blob: 7bb8d4cb5f714e322323fdad8a0af2157da61de4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
// Copyright 2018 NXP
#include <linux/atomic.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/kobject.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include <sound/core.h>
#include "fsl_micfil.h"
#include "imx-pcm.h"
#define FSL_MICFIL_RATES SNDRV_PCM_RATE_8000_48000
#define FSL_MICFIL_FORMATS (SNDRV_PCM_FMTBIT_S16_LE)
struct fsl_micfil {
struct platform_device *pdev;
struct regmap *regmap;
const struct fsl_micfil_soc_data *soc;
struct clk *mclk;
struct clk *clk_src[MICFIL_CLK_SRC_NUM];
struct snd_dmaengine_dai_dma_data dma_params_rx;
struct kobject *hwvad_kobject;
unsigned int vad_channel;
unsigned int dataline;
char name[32];
int irq[MICFIL_IRQ_LINES];
unsigned int mclk_streams;
int quality; /*QUALITY 2-0 bits */
bool slave_mode;
int channel_gain[8];
int clk_src_id;
int vad_sound_gain;
int vad_noise_gain;
int vad_input_gain;
int vad_frame_time;
int vad_init_time;
int vad_init_mode;
int vad_nfil_adjust;
int vad_hpf;
int vad_zcd_th;
int vad_zcd_auto;
int vad_zcd_en;
int vad_zcd_adj;
int vad_rate_index;
atomic_t recording_state;
atomic_t hwvad_state;
};
struct fsl_micfil_soc_data {
unsigned int fifos;
unsigned int fifo_depth;
unsigned int dataline;
bool imx;
};
static char *envp[] = {
"EVENT=PDM_VOICE_DETECT",
NULL,
};
static struct fsl_micfil_soc_data fsl_micfil_imx8mm = {
.imx = true,
.fifos = 8,
.fifo_depth = 8,
.dataline = 0xf,
};
static const struct of_device_id fsl_micfil_dt_ids[] = {
{ .compatible = "fsl,imx8mm-micfil", .data = &fsl_micfil_imx8mm },
{}
};
MODULE_DEVICE_TABLE(of, fsl_micfil_dt_ids);
/* Table 5. Quality Modes
* Medium 0 0 0
* High 0 0 1
* Very Low 2 1 0 0
* Very Low 1 1 0 1
* Very Low 0 1 1 0
* Low 1 1 1
*/
static const char * const micfil_quality_select_texts[] = {
"Medium", "High",
"N/A", "N/A",
"VLow2", "VLow1",
"VLow0", "Low",
};
static const char * const micfil_hwvad_init_mode[] = {
"Envelope mode", "Energy mode",
};
static const char * const micfil_hwvad_hpf_texts[] = {
"Filter bypass",
"Cut-off @1750Hz",
"Cut-off @215Hz",
"Cut-off @102Hz",
};
static const char * const micfil_hwvad_zcd_enable[] = {
"OFF", "ON",
};
static const char * const micfil_hwvad_zcdauto_enable[] = {
"OFF", "ON",
};
static const char * const micfil_hwvad_noise_decimation[] = {
"Disabled", "Enabled",
};
/* when adding new rate text, also add it to the
* micfil_hwvad_rate_ints
*/
static const char * const micfil_hwvad_rate[] = {
"48KHz", "44.1KHz",
};
static const int micfil_hwvad_rate_ints[] = {
48000, 44100,
};
static const char * const micfil_clk_src_texts[] = {
"Auto", "AudioPLL1", "AudioPLL2", "ExtClk3",
};
static const struct soc_enum fsl_micfil_quality_enum =
SOC_ENUM_SINGLE(REG_MICFIL_CTRL2,
MICFIL_CTRL2_QSEL_SHIFT,
ARRAY_SIZE(micfil_quality_select_texts),
micfil_quality_select_texts);
static const struct soc_enum fsl_micfil_hwvad_init_mode_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_init_mode),
micfil_hwvad_init_mode);
static const struct soc_enum fsl_micfil_hwvad_hpf_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_hpf_texts),
micfil_hwvad_hpf_texts);
static const struct soc_enum fsl_micfil_hwvad_zcd_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_zcd_enable),
micfil_hwvad_zcd_enable);
static const struct soc_enum fsl_micfil_hwvad_zcdauto_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_zcdauto_enable),
micfil_hwvad_zcd_enable);
static const struct soc_enum fsl_micfil_hwvad_ndec_enum =
SOC_ENUM_SINGLE(REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NOREN_SHIFT,
ARRAY_SIZE(micfil_hwvad_noise_decimation),
micfil_hwvad_noise_decimation);
static const struct soc_enum fsl_micfil_hwvad_rate_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_hwvad_rate),
micfil_hwvad_rate);
static const struct soc_enum fsl_micfil_clk_src_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(micfil_clk_src_texts),
micfil_clk_src_texts);
static int micfil_put_clk_src(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
micfil->clk_src_id = val;
return 0;
}
