|  | /* | 
|  | *  linux/fs/file.c | 
|  | * | 
|  | *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes | 
|  | * | 
|  | *  Manage the dynamic fd arrays in the process files_struct. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/workqueue.h> | 
|  |  | 
|  | struct fdtable_defer { | 
|  | spinlock_t lock; | 
|  | struct work_struct wq; | 
|  | struct fdtable *next; | 
|  | }; | 
|  |  | 
|  | int sysctl_nr_open __read_mostly = 1024*1024; | 
|  | int sysctl_nr_open_min = BITS_PER_LONG; | 
|  | int sysctl_nr_open_max = 1024 * 1024; /* raised later */ | 
|  |  | 
|  | /* | 
|  | * We use this list to defer free fdtables that have vmalloced | 
|  | * sets/arrays. By keeping a per-cpu list, we avoid having to embed | 
|  | * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in | 
|  | * this per-task structure. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); | 
|  |  | 
|  | static inline void * alloc_fdmem(unsigned int size) | 
|  | { | 
|  | if (size <= PAGE_SIZE) | 
|  | return kmalloc(size, GFP_KERNEL); | 
|  | else | 
|  | return vmalloc(size); | 
|  | } | 
|  |  | 
|  | static inline void free_fdarr(struct fdtable *fdt) | 
|  | { | 
|  | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) | 
|  | kfree(fdt->fd); | 
|  | else | 
|  | vfree(fdt->fd); | 
|  | } | 
|  |  | 
|  | static inline void free_fdset(struct fdtable *fdt) | 
|  | { | 
|  | if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) | 
|  | kfree(fdt->open_fds); | 
|  | else | 
|  | vfree(fdt->open_fds); | 
|  | } | 
|  |  | 
|  | static void free_fdtable_work(struct work_struct *work) | 
|  | { | 
|  | struct fdtable_defer *f = | 
|  | container_of(work, struct fdtable_defer, wq); | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | spin_lock_bh(&f->lock); | 
|  | fdt = f->next; | 
|  | f->next = NULL; | 
|  | spin_unlock_bh(&f->lock); | 
|  | while(fdt) { | 
|  | struct fdtable *next = fdt->next; | 
|  | vfree(fdt->fd); | 
|  | free_fdset(fdt); | 
|  | kfree(fdt); | 
|  | fdt = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | void free_fdtable_rcu(struct rcu_head *rcu) | 
|  | { | 
|  | struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); | 
|  | struct fdtable_defer *fddef; | 
|  |  | 
|  | BUG_ON(!fdt); | 
|  |  | 
|  | if (fdt->max_fds <= NR_OPEN_DEFAULT) { | 
|  | /* | 
|  | * This fdtable is embedded in the files structure and that | 
|  | * structure itself is getting destroyed. | 
|  | */ | 
|  | kmem_cache_free(files_cachep, | 
|  | container_of(fdt, struct files_struct, fdtab)); | 
|  | return; | 
|  | } | 
|  | if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { | 
|  | kfree(fdt->fd); | 
|  | kfree(fdt->open_fds); | 
|  | kfree(fdt); | 
|  | } else { | 
|  | fddef = &get_cpu_var(fdtable_defer_list); | 
|  | spin_lock(&fddef->lock); | 
|  | fdt->next = fddef->next; | 
|  | fddef->next = fdt; | 
|  | /* vmallocs are handled from the workqueue context */ | 
|  | schedule_work(&fddef->wq); | 
|  | spin_unlock(&fddef->lock); | 
|  | put_cpu_var(fdtable_defer_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand the fdset in the files_struct.  Called with the files spinlock | 
|  | * held for write. | 
|  | */ | 
|  | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) | 
|  | { | 
|  | unsigned int cpy, set; | 
|  |  | 
|  | BUG_ON(nfdt->max_fds < ofdt->max_fds); | 
|  |  | 
|  | cpy = ofdt->max_fds * sizeof(struct file *); | 
|  | set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); | 
|  | memcpy(nfdt->fd, ofdt->fd, cpy); | 
|  | memset((char *)(nfdt->fd) + cpy, 0, set); | 
|  |  | 
|  | cpy = ofdt->max_fds / BITS_PER_BYTE; | 
|  | set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; | 
|  | memcpy(nfdt->open_fds, ofdt->open_fds, cpy); | 
|  | memset((char *)(nfdt->open_fds) + cpy, 0, set); | 
