| /* |
| * Misc utility routines used by kernel or app-level. |
| * Contents are wifi-specific, used by any kernel or app-level |
| * software that might want wifi things as it grows. |
| * |
| * Copyright (C) 1999-2016, Broadcom Corporation |
| * |
| * Unless you and Broadcom execute a separate written software license |
| * agreement governing use of this software, this software is licensed to you |
| * under the terms of the GNU General Public License version 2 (the "GPL"), |
| * available at http://www.broadcom.com/licenses/GPLv2.php, with the |
| * following added to such license: |
| * |
| * As a special exception, the copyright holders of this software give you |
| * permission to link this software with independent modules, and to copy and |
| * distribute the resulting executable under terms of your choice, provided that |
| * you also meet, for each linked independent module, the terms and conditions of |
| * the license of that module. An independent module is a module which is not |
| * derived from this software. The special exception does not apply to any |
| * modifications of the software. |
| * |
| * Notwithstanding the above, under no circumstances may you combine this |
| * software in any way with any other Broadcom software provided under a license |
| * other than the GPL, without Broadcom's express prior written consent. |
| * $Id: bcmwifi_channels.c 309193 2012-01-19 00:03:57Z $ |
| */ |
| |
| #include <bcm_cfg.h> |
| #include <typedefs.h> |
| #include <bcmutils.h> |
| |
| #ifdef BCMDRIVER |
| #include <osl.h> |
| #define strtoul(nptr, endptr, base) bcm_strtoul((nptr), (endptr), (base)) |
| #define tolower(c) (bcm_isupper((c)) ? ((c) + 'a' - 'A') : (c)) |
| #else |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <ctype.h> |
| #ifndef ASSERT |
| #define ASSERT(exp) |
| #endif |
| #endif /* BCMDRIVER */ |
| |
| #include <bcmwifi_channels.h> |
| |
| #if defined(WIN32) && (defined(BCMDLL) || defined(WLMDLL)) |
| #include <bcmstdlib.h> /* For wl/exe/GNUmakefile.brcm_wlu and GNUmakefile.wlm_dll */ |
| #endif |
| |
| /* Definitions for D11AC capable Chanspec type */ |
| |
| /* Chanspec ASCII representation with 802.11ac capability: |
| * [<band> 'g'] <channel> ['/'<bandwidth> [<ctl-sideband>]['/'<1st80channel>'-'<2nd80channel>]] |
| * |
| * <band>: |
| * (optional) 2, 3, 4, 5 for 2.4GHz, 3GHz, 4GHz, and 5GHz respectively. |
| * Default value is 2g if channel <= 14, otherwise 5g. |
| * <channel>: |
| * channel number of the 5MHz, 10MHz, 20MHz channel, |
| * or primary channel of 40MHz, 80MHz, 160MHz, or 80+80MHz channel. |
| * <bandwidth>: |
| * (optional) 5, 10, 20, 40, 80, 160, or 80+80. Default value is 20. |
| * <primary-sideband>: |
| * (only for 2.4GHz band 40MHz) U for upper sideband primary, L for lower. |
| * |
| * For 2.4GHz band 40MHz channels, the same primary channel may be the |
| * upper sideband for one 40MHz channel, and the lower sideband for an |
| * overlapping 40MHz channel. The U/L disambiguates which 40MHz channel |
| * is being specified. |
| * |
| * For 40MHz in the 5GHz band and all channel bandwidths greater than |
| * 40MHz, the U/L specificaion is not allowed since the channels are |
| * non-overlapping and the primary sub-band is derived from its |
| * position in the wide bandwidth channel. |
| * |
| * <1st80Channel>: |
| * <2nd80Channel>: |
| * Required for 80+80, otherwise not allowed. |
| * Specifies the center channel of the first and second 80MHz band. |
| * |
| * In its simplest form, it is a 20MHz channel number, with the implied band |
| * of 2.4GHz if channel number <= 14, and 5GHz otherwise. |
| * |
| * To allow for backward compatibility with scripts, the old form for |
| * 40MHz channels is also allowed: <channel><ctl-sideband> |
| * |
| * <channel>: |
| * primary channel of 40MHz, channel <= 14 is 2GHz, otherwise 5GHz |
| * <ctl-sideband>: |
| * "U" for upper, "L" for lower (or lower case "u" "l") |
| * |
| * 5 GHz Examples: |
| * Chanspec BW Center Ch Channel Range Primary Ch |
| * 5g8 20MHz 8 - - |
| * 52 20MHz 52 - - |
| * 52/40 40MHz 54 52-56 52 |
| * 56/40 40MHz 54 52-56 56 |
| * 52/80 80MHz 58 52-64 52 |
| * 56/80 80MHz 58 52-64 56 |
| * 60/80 80MHz 58 52-64 60 |
| * 64/80 80MHz 58 52-64 64 |
| * 52/160 160MHz 50 36-64 52 |
| * 36/160 160MGz 50 36-64 36 |
| * 36/80+80/42-106 80+80MHz 42,106 36-48,100-112 36 |