static int micfil_get_clk_src(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->clk_src_id;
return 0;
}
static int hwvad_put_init_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
/* 0 - Envelope-based Mode
* 1 - Energy-based Mode
*/
micfil->vad_init_mode = val;
return 0;
}
static int hwvad_get_init_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_init_mode;
return 0;
}
static int hwvad_put_hpf(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
/* 00 - HPF Bypass
* 01 - Cut-off frequency 1750Hz
* 10 - Cut-off frequency 215Hz
* 11 - Cut-off frequency 102Hz
*/
micfil->vad_hpf = val;
return 0;
}
static int hwvad_get_hpf(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_hpf;
return 0;
}
static int hwvad_put_zcd_en(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
micfil->vad_zcd_en = val;
return 0;
}
static int hwvad_get_zcd_en(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_zcd_en;
return 0;
}
static int hwvad_put_rate(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
micfil->vad_rate_index = val;
return 0;
}
static int hwvad_get_rate(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_rate_index;
return 0;
}
static int hwvad_put_zcd_auto(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
int val = snd_soc_enum_item_to_val(e, item[0]);
micfil->vad_zcd_auto = val;
return 0;
}
static int hwvad_get_zcd_auto(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_zcd_auto;
return 0;
}
static int gain_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0xf;
return 0;
}
static int put_channel_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int shift = mc->shift;
int index = shift / 4;
int val = ucontrol->value.integer.value[0];
int remapped_value;
int ret;
u32 reg_val;
/* a value remapping must be done since the gain field have
* the following meaning:
* * 0 : no gain
* * 1 - 7 : +1 to +7 bits gain
* * 8 - 15 : -8 to -1 bits gain
* After the remapp, the scale should start from -8 to +7
*/
micfil->channel_gain[index] = val;
remapped_value = (val - 8) & 0xF;
reg_val = remapped_value << shift;
ret = snd_soc_component_update_bits(comp,
REG_MICFIL_OUT_CTRL,
0xF << shift,
reg_val);
if (ret < 0)
return ret;
return 0;
}
static int get_channel_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int index;
/* gain bitfield is 4 bits wide */
index = mc->shift / 4;
ucontrol->value.enumerated.item[0] = micfil->channel_gain[index];
return 0;
}
static int hwvad_put_input_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_input_gain = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_input_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_input_gain;
return 0;
}
static int hwvad_put_sound_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_sound_gain = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_sound_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_sound_gain;
return 0;
}
static int hwvad_put_noise_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_noise_gain = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_noise_gain(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_noise_gain;
return 0;
}
static int hwvad_framet_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 1;
uinfo->value.integer.max = 64;
return 0;
}
static int hwvad_put_frame_time(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_frame_time = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_frame_time(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_frame_time;
return 0;
}
static int hwvad_initt_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 1;
uinfo->value.integer.max = 32;
return 0;
}
static int hwvad_put_init_time(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_init_time = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_init_time(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_init_time;
return 0;
}
static int hwvad_nfiladj_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 1;
uinfo->value.integer.max = 32;
return 0;
}
static int hwvad_put_nfil_adjust(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_nfil_adjust = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_nfil_adjust(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_nfil_adjust;