|  | memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); | 
|  | memset((char *)(nfdt->close_on_exec) + cpy, 0, set); | 
|  | } | 
|  |  | 
|  | static struct fdtable * alloc_fdtable(unsigned int nr) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  | char *data; | 
|  |  | 
|  | /* | 
|  | * Figure out how many fds we actually want to support in this fdtable. | 
|  | * Allocation steps are keyed to the size of the fdarray, since it | 
|  | * grows far faster than any of the other dynamic data. We try to fit | 
|  | * the fdarray into comfortable page-tuned chunks: starting at 1024B | 
|  | * and growing in powers of two from there on. | 
|  | */ | 
|  | nr /= (1024 / sizeof(struct file *)); | 
|  | nr = roundup_pow_of_two(nr + 1); | 
|  | nr *= (1024 / sizeof(struct file *)); | 
|  | /* | 
|  | * Note that this can drive nr *below* what we had passed if sysctl_nr_open | 
|  | * had been set lower between the check in expand_files() and here.  Deal | 
|  | * with that in caller, it's cheaper that way. | 
|  | * | 
|  | * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise | 
|  | * bitmaps handling below becomes unpleasant, to put it mildly... | 
|  | */ | 
|  | if (unlikely(nr > sysctl_nr_open)) | 
|  | nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; | 
|  |  | 
|  | fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); | 
|  | if (!fdt) | 
|  | goto out; | 
|  | fdt->max_fds = nr; | 
|  | data = alloc_fdmem(nr * sizeof(struct file *)); | 
|  | if (!data) | 
|  | goto out_fdt; | 
|  | fdt->fd = (struct file **)data; | 
|  | data = alloc_fdmem(max_t(unsigned int, | 
|  | 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); | 
|  | if (!data) | 
|  | goto out_arr; | 
|  | fdt->open_fds = (fd_set *)data; | 
|  | data += nr / BITS_PER_BYTE; | 
|  | fdt->close_on_exec = (fd_set *)data; | 
|  | INIT_RCU_HEAD(&fdt->rcu); | 
|  | fdt->next = NULL; | 
|  |  | 
|  | return fdt; | 
|  |  | 
|  | out_arr: | 
|  | free_fdarr(fdt); | 
|  | out_fdt: | 
|  | kfree(fdt); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand the file descriptor table. | 
|  | * This function will allocate a new fdtable and both fd array and fdset, of | 
|  | * the given size. | 
|  | * Return <0 error code on error; 1 on successful completion. | 
|  | * The files->file_lock should be held on entry, and will be held on exit. | 
|  | */ | 
|  | static int expand_fdtable(struct files_struct *files, int nr) | 
|  | __releases(files->file_lock) | 
|  | __acquires(files->file_lock) | 
|  | { | 
|  | struct fdtable *new_fdt, *cur_fdt; | 
|  |  | 
|  | spin_unlock(&files->file_lock); | 
|  | new_fdt = alloc_fdtable(nr); | 
|  | spin_lock(&files->file_lock); | 
|  | if (!new_fdt) | 
|  | return -ENOMEM; | 
|  | /* | 
|  | * extremely unlikely race - sysctl_nr_open decreased between the check in | 
|  | * caller and alloc_fdtable().  Cheaper to catch it here... | 
|  | */ | 
|  | if (unlikely(new_fdt->max_fds <= nr)) { | 
|  | free_fdarr(new_fdt); | 
|  | free_fdset(new_fdt); | 
|  | kfree(new_fdt); | 
|  | return -EMFILE; | 
|  | } | 
|  | /* | 
|  | * Check again since another task may have expanded the fd table while | 
|  | * we dropped the lock | 
|  | */ | 
|  | cur_fdt = files_fdtable(files); | 
|  | if (nr >= cur_fdt->max_fds) { | 
|  | /* Continue as planned */ | 
|  | copy_fdtable(new_fdt, cur_fdt); | 
|  | rcu_assign_pointer(files->fdt, new_fdt); | 
|  | if (cur_fdt->max_fds > NR_OPEN_DEFAULT) | 
|  | free_fdtable(cur_fdt); | 
|  | } else { | 
|  | /* Somebody else expanded, so undo our attempt */ | 
|  | free_fdarr(new_fdt); | 
|  | free_fdset(new_fdt); | 
|  | kfree(new_fdt); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand files. | 
|  | * This function will expand the file structures, if the requested size exceeds | 