| * |
| * 2 GHz Examples: |
| * Chanspec BW Center Ch Channel Range Primary Ch |
| * 2g8 20MHz 8 - - |
| * 8 20MHz 8 - - |
| * 6 20MHz 6 - - |
| * 6/40l 40MHz 8 6-10 6 |
| * 6l 40MHz 8 6-10 6 |
| * 6/40u 40MHz 4 2-6 6 |
| * 6u 40MHz 4 2-6 6 |
| */ |
| |
| /* bandwidth ASCII string */ |
| static const char *wf_chspec_bw_str[] = |
| { |
| "5", |
| "10", |
| "20", |
| "40", |
| "80", |
| "160", |
| "80+80", |
| "na" |
| }; |
| |
| static const uint8 wf_chspec_bw_mhz[] = |
| {5, 10, 20, 40, 80, 160, 160}; |
| |
| #define WF_NUM_BW \ |
| (sizeof(wf_chspec_bw_mhz)/sizeof(uint8)) |
| |
| /* 40MHz channels in 5GHz band */ |
| static const uint8 wf_5g_40m_chans[] = |
| {38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159}; |
| #define WF_NUM_5G_40M_CHANS \ |
| (sizeof(wf_5g_40m_chans)/sizeof(uint8)) |
| |
| /* 80MHz channels in 5GHz band */ |
| static const uint8 wf_5g_80m_chans[] = |
| {42, 58, 106, 122, 138, 155}; |
| #define WF_NUM_5G_80M_CHANS \ |
| (sizeof(wf_5g_80m_chans)/sizeof(uint8)) |
| |
| /* 160MHz channels in 5GHz band */ |
| static const uint8 wf_5g_160m_chans[] = |
| {50, 114}; |
| #define WF_NUM_5G_160M_CHANS \ |
| (sizeof(wf_5g_160m_chans)/sizeof(uint8)) |
| |
| |
| /* convert bandwidth from chanspec to MHz */ |
| static uint |
| bw_chspec_to_mhz(chanspec_t chspec) |
| { |
| uint bw; |
| |
| bw = (chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT; |
| return (bw >= WF_NUM_BW ? 0 : wf_chspec_bw_mhz[bw]); |
| } |
| |
| /* bw in MHz, return the channel count from the center channel to the |
| * the channel at the edge of the band |
| */ |
| static uint8 |
| center_chan_to_edge(uint bw) |
| { |
| /* edge channels separated by BW - 10MHz on each side |
| * delta from cf to edge is half of that, |
| * MHz to channel num conversion is 5MHz/channel |
| */ |
| return (uint8)(((bw - 20) / 2) / 5); |
| } |
| |
| /* return channel number of the low edge of the band |
| * given the center channel and BW |
| */ |
| static uint8 |
| channel_low_edge(uint center_ch, uint bw) |
| { |
| return (uint8)(center_ch - center_chan_to_edge(bw)); |
| } |
| |
| /* return side band number given center channel and control channel |
| * return -1 on error |
| */ |
| static int |
| channel_to_sb(uint center_ch, uint ctl_ch, uint bw) |
| { |
| uint lowest = channel_low_edge(center_ch, bw); |
| uint sb; |
| |
| if ((ctl_ch - lowest) % 4) { |
| /* bad ctl channel, not mult 4 */ |
| return -1; |
| } |
| |
| sb = ((ctl_ch - lowest) / 4); |
| |
| /* sb must be a index to a 20MHz channel in range */ |
| if (sb >= (bw / 20)) { |
| /* ctl_ch must have been too high for the center_ch */ |
| return -1; |
| } |
| |
| return sb; |
| } |
| |
| /* return control channel given center channel and side band */ |
| static uint8 |
| channel_to_ctl_chan(uint center_ch, uint bw, uint sb) |
| { |
| return (uint8)(channel_low_edge(center_ch, bw) + sb * 4); |
| } |
| |
| /* return index of 80MHz channel from channel number |
| * return -1 on error |
| */ |
| static int |
| channel_80mhz_to_id(uint ch) |
| { |
| uint i; |
| for (i = 0; i < WF_NUM_5G_80M_CHANS; i ++) { |
| if (ch == wf_5g_80m_chans[i]) |
| return i; |
| } |
| |
| return -1; |
| } |
| |
| /* given a chanspec and a string buffer, format the chanspec as a |
| * string, and return the original pointer a. |
| * Min buffer length must be CHANSPEC_STR_LEN. |
| * On error return NULL |
| */ |
| char * |
| wf_chspec_ntoa(chanspec_t chspec, char *buf) |
| { |
| const char *band; |
| uint ctl_chan; |
| |
| if (wf_chspec_malformed(chspec)) |
| return NULL; |
| |
| band = ""; |
| |
| /* check for non-default band spec */ |
| if ((CHSPEC_IS2G(chspec) && CHSPEC_CHANNEL(chspec) > CH_MAX_2G_CHANNEL) || |
| (CHSPEC_IS5G(chspec) && CHSPEC_CHANNEL(chspec) <= CH_MAX_2G_CHANNEL)) |
| band = (CHSPEC_IS2G(chspec)) ? "2g" : "5g"; |
| |
| /* ctl channel */ |
| ctl_chan = wf_chspec_ctlchan(chspec); |
| |
| /* bandwidth and ctl sideband */ |
| if (CHSPEC_IS20(chspec)) { |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d", band, ctl_chan); |
| } else if (!CHSPEC_IS8080(chspec)) { |
| const char *bw; |
| const char *sb = ""; |
| |
| bw = wf_chspec_bw_str[(chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT]; |
| |
| #ifdef CHANSPEC_NEW_40MHZ_FORMAT |
| /* ctl sideband string if needed for 2g 40MHz */ |
| if (CHSPEC_IS40(chspec) && CHSPEC_IS2G(chspec)) { |
| sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l"; |
| } |
| |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, ctl_chan, bw, sb); |
| #else |
| /* ctl sideband string instead of BW for 40MHz */ |
| if (CHSPEC_IS40(chspec)) { |
| sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l"; |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d%s", band, ctl_chan, sb); |
| } else { |
| snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, ctl_chan, bw); |
| } |
| #endif /* CHANSPEC_NEW_40MHZ_FORMAT */ |
| |
| } else { |
| /* 80+80 */ |
| uint chan1 = (chspec & WL_CHANSPEC_CHAN1_MASK) >> WL_CHANSPEC_CHAN1_SHIFT; |
| uint chan2 = (chspec & WL_CHANSPEC_CHAN2_MASK) >> WL_CHANSPEC_CHAN2_SHIFT; |
| |
| /* convert to channel number */ |
| chan1 = (chan1 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan1] : 0; |
| chan2 = (chan2 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan2] : 0; |
| |
| /* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */ |
| snprintf(buf, CHANSPEC_STR_LEN, "%d/80+80/%d-%d", ctl_chan, chan1, chan2); |
| } |
| |
| return (buf); |
| } |
| |
| static int |
| read_uint(const char **p, unsigned int *num) |
| { |
| unsigned long val; |
| char *endp = NULL; |
| |
| val = strtoul(*p, &endp, 10); |
| /* if endp is the initial pointer value, then a number was not read */ |
| if (endp == *p) |
| return 0; |
| |
| /* advance the buffer pointer to the end of the integer string */ |
| *p = endp; |
| /* return the parsed integer */ |
| *num = (unsigned int)val; |
| |
| return 1; |
| } |
| |
| /* given a chanspec string, convert to a chanspec. |
| * On error return 0 |
| */ |
| chanspec_t |
| wf_chspec_aton(const char *a) |
| { |
| chanspec_t chspec; |
| uint chspec_ch, chspec_band, bw, chspec_bw, chspec_sb; |
| uint num, ctl_ch; |
| uint ch1, ch2; |
| char c, sb_ul = '\0'; |
| int i; |
| |
| bw = 20; |
| chspec_sb = 0; |
| chspec_ch = ch1 = ch2 = 0; |
| |
| /* parse channel num or band */ |
| if (!read_uint(&a, &num)) |
| return 0; |
| |
| /* if we are looking at a 'g', then the first number was a band */ |
| c = tolower((int)a[0]); |
| if (c == 'g') { |
| a ++; /* consume the char */ |
| |
| /* band must be "2" or "5" */ |
| if (num == 2) |
| chspec_band = WL_CHANSPEC_BAND_2G; |
| else if (num == 5) |
| chspec_band = WL_CHANSPEC_BAND_5G; |
| else |
| return 0; |
| |
| /* read the channel number */ |
| if (!read_uint(&a, &ctl_ch)) |
| return 0; |
| |
| c = tolower((int)a[0]); |
| } |
| else { |
| /* first number is channel, use default for band */ |
| ctl_ch = num; |
| chspec_band = ((ctl_ch <= CH_MAX_2G_CHANNEL) ? |
| WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G); |
| } |
| |
| if (c == '\0') { |
| /* default BW of 20MHz */ |
| chspec_bw = WL_CHANSPEC_BW_20; |
| goto done_read; |
| } |
| |
| a ++; /* consume the 'u','l', or '/' */ |
| |
| /* check 'u'/'l' */ |
| if (c == 'u' || c == 'l') { |
| sb_ul = c; |
| chspec_bw = WL_CHANSPEC_BW_40; |
| goto done_read; |
| } |
| |
| /* next letter must be '/' */ |
| if (c != '/') |
| return 0; |
| |
| /* read bandwidth */ |
| if (!read_uint(&a, &bw)) |
| return 0; |
| |
| /* convert to chspec value */ |
| if (bw == 20) { |
| chspec_bw = WL_CHANSPEC_BW_20; |
| } else if (bw == 40) { |
| chspec_bw = WL_CHANSPEC_BW_40; |
| } else if (bw == 80) { |
| chspec_bw = WL_CHANSPEC_BW_80; |
| } else if (bw == 160) { |
| chspec_bw = WL_CHANSPEC_BW_160; |
| } else { |
| return 0; |
| } |
| |
| /* So far we have <band>g<chan>/<bw> |
| * Can now be followed by u/l if bw = 40, |
| * or '+80' if bw = 80, to make '80+80' bw. |
| */ |
| |
| c = tolower((int)a[0]); |
| |
| /* if we have a 2g/40 channel, we should have a l/u spec now */ |
| if (chspec_band == WL_CHANSPEC_BAND_2G && bw == 40) { |
| if (c == 'u' || c == 'l') { |
| a ++; /* consume the u/l char */ |
| sb_ul = c; |
| goto done_read; |
| } |
| } |
| |
| /* check for 80+80 */ |
| if (c == '+') { |
| /* 80+80 */ |
| static const char *plus80 = "80/"; |
| |
| /* must be looking at '+80/' |
| * check and consume this string. |
| */ |
| chspec_bw = WL_CHANSPEC_BW_8080; |
| |
| a ++; /* consume the char '+' */ |
| |
| /* consume the '80/' string */ |
| for (i = 0; i < 3; i++) { |
| if (*a++ != *plus80++) { |
| return 0; |
| } |
| } |
| |
| /* read primary 80MHz channel */ |
| if (!read_uint(&a, &ch1)) |
| return 0; |
| |
| /* must followed by '-' */ |