return 0;
}
static int hwvad_zcdth_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 1;
uinfo->value.integer.max = 1024;
return 0;
}
static int hwvad_put_zcd_th(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_zcd_th = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_zcd_th(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_zcd_th;
return 0;
}
static int hwvad_zcdadj_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 1;
uinfo->value.integer.max = 16;
return 0;
}
static int hwvad_put_zcd_adj(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
micfil->vad_zcd_adj = ucontrol->value.integer.value[0];
return 0;
}
static int hwvad_get_zcd_adj(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
struct fsl_micfil *micfil = snd_soc_component_get_drvdata(comp);
ucontrol->value.enumerated.item[0] = micfil->vad_zcd_adj;
return 0;
}
static DECLARE_TLV_DB_SCALE(gain_tlv, 0, 100, 0);
static const struct snd_kcontrol_new fsl_micfil_snd_controls[] = {
SOC_SINGLE_RANGE_EXT_TLV("CH0 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(0),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH1 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(1),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH2 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(2),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH3 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(3),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH4 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(4),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH5 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(5),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH6 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(6),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_SINGLE_RANGE_EXT_TLV("CH7 Gain", -1, MICFIL_OUTGAIN_CHX_SHIFT(7),
0x0, 0xF, 0,
get_channel_gain, put_channel_gain, gain_tlv),
SOC_ENUM_EXT("MICFIL Quality Select",
fsl_micfil_quality_enum,
snd_soc_get_enum_double, snd_soc_put_enum_double),
SOC_ENUM_EXT("HWVAD Initialization Mode",
fsl_micfil_hwvad_init_mode_enum,
hwvad_get_init_mode, hwvad_put_init_mode),
SOC_ENUM_EXT("HWVAD High-Pass Filter",
fsl_micfil_hwvad_hpf_enum,
hwvad_get_hpf, hwvad_put_hpf),
SOC_ENUM_EXT("HWVAD Zero-Crossing Detector Enable",
fsl_micfil_hwvad_zcd_enum,
hwvad_get_zcd_en, hwvad_put_zcd_en),
SOC_ENUM_EXT("HWVAD Zero-Crossing Detector Auto Threshold",
fsl_micfil_hwvad_zcdauto_enum,
hwvad_get_zcd_auto, hwvad_put_zcd_auto),
SOC_ENUM_EXT("HWVAD Noise OR Enable",
fsl_micfil_hwvad_ndec_enum,
snd_soc_get_enum_double, snd_soc_put_enum_double),
SOC_ENUM_EXT("HWVAD Sampling Rate",
fsl_micfil_hwvad_rate_enum,
hwvad_get_rate, hwvad_put_rate),
SOC_ENUM_EXT("Clock Source",
fsl_micfil_clk_src_enum,
micfil_get_clk_src, micfil_put_clk_src),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Input Gain",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = gain_info,
.get = hwvad_get_input_gain,
.put = hwvad_put_input_gain,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Sound Gain",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = gain_info,
.get = hwvad_get_sound_gain,
.put = hwvad_put_sound_gain,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Noise Gain",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = gain_info,
.get = hwvad_get_noise_gain,
.put = hwvad_put_noise_gain,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Detector Frame Time",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = hwvad_framet_info,
.get = hwvad_get_frame_time,
.put = hwvad_put_frame_time,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Detector Initialization Time",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = hwvad_initt_info,
.get = hwvad_get_init_time,
.put = hwvad_put_init_time,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Noise Filter Adjustment",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = hwvad_nfiladj_info,
.get = hwvad_get_nfil_adjust,
