; |
| |
| of_node_get(dev_node); |
| |
| caam_sm_startup(pdev); |
| |
| return 0; |
| } |
| |
| module_init(caam_sm_init); |
| module_exit(caam_sm_exit); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_DESCRIPTION("FSL CAAM Secure Memory / Keystore"); |
| MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD"); |