| if (a[0] != '-') |
| return 0; |
| a ++; /* consume the char */ |
| |
| /* read secondary 80MHz channel */ |
| if (!read_uint(&a, &ch2)) |
| return 0; |
| } |
| |
| done_read: |
| /* skip trailing white space */ |
| while (a[0] == ' ') { |
| a ++; |
| } |
| |
| /* must be end of string */ |
| if (a[0] != '\0') |
| return 0; |
| |
| /* Now have all the chanspec string parts read; |
| * chspec_band, ctl_ch, chspec_bw, sb_ul, ch1, ch2. |
| * chspec_band and chspec_bw are chanspec values. |
| * Need to convert ctl_ch, sb_ul, and ch1,ch2 into |
| * a center channel (or two) and sideband. |
| */ |
| |
| /* if a sb u/l string was given, just use that, |
| * guaranteed to be bw = 40 by sting parse. |
| */ |
| if (sb_ul != '\0') { |
| if (sb_ul == 'l') { |
| chspec_ch = UPPER_20_SB(ctl_ch); |
| chspec_sb = WL_CHANSPEC_CTL_SB_LLL; |
| } else if (sb_ul == 'u') { |
| chspec_ch = LOWER_20_SB(ctl_ch); |
| chspec_sb = WL_CHANSPEC_CTL_SB_LLU; |
| } |
| } |
| /* if the bw is 20, center and sideband are trivial */ |
| else if (chspec_bw == WL_CHANSPEC_BW_20) { |
| chspec_ch = ctl_ch; |
| chspec_sb = WL_CHANSPEC_CTL_SB_NONE; |
| } |
| /* if the bw is 40/80/160, not 80+80, a single method |
| * can be used to to find the center and sideband |
| */ |
| else if (chspec_bw != WL_CHANSPEC_BW_8080) { |
| /* figure out ctl sideband based on ctl channel and bandwidth */ |
| const uint8 *center_ch = NULL; |
| int num_ch = 0; |
| int sb = -1; |
| |
| if (chspec_bw == WL_CHANSPEC_BW_40) { |
| center_ch = wf_5g_40m_chans; |
| num_ch = WF_NUM_5G_40M_CHANS; |
| } else if (chspec_bw == WL_CHANSPEC_BW_80) { |
| center_ch = wf_5g_80m_chans; |
| num_ch = WF_NUM_5G_80M_CHANS; |
| } else if (chspec_bw == WL_CHANSPEC_BW_160) { |
| center_ch = wf_5g_160m_chans; |
| num_ch = WF_NUM_5G_160M_CHANS; |
| } else { |
| return 0; |
| } |
| |
| for (i = 0; i < num_ch; i ++) { |
| sb = channel_to_sb(center_ch[i], ctl_ch, bw); |
| if (sb >= 0) { |
| chspec_ch = center_ch[i]; |
| chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT; |
| break; |
| } |
| } |
| |
| /* check for no matching sb/center */ |
| if (sb < 0) { |
| return 0; |
| } |
| } |
| /* Otherwise, bw is 80+80. Figure out channel pair and sb */ |
| else { |
| int ch1_id = 0, ch2_id = 0; |
| int sb; |
| |
| ch1_id = channel_80mhz_to_id(ch1); |
| ch2_id = channel_80mhz_to_id(ch2); |
| |
| /* validate channels */ |
| if (ch1 >= ch2 || ch1_id < 0 || ch2_id < 0) |
| return 0; |
| |
| /* combined channel in chspec */ |
| chspec_ch = (((uint16)ch1_id << WL_CHANSPEC_CHAN1_SHIFT) | |
| ((uint16)ch2_id << WL_CHANSPEC_CHAN2_SHIFT)); |
| |
| /* figure out ctl sideband */ |
| |
| /* does the primary channel fit with the 1st 80MHz channel ? */ |
| sb = channel_to_sb(ch1, ctl_ch, bw); |
| if (sb < 0) { |
| /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ |
| sb = channel_to_sb(ch2, ctl_ch, bw); |
| if (sb < 0) { |
| /* no match for ctl_ch to either 80MHz center channel */ |
| return 0; |
| } |
| /* sb index is 0-3 for the low 80MHz channel, and 4-7 for |
| * the high 80MHz channel. Add 4 to to shift to high set. |
| */ |
| sb += 4; |
| } |
| |
| chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT; |
| } |
| |
| chspec = (chspec_ch | chspec_band | chspec_bw | chspec_sb); |
| |
| if (wf_chspec_malformed(chspec)) |
| return 0; |
| |
| return chspec; |
| } |
| |
| /* |
| * Verify the chanspec is using a legal set of parameters, i.e. that the |
| * chanspec specified a band, bw, ctl_sb and channel and that the |
| * combination could be legal given any set of circumstances. |
| * RETURNS: TRUE is the chanspec is malformed, false if it looks good. |
| */ |
| bool |
| wf_chspec_malformed(chanspec_t chanspec) |
| { |
| uint chspec_bw = CHSPEC_BW(chanspec); |
| uint chspec_ch = CHSPEC_CHANNEL(chanspec); |
| |
| /* must be 2G or 5G band */ |
| if (CHSPEC_IS2G(chanspec)) { |
| /* must be valid bandwidth */ |
| if (chspec_bw != WL_CHANSPEC_BW_20 && |
| chspec_bw != WL_CHANSPEC_BW_40) { |
| return TRUE; |
| } |
| } else if (CHSPEC_IS5G(chanspec)) { |
| if (chspec_bw == WL_CHANSPEC_BW_8080) { |
| uint ch1_id, ch2_id; |
| |
| /* channel number in 80+80 must be in range */ |
| ch1_id = CHSPEC_CHAN1(chanspec); |
| ch2_id = CHSPEC_CHAN2(chanspec); |
| if (ch1_id >= WF_NUM_5G_80M_CHANS || ch2_id >= WF_NUM_5G_80M_CHANS) |
| return TRUE; |
| |