.put = hwvad_put_nfil_adjust,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Zero-Crossing Detector Threshold",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = hwvad_zcdth_info,
.get = hwvad_get_zcd_th,
.put = hwvad_put_zcd_th,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "HWVAD Zero-Crossing Detector Adjustment",
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_WRITE,
.info = hwvad_zcdadj_info,
.get = hwvad_get_zcd_adj,
.put = hwvad_put_zcd_adj,
},
};
static int disable_hwvad(struct device *dev, bool sync);
static inline int get_pdm_clk(struct fsl_micfil *micfil,
unsigned int rate);
static inline int get_clk_div(struct fsl_micfil *micfil,
unsigned int rate)
{
u32 ctrl2_reg;
long mclk_rate;
int osr;
int clk_div;
regmap_read(micfil->regmap, REG_MICFIL_CTRL2, &ctrl2_reg);
osr = 16 - ((ctrl2_reg & MICFIL_CTRL2_CICOSR_MASK)
>> MICFIL_CTRL2_CICOSR_SHIFT);
mclk_rate = clk_get_rate(micfil->mclk);
clk_div = mclk_rate / (get_pdm_clk(micfil, rate) * 2);
return clk_div;
}
static inline int get_pdm_clk(struct fsl_micfil *micfil,
unsigned int rate)
{
u32 ctrl2_reg;
int qsel, osr;
int bclk;
regmap_read(micfil->regmap, REG_MICFIL_CTRL2, &ctrl2_reg);
osr = 16 - ((ctrl2_reg & MICFIL_CTRL2_CICOSR_MASK)
>> MICFIL_CTRL2_CICOSR_SHIFT);
regmap_read(micfil->regmap, REG_MICFIL_CTRL2, &ctrl2_reg);
qsel = ctrl2_reg & MICFIL_CTRL2_QSEL_MASK;
switch (qsel) {
case MICFIL_HIGH_QUALITY:
bclk = rate * 8 * osr / 2; /* kfactor = 0.5 */
break;
case MICFIL_MEDIUM_QUALITY:
case MICFIL_VLOW0_QUALITY:
bclk = rate * 4 * osr * 1; /* kfactor = 1 */
break;
case MICFIL_LOW_QUALITY:
case MICFIL_VLOW1_QUALITY:
bclk = rate * 2 * osr * 2; /* kfactor = 2 */
break;
case MICFIL_VLOW2_QUALITY:
bclk = rate * osr * 4; /* kfactor = 4 */
break;
default:
dev_err(&micfil->pdev->dev,
"Please make sure you select a valid quality.\n");
bclk = -1;
break;
}
return bclk;
}
/* The SRES is a self-negated bit which provides the CPU with the
* capability to initialize the PDM Interface module through the
* slave-bus interface. This bit always reads as zero, and this
* bit is only effective when MDIS is cleared
*/
static int fsl_micfil_reset(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
ret = regmap_update_bits(micfil->regmap,
REG_MICFIL_CTRL1,
MICFIL_CTRL1_MDIS_MASK,
0);
if (ret) {
dev_err(dev, "failed to clear MDIS bit %d\n", ret);
return ret;
}
ret = regmap_update_bits(micfil->regmap,
REG_MICFIL_CTRL1,
MICFIL_CTRL1_SRES_MASK,
MICFIL_CTRL1_SRES);
if (ret) {
dev_err(dev, "failed to reset MICFIL: %d\n", ret);
return ret;
}
return 0;
}
/* enable/disable hwvad interrupts */
static int configure_hwvad_interrupts(struct device *dev,
int enable)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
u32 vadie_reg = enable ? MICFIL_VAD0_CTRL1_IE : 0;
u32 vaderie_reg = enable ? MICFIL_VAD0_CTRL1_ERIE : 0;
/* Voice Activity Detector Error Interruption Enable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_ERIE_MASK,
vaderie_reg);
if (ret) {
dev_err(dev,
"Failed to set/clear VADERIE in CTRL1_VAD0 [%d]\n",
ret);
return ret;
}
/* Voice Activity Detector Interruption Enable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_IE_MASK,
vadie_reg);
if (ret) {
dev_err(dev,
"Failed to set/clear VADIE in CTRL1_VAD0 [%d]\n",
ret);
return ret;
}
return 0;
}
static int init_hwvad_internal_filters(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
/* Voice Activity Detector Internal Filters Initialization*/
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_ST10_MASK,
MICFIL_VAD0_CTRL1_ST10);
if (ret) {
dev_err(dev,
"Failed to set VADST10 in CTRL1_VAD0 [%d]\n",
ret);
return ret;
}
/* sleep for 100ms - it should be enough for bit to stay
* pulsed for more than 2 cycles
*/
usleep_range(MICFIL_SLEEP_MIN, MICFIL_SLEEP_MAX);
/* Voice Activity Detector Enabled */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_ST10_MASK,
0);
if (ret) {
dev_err(dev,
"Failed to clear VADST10 in CTRL1_VAD0 [%d]\n",
ret);
return ret;
}
return 0;
}
/* Zero-Crossing Detector Initialization
* Optionally a Zero-Crossing Detection block (ZCD) could
* be enabled to avoid low energy voiced speech be missed,
* improving the voice detection performance.