|  | * the current capacity and there is room for expansion. | 
|  | * Return <0 error code on error; 0 when nothing done; 1 when files were | 
|  | * expanded and execution may have blocked. | 
|  | * The files->file_lock should be held on entry, and will be held on exit. | 
|  | */ | 
|  | int expand_files(struct files_struct *files, int nr) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | fdt = files_fdtable(files); | 
|  |  | 
|  | /* | 
|  | * N.B. For clone tasks sharing a files structure, this test | 
|  | * will limit the total number of files that can be opened. | 
|  | */ | 
|  | if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur) | 
|  | return -EMFILE; | 
|  |  | 
|  | /* Do we need to expand? */ | 
|  | if (nr < fdt->max_fds) | 
|  | return 0; | 
|  |  | 
|  | /* Can we expand? */ | 
|  | if (nr >= sysctl_nr_open) | 
|  | return -EMFILE; | 
|  |  | 
|  | /* All good, so we try */ | 
|  | return expand_fdtable(files, nr); | 
|  | } | 
|  |  | 
|  | static int count_open_files(struct fdtable *fdt) | 
|  | { | 
|  | int size = fdt->max_fds; | 
|  | int i; | 
|  |  | 
|  | /* Find the last open fd */ | 
|  | for (i = size/(8*sizeof(long)); i > 0; ) { | 
|  | if (fdt->open_fds->fds_bits[--i]) | 
|  | break; | 
|  | } | 
|  | i = (i+1) * 8 * sizeof(long); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new files structure and copy contents from the | 
|  | * passed in files structure. | 
|  | * errorp will be valid only when the returned files_struct is NULL. | 
|  | */ | 
|  | struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) | 
|  | { | 
|  | struct files_struct *newf; | 
|  | struct file **old_fds, **new_fds; | 
|  | int open_files, size, i; | 
|  | struct fdtable *old_fdt, *new_fdt; | 
|  |  | 
|  | *errorp = -ENOMEM; | 
|  | newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); | 
|  | if (!newf) | 
|  | goto out; | 
|  |  | 
|  | atomic_set(&newf->count, 1); | 
|  |  | 
|  | spin_lock_init(&newf->file_lock); | 
|  | newf->next_fd = 0; | 
|  | new_fdt = &newf->fdtab; | 
|  | new_fdt->max_fds = NR_OPEN_DEFAULT; | 
|  | new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; | 
|  | new_fdt->open_fds = (fd_set *)&newf->open_fds_init; | 
|  | new_fdt->fd = &newf->fd_array[0]; | 
|  | INIT_RCU_HEAD(&new_fdt->rcu); | 
|  | new_fdt->next = NULL; | 
|  |  | 
|  | spin_lock(&oldf->file_lock); | 
|  | old_fdt = files_fdtable(oldf); | 
|  | open_files = count_open_files(old_fdt); | 
|  |  | 
|  | /* | 
|  | * Check whether we need to allocate a larger fd array and fd set. | 
|  | */ | 
|  | while (unlikely(open_files > new_fdt->max_fds)) { | 
|  | spin_unlock(&oldf->file_lock); | 
|  |  | 
|  | if (new_fdt != &newf->fdtab) { | 
|  | free_fdarr(new_fdt); | 
|  | free_fdset(new_fdt); | 
|  | kfree(new_fdt); | 
|  | } | 
|  |  | 
|  | new_fdt = alloc_fdtable(open_files - 1); | 
|  | if (!new_fdt) { | 
|  | *errorp = -ENOMEM; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* beyond sysctl_nr_open; nothing to do */ | 
|  | if (unlikely(new_fdt->max_fds < open_files)) { | 
|  | free_fdarr(new_fdt); | 
|  | free_fdset(new_fdt); | 
|  | kfree(new_fdt); | 
|  | *errorp = -EMFILE; | 
|  | goto out_release; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reacquire the oldf lock and a pointer to its fd table | 
|  | * who knows it may have a new bigger fd table. We need | 
|  | * the latest pointer. | 
|  | */ | 
|  | spin_lock(&oldf->file_lock); | 
|  | old_fdt = files_fdtable(oldf); | 
|  | open_files = count_open_files(old_fdt); | 
|  | } | 
|  |  | 
|  | old_fds = old_fdt->fd; | 
|  | new_fds = new_fdt->fd; | 
|  |  | 
|  | memcpy(new_fdt->open_fds->fds_bits, | 
|  | old_fdt->open_fds->fds_bits, open_files/8); | 
|  | memcpy(new_fdt->close_on_exec->fds_bits, | 