| /* ch2 must be above ch1 for the chanspec */ |
| if (ch2_id <= ch1_id) |
| return TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_20 || chspec_bw == WL_CHANSPEC_BW_40 || |
| chspec_bw == WL_CHANSPEC_BW_80 || chspec_bw == WL_CHANSPEC_BW_160) { |
| |
| if (chspec_ch > MAXCHANNEL) { |
| return TRUE; |
| } |
| } else { |
| /* invalid bandwidth */ |
| return TRUE; |
| } |
| } else { |
| /* must be 2G or 5G band */ |
| return TRUE; |
| } |
| |
| /* side band needs to be consistent with bandwidth */ |
| if (chspec_bw == WL_CHANSPEC_BW_20) { |
| if (CHSPEC_CTL_SB(chanspec) != WL_CHANSPEC_CTL_SB_LLL) |
| return TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_40) { |
| if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LLU) |
| return TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_80) { |
| if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LUU) |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /* |
| * Verify the chanspec specifies a valid channel according to 802.11. |
| * RETURNS: TRUE if the chanspec is a valid 802.11 channel |
| */ |
| bool |
| wf_chspec_valid(chanspec_t chanspec) |
| { |
| uint chspec_bw = CHSPEC_BW(chanspec); |
| uint chspec_ch = CHSPEC_CHANNEL(chanspec); |
| |
| if (wf_chspec_malformed(chanspec)) |
| return FALSE; |
| |
| if (CHSPEC_IS2G(chanspec)) { |
| /* must be valid bandwidth and channel range */ |
| if (chspec_bw == WL_CHANSPEC_BW_20) { |
| if (chspec_ch >= 1 && chspec_ch <= 14) |
| return TRUE; |
| } else if (chspec_bw == WL_CHANSPEC_BW_40) { |
| if (chspec_ch >= 3 && chspec_ch <= 11) |
| return TRUE; |
| } |
| } else if (CHSPEC_IS5G(chanspec)) { |
| if (chspec_bw == WL_CHANSPEC_BW_8080) { |
| uint16 ch1, ch2; |
| |
| ch1 = wf_5g_80m_chans[CHSPEC_CHAN1(chanspec)]; |
| ch2 = wf_5g_80m_chans[CHSPEC_CHAN2(chanspec)]; |
| |
| /* the two channels must be separated by more than 80MHz by VHT req, |
| * and ch2 above ch1 for the chanspec |
| */ |
| if (ch2 > ch1 + CH_80MHZ_APART) |
| return TRUE; |
| } else { |
| const uint8 *center_ch; |
| uint num_ch, i; |
| |
| if (chspec_bw == WL_CHANSPEC_BW_20 || chspec_bw == WL_CHANSPEC_BW_40) { |
| center_ch = wf_5g_40m_chans; |
| num_ch = WF_NUM_5G_40M_CHANS; |
| } else if (chspec_bw == WL_CHANSPEC_BW_80) { |
| center_ch = wf_5g_80m_chans; |
| num_ch = WF_NUM_5G_80M_CHANS; |
| } else if (chspec_bw == WL_CHANSPEC_BW_160) { |
| center_ch = wf_5g_160m_chans; |
| num_ch = WF_NUM_5G_160M_CHANS; |
| } else { |
| /* invalid bandwidth */ |
| return FALSE; |
| } |
| |
| /* check for a valid center channel */ |
| if (chspec_bw == WL_CHANSPEC_BW_20) { |
| /* We don't have an array of legal 20MHz 5G channels, but they are |
| * each side of the legal 40MHz channels. Check the chanspec |
| * channel against either side of the 40MHz channels. |
| */ |
| for (i = 0; i < num_ch; i ++) { |
| if (chspec_ch == (uint)LOWER_20_SB(center_ch[i]) || |
| chspec_ch == (uint)UPPER_20_SB(center_ch[i])) |
| break; /* match found */ |
| } |
| |
| if (i == num_ch) { |
| /* check for channel 165 which is not the side band |
| * of 40MHz 5G channel |
| */ |
| if (chspec_ch == 165) |
| i = 0; |
| |
| /* check for legacy JP channels on failure */ |
| if (chspec_ch == 34 || chspec_ch == 38 || |
| chspec_ch == 42 || chspec_ch == 46) |
| i = 0; |
| } |
| } else { |
| /* check the chanspec channel to each legal channel */ |
| for (i = 0; i < num_ch; i ++) { |
| if (chspec_ch == center_ch[i]) |
| break; /* match found */ |
| } |
| } |
| |
| if (i < num_ch) { |
| /* match found */ |
| return TRUE; |
| } |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /* |
| * This function returns the channel number that control traffic is being sent on, for 20MHz |
| * channels this is just the channel number, for 40MHZ, 80MHz, 160MHz channels it is the 20MHZ |
| * sideband depending on the chanspec selected |
| */ |
| uint8 |
| wf_chspec_ctlchan(chanspec_t chspec) |
| { |
| uint center_chan; |
| uint bw_mhz; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| /* Is there a sideband ? */ |
| if (CHSPEC_IS20(chspec)) { |
| return CHSPEC_CHANNEL(chspec); |
| } else { |
| sb = CHSPEC_CTL_SB(chspec) >> WL_CHANSPEC_CTL_SB_SHIFT; |
| |
| if (CHSPEC_IS8080(chspec)) { |
| bw_mhz = 80; |
| |
| if (sb < 4) { |
| center_chan = CHSPEC_CHAN1(chspec); |
| } |
| else { |
| center_chan = CHSPEC_CHAN2(chspec); |
| sb -= 4; |
| } |
| |