* See Section 8.4.3
*/
static int __maybe_unused init_zcd(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
/* exit if zcd is not enabled from userspace */
if (!micfil->vad_zcd_en)
return 0;
if (micfil->vad_zcd_auto) {
/* Zero-Crossing Detector Adjustment */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_ZCD,
MICFIL_VAD0_ZCD_ZCDADJ_MASK,
micfil->vad_zcd_adj);
if (ret) {
dev_err(dev,
"Failed to set ZCDADJ in ZCD_VAD0 [%d]\n",
ret);
return ret;
}
}
/* Zero-Crossing Detector Threshold */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_ZCD,
MICFIL_VAD0_ZCD_ZCDTH_MASK,
MICFIL_VAD0_ZCD_ZCDTH(micfil->vad_zcd_th));
if (ret) {
dev_err(dev, "Failed to set ZCDTH in ZCD_VAD0 [%d]\n", ret);
return ret;
}
/* Zero-Crossing Detector AND Behavior */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_ZCD,
MICFIL_VAD0_ZCD_ZCDAND_MASK,
MICFIL_HWVAD_ZCDAND);
if (ret) {
dev_err(dev, "Failed to set ZCDAND in ZCD_VAD0 [%d]\n", ret);
return ret;
}
/* Zero-Crossing Detector Automatic Threshold */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_ZCD,
MICFIL_VAD0_ZCD_ZCDAUT_MASK,
micfil->vad_zcd_auto);
if (ret) {
dev_err(dev,
"Failed to set/clear ZCDAUT in ZCD_VAD0 [%d]\n",
ret);
return ret;
}
/* Zero-Crossing Detector Enable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_ZCD,
MICFIL_VAD0_ZCD_ZCDEN_MASK,
MICFIL_VAD0_ZCD_ZCDEN);
if (ret) {
dev_err(dev, "Failed to set ZCDEN in ZCD_VAD0 [%d]\n", ret);
return ret;
}
return 0;
}
/* Configuration done only in energy-based initialization mode */
static int init_hwvad_energy_mode(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret, i;
u32 stat;
u32 flag;
dev_info(dev, "Energy-based mode initialization\n");
/* Voice Activity Detector Reset */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_RST_SHIFT,
MICFIL_VAD0_CTRL1_RST);
if (ret) {
dev_err(dev, "Failed to set VADRST in CTRL1_VAD0 [%d]\n", ret);
return ret;
}
/* Voice Activity Detector Enabled */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_EN_MASK,
MICFIL_VAD0_CTRL1_EN);
if (ret) {
dev_err(dev, "Failed to set VADEN in CTRL1_VAD0 [%d]\n", ret);
return ret;
}
/* it would be a good idea to wait some time before VADEN
* is set
*/
usleep_range(5 * MICFIL_SLEEP_MIN, 5 * MICFIL_SLEEP_MAX);
/* Enable Interrupts */
ret = configure_hwvad_interrupts(dev, 1);
/* Initialize Zero Crossing Detector */
ret = init_zcd(dev);
if (ret)
return ret;
/* Enable MICFIL module */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN_MASK,
MICFIL_CTRL1_PDMIEN);
if (ret) {
dev_err(dev, "failed to enable the module\n");
return ret;
}
/* Wait for INITF to be asserted */
for (i = 0; i < MICFIL_MAX_RETRY; i++) {
ret = regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &stat);
if (ret) {
dev_err(dev, "failed to read register %d\n",
REG_MICFIL_VAD0_STAT);
return ret;
}
flag = (stat & MICFIL_VAD0_STAT_INITF_MASK);
if (flag == 0)
break;
usleep_range(MICFIL_SLEEP_MIN, MICFIL_SLEEP_MAX);
}
if (i == MICFIL_MAX_RETRY) {
dev_err(dev, "initf not asserted. Failed to init hwvad\n");
return -EBUSY;
}
/* Initialize Internal Filters */
ret = init_hwvad_internal_filters(dev);
if (ret)
return ret;
return ret;
}
/* Configuration done only in envelope-based initialization mode */
static int init_hwvad_envelope_mode(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret, i;
u32 stat;
u32 flag;
/* Frame energy disable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_FRENDIS_MASK,
MICFIL_VAD0_CTRL2_FRENDIS);
if (ret) {
dev_err(dev, "Failed to set FRENDIS in CTRL2_VAD0 [%d]\n", ret);
return ret;
}
/* Enable pre-filter Noise & Signal */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_PREFEN_MASK,
MICFIL_VAD0_CTRL2_PREFEN);
if (ret) {
dev_err(dev, "Failed to set PREFEN in CTRL2_VAD0 [%d]\n", ret);
return ret;
}
/* Enable Signal Filter */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SFILEN_MASK,
MICFIL_VAD0_SCONFIG_SFILEN);
if (ret) {
dev_err(dev,
"Failed to set SFILEN in SCONFIG_VAD0 [%d]\n",
ret);
return ret;
}
/* Signal Maximum Enable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SMAXEN_MASK,
MICFIL_VAD0_SCONFIG_SMAXEN);
if (ret) {
dev_err(dev,