|  | old_fdt->close_on_exec->fds_bits, open_files/8); | 
|  |  | 
|  | for (i = open_files; i != 0; i--) { | 
|  | struct file *f = *old_fds++; | 
|  | if (f) { | 
|  | get_file(f); | 
|  | } else { | 
|  | /* | 
|  | * The fd may be claimed in the fd bitmap but not yet | 
|  | * instantiated in the files array if a sibling thread | 
|  | * is partway through open().  So make sure that this | 
|  | * fd is available to the new process. | 
|  | */ | 
|  | FD_CLR(open_files - i, new_fdt->open_fds); | 
|  | } | 
|  | rcu_assign_pointer(*new_fds++, f); | 
|  | } | 
|  | spin_unlock(&oldf->file_lock); | 
|  |  | 
|  | /* compute the remainder to be cleared */ | 
|  | size = (new_fdt->max_fds - open_files) * sizeof(struct file *); | 
|  |  | 
|  | /* This is long word aligned thus could use a optimized version */ | 
|  | memset(new_fds, 0, size); | 
|  |  | 
|  | if (new_fdt->max_fds > open_files) { | 
|  | int left = (new_fdt->max_fds-open_files)/8; | 
|  | int start = open_files / (8 * sizeof(unsigned long)); | 
|  |  | 
|  | memset(&new_fdt->open_fds->fds_bits[start], 0, left); | 
|  | memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(newf->fdt, new_fdt); | 
|  |  | 
|  | return newf; | 
|  |  | 
|  | out_release: | 
|  | kmem_cache_free(files_cachep, newf); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __devinit fdtable_defer_list_init(int cpu) | 
|  | { | 
|  | struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); | 
|  | spin_lock_init(&fddef->lock); | 
|  | INIT_WORK(&fddef->wq, free_fdtable_work); | 
|  | fddef->next = NULL; | 
|  | } | 
|  |  | 
|  | void __init files_defer_init(void) | 
|  | { | 
|  | int i; | 
|  | for_each_possible_cpu(i) | 
|  | fdtable_defer_list_init(i); | 
|  | sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) & | 
|  | -BITS_PER_LONG; | 
|  | } | 
|  |  | 
|  | struct files_struct init_files = { | 
|  | .count		= ATOMIC_INIT(1), | 
|  | .fdt		= &init_files.fdtab, | 
|  | .fdtab		= { | 
|  | .max_fds	= NR_OPEN_DEFAULT, | 
|  | .fd		= &init_files.fd_array[0], | 
|  | .close_on_exec	= (fd_set *)&init_files.close_on_exec_init, | 
|  | .open_fds	= (fd_set *)&init_files.open_fds_init, | 
|  | .rcu		= RCU_HEAD_INIT, | 
|  | }, | 
|  | .file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * allocate a file descriptor, mark it busy. | 
|  | */ | 
|  | int alloc_fd(unsigned start, unsigned flags) | 
|  | { | 
|  | struct files_struct *files = current->files; | 
|  | unsigned int fd; | 
|  | int error; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | repeat: | 
|  | fdt = files_fdtable(files); | 
|  | fd = start; | 
|  | if (fd < files->next_fd) | 
|  | fd = files->next_fd; | 
|  |  | 
|  | if (fd < fdt->max_fds) | 
|  | fd = find_next_zero_bit(fdt->open_fds->fds_bits, | 
|  | fdt->max_fds, fd); | 
|  |  | 
|  | error = expand_files(files, fd); | 
|  | if (error < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If we needed to expand the fs array we | 
|  | * might have blocked - try again. | 
|  | */ | 
|  | if (error) | 
|  | goto repeat; | 
|  |  | 
|  | if (start <= files->next_fd) | 
|  | files->next_fd = fd + 1; | 
|  |  | 
|  | FD_SET(fd, fdt->open_fds); | 
|  | if (flags & O_CLOEXEC) | 
|  | FD_SET(fd, fdt->close_on_exec); | 
|  | else | 
|  | FD_CLR(fd, fdt->close_on_exec); | 
|  | error = fd; | 
|  | #if 1 | 
|  | /* Sanity check */ | 
|  | if (rcu_dereference(fdt->fd[fd]) != NULL) { | 
|  | printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); | 
|  | rcu_assign_pointer(fdt->fd[fd], NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | out: | 
|  | spin_unlock(&files->file_lock); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | int get_unused_fd(void) | 
|  | { | 
|  | return alloc_fd(0, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(get_unused_fd); |