| /* convert from channel index to channel number */ |
| center_chan = wf_5g_80m_chans[center_chan]; |
| } |
| else { |
| bw_mhz = bw_chspec_to_mhz(chspec); |
| center_chan = CHSPEC_CHANNEL(chspec) >> WL_CHANSPEC_CHAN_SHIFT; |
| } |
| |
| return (channel_to_ctl_chan(center_chan, bw_mhz, sb)); |
| } |
| } |
| |
| /* given a chanspec, return the bandwidth string */ |
| char * |
| wf_chspec_to_bw_str(chanspec_t chspec) |
| { |
| return (char *)wf_chspec_bw_str[(CHSPEC_BW(chspec) >> WL_CHANSPEC_BW_SHIFT)]; |
| } |
| |
| /* |
| * This function returns the chanspec of the control channel of a given chanspec |
| */ |
| chanspec_t |
| wf_chspec_ctlchspec(chanspec_t chspec) |
| { |
| chanspec_t ctl_chspec = chspec; |
| uint8 ctl_chan; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| /* Is there a sideband ? */ |
| if (!CHSPEC_IS20(chspec)) { |
| ctl_chan = wf_chspec_ctlchan(chspec); |
| ctl_chspec = ctl_chan | WL_CHANSPEC_BW_20; |
| ctl_chspec |= CHSPEC_BAND(chspec); |
| } |
| return ctl_chspec; |
| } |
| |
| /* return chanspec given control channel and bandwidth |
| * return 0 on error |
| */ |
| uint16 |
| wf_channel2chspec(uint ctl_ch, uint bw) |
| { |
| uint16 chspec; |
| const uint8 *center_ch = NULL; |
| int num_ch = 0; |
| int sb = -1; |
| int i = 0; |
| |
| chspec = ((ctl_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G); |
| |
| chspec |= bw; |
| |
| if (bw == WL_CHANSPEC_BW_40) { |
| center_ch = wf_5g_40m_chans; |
| num_ch = WF_NUM_5G_40M_CHANS; |
| bw = 40; |
| } else if (bw == WL_CHANSPEC_BW_80) { |
| center_ch = wf_5g_80m_chans; |
| num_ch = WF_NUM_5G_80M_CHANS; |
| bw = 80; |
| } else if (bw == WL_CHANSPEC_BW_160) { |
| center_ch = wf_5g_160m_chans; |
| num_ch = WF_NUM_5G_160M_CHANS; |
| bw = 160; |
| } else if (bw == WL_CHANSPEC_BW_20) { |
| chspec |= ctl_ch; |
| return chspec; |
| } else { |
| return 0; |
| } |
| |
| for (i = 0; i < num_ch; i ++) { |
| sb = channel_to_sb(center_ch[i], ctl_ch, bw); |
| if (sb >= 0) { |
| chspec |= center_ch[i]; |
| chspec |= (sb << WL_CHANSPEC_CTL_SB_SHIFT); |
| break; |
| } |
| } |
| |
| /* check for no matching sb/center */ |
| if (sb < 0) { |
| return 0; |
| } |
| |
| return chspec; |
| } |
| |
| /* |
| * This function returns the chanspec for the primary 40MHz of an 80MHz channel. |
| * The control sideband specifies the same 20MHz channel that the 80MHz channel is using |
| * as the primary 20MHz channel. |
| */ |
| extern chanspec_t wf_chspec_primary40_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec40 = chspec; |
| uint center_chan; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| |
| if (CHSPEC_IS80(chspec)) { |
| center_chan = CHSPEC_CHANNEL(chspec); |
| sb = CHSPEC_CTL_SB(chspec); |
| |
| if (sb == WL_CHANSPEC_CTL_SB_UL) { |
| /* Primary 40MHz is on upper side */ |
| sb = WL_CHANSPEC_CTL_SB_L; |
| center_chan += CH_20MHZ_APART; |
| } else if (sb == WL_CHANSPEC_CTL_SB_UU) { |
| /* Primary 40MHz is on upper side */ |
| sb = WL_CHANSPEC_CTL_SB_U; |
| center_chan += CH_20MHZ_APART; |
| } else { |
| /* Primary 40MHz is on lower side */ |
| /* sideband bits are the same for LL/LU and L/U */ |
| center_chan -= CH_20MHZ_APART; |
| } |
| |
| /* Create primary 40MHz chanspec */ |
| chspec40 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_40 | |
| sb | center_chan); |
| } |
| |
| return chspec40; |
| } |
| |
| /* |
| * Return the channel number for a given frequency and base frequency. |
| * The returned channel number is relative to the given base frequency. |
| * If the given base frequency is zero, a base frequency of 5 GHz is assumed for |
| * frequencies from 5 - 6 GHz, and 2.407 GHz is assumed for 2.4 - 2.5 GHz. |
| * |
| * Frequency is specified in MHz. |
| * The base frequency is specified as (start_factor * 500 kHz). |
| * Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G are defined for |
| * 2.4 GHz and 5 GHz bands. |
| * |
| * The returned channel will be in the range [1, 14] in the 2.4 GHz band |
| * and [0, 200] otherwise. |
| * -1 is returned if the start_factor is WF_CHAN_FACTOR_2_4_G and the |
| * frequency is not a 2.4 GHz channel, or if the frequency is not and even |
| * multiple of 5 MHz from the base frequency to the base plus 1 GHz. |
| * |
| * Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2 |
| */ |
| int |
| wf_mhz2channel(uint freq, uint start_factor) |
| { |
| int ch = -1; |
| uint base; |