"Failed to set SMAXEN in SCONFIG_VAD0 [%d]\n",
ret);
return ret;
}
/* Allways enable noise filter, not based on voice activity
* information
*/
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NFILAUT_MASK,
0);
if (ret) {
dev_err(dev,
"Failed to set NFILAUT in NCONFIG_VAD0 [%d]\n",
ret);
return ret;
}
/* Noise Minimum Enable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NMINEN_MASK,
MICFIL_VAD0_NCONFIG_NMINEN);
if (ret) {
dev_err(dev,
"Failed to set NMINEN in NCONFIG_VAD0 [%d]\n",
ret);
return ret;
}
/* Noise Decimation Enable */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NDECEN_MASK,
MICFIL_VAD0_NCONFIG_NDECEN);
if (ret) {
dev_err(dev,
"Failed to set NDECEN in NCONFIG_VAD0 [%d]\n",
ret);
return ret;
}
/* Voice Activity Detector Reset */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_RST_MASK,
MICFIL_VAD0_CTRL1_RST);
if (ret) {
dev_err(dev, "Failed to set VADRST in CTRL1_VAD0 [%d]\n", ret);
return ret;
}
/* Initialize Zero Crossing Detector */
ret = init_zcd(dev);
if (ret)
return ret;
/* Voice Activity Detector Enabled */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_EN_MASK,
MICFIL_VAD0_CTRL1_EN);
if (ret) {
dev_err(dev, "Failed to set VADEN in CTRL1_VAD0 [%d]\n", ret);
return ret;
}
/* Enable MICFIL module */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN_MASK,
MICFIL_CTRL1_PDMIEN);
if (ret) {
dev_err(dev, "failed to enable the module\n");
return ret;
}
/* it would be a good idea to wait some time before VADEN
* is set
*/
usleep_range(3 * MICFIL_SLEEP_MIN, 3 * MICFIL_SLEEP_MAX);
/* Wait for INITF to be asserted */
for (i = 0; i < MICFIL_MAX_RETRY; i++) {
ret = regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &stat);
if (ret) {
dev_err(dev, "failed to read register %d\n",
REG_MICFIL_VAD0_STAT);
return ret;
}
flag = (stat & MICFIL_VAD0_STAT_INITF_MASK);
if (flag == 0)
break;
usleep_range(MICFIL_SLEEP_MIN, MICFIL_SLEEP_MAX);
}
if (i == MICFIL_MAX_RETRY) {
dev_err(dev, "initf not asserted. Failed to init hwvad\n");
return -EBUSY;
}
/* Initialize Internal Filters */
ret = init_hwvad_internal_filters(dev);
if (ret)
return ret;
/* Enable interrupts */
ret = configure_hwvad_interrupts(dev, 1);
if (ret)
return ret;
return ret;
}
/* Hardware Voice Active Detection: The HWVAD takes data from the input
* of a selected PDM microphone to detect if there is any
* voice activity. When a voice activity is detected, an interrupt could
* be delivered to the system. Initialization in section 8.4:
* Can work in two modes:
* -> Eneveope-based mode (section 8.4.1)
* -> Energy-based mode (section 8.4.2)
*
* It is important to remark that the HWVAD detector could be enabled
* or reset only when the MICFIL isn't running i.e. when the BSY_FIL
* bit in STAT register is cleared
*/
static int __maybe_unused init_hwvad(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
u32 reg_val;
/* configure CIC OSR in VADCICOSR */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_CICOSR_MASK,
MICFIL_CTRL2_OSR_DEFAULT);
if (ret) {
dev_err(dev, "Failed to set CICOSR in CTRL1_VAD0i [%d]\n", ret);
return ret;
}
/* configure source channel in VADCHSEL */
reg_val = MICFIL_VAD0_CTRL1_CHSEL(micfil->vad_channel);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_CHSEL_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set CHSEL in CTRL1_VAD0 [%d]\n", ret);
return ret;
}
/* configure detector frame time VADFRAMET */
reg_val = MICFIL_VAD0_CTRL2_FRAMET(micfil->vad_frame_time);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_FRAMET_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set FRAMET in CTRL2_VAD0 [%d]\n", ret);
return ret;
}
/* configure initialization time in VADINITT */
reg_val = MICFIL_VAD0_CTRL1_INITT(micfil->vad_init_time);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_INITT_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set INITT in CTRL1_VAD0 [%d]\n", ret);
return ret;
}
/* configure input gain in VADINPGAIN */
reg_val = MICFIL_VAD0_CTRL2_INPGAIN(micfil->vad_input_gain);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_INPGAIN_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set INPGAIN in CTRL2_VAD0 [%d]\n", ret);