| int offset; |
| |
| /* take the default channel start frequency */ |
| if (start_factor == 0) { |
| if (freq >= 2400 && freq <= 2500) |
| start_factor = WF_CHAN_FACTOR_2_4_G; |
| else if (freq >= 5000 && freq <= 6000) |
| start_factor = WF_CHAN_FACTOR_5_G; |
| } |
| |
| if (freq == 2484 && start_factor == WF_CHAN_FACTOR_2_4_G) |
| return 14; |
| |
| base = start_factor / 2; |
| |
| /* check that the frequency is in 1GHz range of the base */ |
| if ((freq < base) || (freq > base + 1000)) |
| return -1; |
| |
| offset = freq - base; |
| ch = offset / 5; |
| |
| /* check that frequency is a 5MHz multiple from the base */ |
| if (offset != (ch * 5)) |
| return -1; |
| |
| /* restricted channel range check for 2.4G */ |
| if (start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 13)) |
| return -1; |
| |
| return ch; |
| } |
| |
| /* |
| * Return the center frequency in MHz of the given channel and base frequency. |
| * The channel number is interpreted relative to the given base frequency. |
| * |
| * The valid channel range is [1, 14] in the 2.4 GHz band and [0, 200] otherwise. |
| * The base frequency is specified as (start_factor * 500 kHz). |
| * Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_4_G, and WF_CHAN_FACTOR_5_G |
| * are defined for 2.4 GHz, 4 GHz, and 5 GHz bands. |
| * The channel range of [1, 14] is only checked for a start_factor of |
| * WF_CHAN_FACTOR_2_4_G (4814 = 2407 * 2). |
| * Odd start_factors produce channels on .5 MHz boundaries, in which case |
| * the answer is rounded down to an integral MHz. |
| * -1 is returned for an out of range channel. |
| * |
| * Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2 |
| */ |
| int |
| wf_channel2mhz(uint ch, uint start_factor) |
| { |
| int freq; |
| |
| if ((start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 14)) || |
| (ch > 200)) |
| freq = -1; |
| else if ((start_factor == WF_CHAN_FACTOR_2_4_G) && (ch == 14)) |
| freq = 2484; |
| else |
| freq = ch * 5 + start_factor / 2; |
| |
| return freq; |
| } |
| |
| /* |
| * Returns the 80+80 chanspec corresponding to the following input parameters |
| * |
| * primary_20mhz - Primary 20 Mhz channel |
| * chan1 - channel number of first 80 Mhz band |
| * chan2 - channel number of second 80 Mhz band |
| * |
| * parameters chan1 and chan2 are channel numbers in {42, 58, 106, 122, 138, 155} |
| * |
| * returns INVCHANSPEC in case of error |
| */ |
| |
| chanspec_t |
| wf_chspec_get8080_chspec(uint8 primary_20mhz, uint8 chan1, uint8 chan2) |
| { |
| int sb = 0; |
| uint16 chanspec = 0; |
| int chan1_id = 0, chan2_id = 0; |
| |
| /* does the primary channel fit with the 1st 80MHz channel ? */ |
| sb = channel_to_sb(chan1, primary_20mhz, 80); |
| if (sb < 0) { |
| /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ |
| sb = channel_to_sb(chan2, primary_20mhz, 80); |
| if (sb < 0) { |
| /* no match for ctl_ch to either 80MHz center channel */ |
| return INVCHANSPEC; |
| } |
| /* sb index is 0-3 for the low 80MHz channel, and 4-7 for |
| * the high 80MHz channel. Add 4 to to shift to high set. |
| */ |
| sb += 4; |
| } |
| chan1_id = channel_80mhz_to_id(chan1); |
| chan2_id = channel_80mhz_to_id(chan2); |
| if (chan1_id == -1 || chan2_id == -1) |
| return INVCHANSPEC; |
| |
| chanspec = (chan1_id << WL_CHANSPEC_CHAN1_SHIFT)| |
| (chan2_id << WL_CHANSPEC_CHAN2_SHIFT)| |
| (sb << WL_CHANSPEC_CTL_SB_SHIFT)| |
| (WL_CHANSPEC_BW_8080)| |
| (WL_CHANSPEC_BAND_5G); |
| |
| return chanspec; |
| |
| } |
| |
| /* |
| * This function returns the 80Mhz channel for the given id. |
| */ |
| static uint8 |
| wf_chspec_get80Mhz_ch(uint8 chan_80Mhz_id) |
| { |
| if (chan_80Mhz_id < WF_NUM_5G_80M_CHANS) |
| return wf_5g_80m_chans[chan_80Mhz_id]; |
| |
| return 0; |
| } |
| |
| /* |
| * Returns the primary 80 Mhz channel for the provided chanspec |
| * |
| * chanspec - Input chanspec for which the 80MHz primary channel has to be retrieved |
| * |
| * returns -1 in case the provided channel is 20/40 Mhz chanspec |
| */ |
| |
| uint8 |
| wf_chspec_primary80_channel(chanspec_t chanspec) |
| { |
| uint8 chan1 = 0, chan2 = 0, primary_20mhz = 0, primary80_chan = 0; |
| int sb = 0; |
| |
| primary_20mhz = wf_chspec_ctlchan(chanspec); |
| |
| if (CHSPEC_IS80(chanspec)) { |
| primary80_chan = CHSPEC_CHANNEL(chanspec); |
| } |
| else if (CHSPEC_IS8080(chanspec)) { |