return ret;
}
/* configure sound gain in SGAIN */
reg_val = MICFIL_VAD0_SCONFIG_SGAIN(micfil->vad_sound_gain);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SGAIN_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set SGAIN in SCONFIG_VAD0 [%d]\n", ret);
return ret;
}
/* configure noise gain in NGAIN */
reg_val = MICFIL_VAD0_NCONFIG_NGAIN(micfil->vad_noise_gain);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NGAIN_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set NGAIN in NCONFIG_VAD0 [%d]\n", ret);
return ret;
}
/* configure or clear the VADNFILADJ based on mode */
reg_val = MICFIL_VAD0_NCONFIG_NFILADJ(micfil->vad_nfil_adjust);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NFILADJ_MASK,
reg_val);
if (ret) {
dev_err(dev,
"Failed to set VADNFILADJ in NCONFIG_VAD0 [%d]\n",
ret);
return ret;
}
/* enable the high-pass filter in VADHPF */
reg_val = MICFIL_VAD0_CTRL2_HPF(micfil->vad_hpf);
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_HPF_MASK,
reg_val);
if (ret) {
dev_err(dev, "Failed to set HPF in CTRL2_VAD0 [%d]\n", ret);
return ret;
}
/* envelope-based specific initialization */
if (micfil->vad_init_mode == MICFIL_HWVAD_ENVELOPE_MODE) {
ret = init_hwvad_envelope_mode(dev);
if (ret)
return ret;
} else {
ret = init_hwvad_energy_mode(dev);
if (ret)
return ret;
}
return 0;
}
static inline bool clk_in_list(struct clk *p, struct clk *clk_src[])
{
int i;
for (i = 0; i < MICFIL_CLK_SRC_NUM; i++)
if (clk_is_match(p, clk_src[i]))
return true;
return false;
}
static int fsl_micfil_set_mclk_rate(struct fsl_micfil *micfil, int clk_id,
unsigned int freq)
{
struct clk *p = micfil->mclk, *pll = 0, *npll = 0;
struct device *dev = &micfil->pdev->dev;
u64 ratio = freq;
u64 clk_rate;
int ret;
int i;
/* Do not touch the clock if hwvad is already enabled
* since you can record only at hwvad rate and clock
* has already been set to the required frequency
*/
if (atomic_read(&micfil->hwvad_state) == MICFIL_HWVAD_ON)
return 0;
/* check if all clock sources are valid */
for (i = 0; i < MICFIL_CLK_SRC_NUM; i++) {
if (micfil->clk_src[i])
continue;
dev_err(dev, "Clock Source %d is not valid.\n", i);
return -EINVAL;
}
while (p) {
struct clk *pp = clk_get_parent(p);
if (clk_in_list(pp, micfil->clk_src)) {
pll = pp;
break;
}
p = pp;
}
if (!pll) {
dev_err(dev, "reached a null clock\n");
return -EINVAL;
}
if (micfil->clk_src_id == MICFIL_CLK_AUTO) {
for (i = 0; i < MICFIL_CLK_SRC_NUM; i++) {
clk_rate = clk_get_rate(micfil->clk_src[i]);
/* This is an workaround since audio_pll2 clock
* has 722534399 rate and this will never divide
* to any known frequency ???
*/
clk_rate = round_up(clk_rate, 10);
if (do_div(clk_rate, ratio) == 0)
npll = micfil->clk_src[i];
}
} else {
/* clock id is offseted by 1 since ID=0 means
* auto clock selection
*/
npll = micfil->clk_src[micfil->clk_src_id - 1];
}
if (!npll) {
dev_err(dev,
"failed to find a suitable clock source\n");
return -EINVAL;
}
if (!clk_is_match(pll, npll)) {
ret = clk_set_parent(p, npll);
if (ret < 0)
dev_warn(dev,
"failed to set parrent %d\n", ret);
}
clk_disable_unprepare(micfil->mclk);
ret = clk_set_rate(micfil->mclk, freq * 1024);
if (ret)
dev_warn(dev, "failed to set rate (%u): %d\n",
freq * 1024, ret);
clk_prepare_enable(micfil->mclk);
return ret;
}
static int fsl_micfil_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
if (!micfil) {
dev_err(dai->dev,
"micfil dai priv_data not set\n");
return -EINVAL;
}
return 0;
}
static int fsl_micfil_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
struct device *dev = &micfil->pdev->dev;
int ret;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
ret = fsl_micfil_reset(dev);
if (ret) {
dev_err(dev, "failed to soft reset\n");
return ret;
}
/* DMA Interrupt Selection - DISEL bits
* 00 - DMA and IRQ disabled
* 01 - DMA req enabled
* 10 - IRQ enabled
* 11 - reserved
*/
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_DISEL_MASK,
(1 << MICFIL_CTRL1_DISEL_SHIFT));
if (ret) {
dev_err(dev, "failed to update DISEL bits\n");
return ret;
}
/* Enable the module */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN_MASK,