| chan1 = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chanspec)); |
| chan2 = wf_chspec_get80Mhz_ch(CHSPEC_CHAN2(chanspec)); |
| |
| /* does the primary channel fit with the 1st 80MHz channel ? */ |
| sb = channel_to_sb(chan1, primary_20mhz, 80); |
| if (sb < 0) { |
| /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ |
| sb = channel_to_sb(chan2, primary_20mhz, 80); |
| if (!(sb < 0)) { |
| primary80_chan = chan2; |
| } |
| } |
| else { |
| primary80_chan = chan1; |
| } |
| } |
| else if (CHSPEC_IS160(chanspec)) { |
| chan1 = CHSPEC_CHANNEL(chanspec); |
| sb = channel_to_sb(chan1, primary_20mhz, 160); |
| if (!(sb < 0)) { |
| /* based on the sb value primary 80 channel can be retrieved |
| * if sb is in range 0 to 3 the lower band is the 80Mhz primary band |
| */ |
| if (sb < 4) { |
| primary80_chan = chan1 - CH_40MHZ_APART; |
| } |
| /* if sb is in range 4 to 7 the lower band is the 80Mhz primary band */ |
| else |
| { |
| primary80_chan = chan1 + CH_40MHZ_APART; |
| } |
| } |
| } |
| else { |
| /* for 20 and 40 Mhz */ |
| primary80_chan = -1; |
| } |
| return primary80_chan; |
| } |
| |
| /* |
| * Returns the secondary 80 Mhz channel for the provided chanspec |
| * |
| * chanspec - Input chanspec for which the 80MHz secondary channel has to be retrieved |
| * |
| * returns -1 in case the provided channel is 20/40 Mhz chanspec |
| */ |
| uint8 |
| wf_chspec_secondary80_channel(chanspec_t chanspec) |
| { |
| uint8 chan1 = 0, chan2 = 0, primary_20mhz = 0, secondary80_chan = 0; |
| int sb = 0; |
| |
| primary_20mhz = wf_chspec_ctlchan(chanspec); |
| if (CHSPEC_IS80(chanspec)) { |
| secondary80_chan = -1; |
| } |
| else if (CHSPEC_IS8080(chanspec)) { |
| chan1 = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chanspec)); |
| chan2 = wf_chspec_get80Mhz_ch(CHSPEC_CHAN2(chanspec)); |
| |
| /* does the primary channel fit with the 1st 80MHz channel ? */ |
| sb = channel_to_sb(chan1, primary_20mhz, 80); |
| if (sb < 0) { |
| /* no, so does the primary channel fit with the 2nd 80MHz channel ? */ |
| sb = channel_to_sb(chan2, primary_20mhz, 80); |
| if (!(sb < 0)) { |
| secondary80_chan = chan1; |
| } |
| } |
| else { |
| secondary80_chan = chan2; |
| } |
| } |
| else if (CHSPEC_IS160(chanspec)) { |
| chan1 = CHSPEC_CHANNEL(chanspec); |
| sb = channel_to_sb(chan1, primary_20mhz, 160); |
| if (!(sb < 0)) { |
| /* based on the sb value secondary 80 channel can be retrieved |
| *if sb is in range 0 to 3 upper band is the secondary 80Mhz band |
| */ |
| if (sb < 4) { |
| secondary80_chan = chan1 + CH_40MHZ_APART; |
| } |
| /* if sb is in range 4 to 7 the lower band is the secondary 80Mhz band */ |
| else |
| { |
| secondary80_chan = chan1 - CH_40MHZ_APART; |
| } |
| } |
| } |
| else { |
| /* for 20 and 40 Mhz */ |
| secondary80_chan = -1; |
| } |
| return secondary80_chan; |
| } |
| |
| /* |
| * This function returns the chanspec for the primary 80MHz of an 160MHz or 80+80 channel. |
| * |
| * chanspec - Input chanspec for which the primary 80Mhz chanspec has to be retreived |
| * |
| * returns INVCHANSPEC in case the provided channel is 20/40 Mhz chanspec |
| */ |
| chanspec_t |
| wf_chspec_primary80_chspec(chanspec_t chspec) |
| { |
| chanspec_t chspec80; |
| uint center_chan, chan1 = 0, chan2 = 0; |
| uint sb; |
| |
| ASSERT(!wf_chspec_malformed(chspec)); |
| if (CHSPEC_IS8080(chspec)) { |
| chan1 = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chspec)); |
| chan2 = wf_chspec_get80Mhz_ch(CHSPEC_CHAN2(chspec)); |
| |
| sb = CHSPEC_CTL_SB(chspec); |
| |
| if (sb < 4) { |
| /* Primary 80MHz is on lower side */ |
| center_chan = chan1; |
| } |
| else |
| { |
| /* Primary 80MHz is on upper side */ |
| center_chan = chan2; |
| sb -= 4; |
| } |
| /* Create primary 80MHz chanspec */ |
| chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 |sb | center_chan); |
| } |
| else if (CHSPEC_IS160(chspec)) { |
| center_chan = CHSPEC_CHANNEL(chspec); |
| sb = CHSPEC_CTL_SB(chspec); |
| |
| if (sb < 4) { |
| /* Primary 80MHz is on upper side */ |
| center_chan -= CH_40MHZ_APART; |
| } |
| else |
| { |
| /* Primary 80MHz is on lower side */ |
| center_chan += CH_40MHZ_APART; |
| sb -= 4; |
| } |
| /* Create primary 80MHz chanspec */ |
| chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan); |
| } |
| else |
| { |
| chspec80 = INVCHANSPEC; |
| } |
| return chspec80; |
| } |