MICFIL_CTRL1_PDMIEN);
if (ret) {
dev_err(dev, "failed to enable the module\n");
return ret;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
/* Disable the module */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN_MASK,
0);
if (ret) {
dev_err(dev, "failed to enable the module\n");
return ret;
}
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_DISEL_MASK,
(0 << MICFIL_CTRL1_DISEL_SHIFT));
if (ret) {
dev_err(dev, "failed to update DISEL bits\n");
return ret;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_set_clock_params(struct device *dev, unsigned int rate)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int clk_div;
int ret = 0;
ret = fsl_micfil_set_mclk_rate(micfil, 0, rate);
if (ret < 0)
dev_err(dev, "failed to set mclk[%lu] to rate %u\n",
clk_get_rate(micfil->mclk), rate);
/* set CICOSR */
ret |= regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
MICFIL_CTRL2_CICOSR_MASK,
MICFIL_CTRL2_OSR_DEFAULT);
if (ret)
dev_err(dev, "failed to set CICOSR in reg 0x%X\n",
REG_MICFIL_CTRL2);
/* set CLK_DIV */
clk_div = get_clk_div(micfil, rate);
if (clk_div < 0)
ret = -EINVAL;
ret |= regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
MICFIL_CTRL2_CLKDIV_MASK, clk_div);
if (ret)
dev_err(dev, "failed to set CLKDIV in reg 0x%X\n",
REG_MICFIL_CTRL2);
return ret;
}
static int fsl_micfil_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
unsigned int channels = params_channels(params);
unsigned int rate = params_rate(params);
struct device *dev = &micfil->pdev->dev;
unsigned int hwvad_rate;
int ret;
u32 hwvad_state;
hwvad_rate = micfil_hwvad_rate_ints[micfil->vad_rate_index];
hwvad_state = atomic_read(&micfil->hwvad_state);
/* if hwvad is enabled, make sure you are recording at
* the same rate the hwvad is on or reject it to avoid
* changing the clock rate.
*/
if (hwvad_state == MICFIL_HWVAD_ON && rate != hwvad_rate) {
dev_err(dev, "Record at hwvad rate %u\n", hwvad_rate);
return -EINVAL;
}
atomic_set(&micfil->recording_state, MICFIL_RECORDING_ON);
if (hwvad_state == MICFIL_HWVAD_OFF) {
/* 1. Disable the module */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN_MASK, 0);
if (ret) {
dev_err(dev, "failed to disable the module\n");
return ret;
}
}
/* enable channels */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL1,
0xFF, ((1 << channels) - 1));
if (ret) {
dev_err(dev, "failed to enable channels %d, reg 0x%X\n", ret,
REG_MICFIL_CTRL1);
return ret;
}
ret = fsl_set_clock_params(dev, rate);
if (ret < 0) {
dev_err(dev, "Failed to set clock parameters [%d]\n", ret);
return ret;
}
micfil->dma_params_rx.fifo_num = channels;
micfil->dma_params_rx.maxburst = channels * MICFIL_DMA_MAXBURST_RX;
return 0;
}
static int fsl_micfil_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
atomic_set(&micfil->recording_state, MICFIL_RECORDING_OFF);
return 0;
}
static int fsl_micfil_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
struct device *dev = &micfil->pdev->dev;
int ret;
if (!freq)
return 0;
ret = fsl_micfil_set_mclk_rate(micfil, clk_id, freq);
if (ret < 0)
dev_err(dev, "failed to set mclk[%lu] to rate %u\n",
clk_get_rate(micfil->mclk), freq);
return ret;
}
static int fsl_micfil_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct fsl_micfil *micfil = snd_soc_dai_get_drvdata(dai);
/* DAI MODE */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
default:
return -EINVAL;
}
/* DAI CLK INVERSION */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
default:
return -EINVAL;
}
micfil->slave_mode = false;
return 0;
}
static struct snd_soc_dai_ops fsl_micfil_dai_ops = {
.startup = fsl_micfil_startup,
.trigger = fsl_micfil_trigger,
.hw_params = fsl_micfil_hw_params,
.hw_free = fsl_micfil_hw_free,
.set_sysclk = fsl_micfil_set_dai_sysclk,
.set_fmt = fsl_micfil_set_dai_fmt,
};
static int fsl_micfil_dai_probe(struct snd_soc_dai *cpu_dai)
{
struct fsl_micfil *micfil = dev_get_drvdata(cpu_dai->dev);
struct device *dev = cpu_dai->dev;
unsigned int val;
int ret;
int i;
/* set qsel to medium */
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_CTRL2,
MICFIL_CTRL2_QSEL_MASK, MICFIL_MEDIUM_QUALITY);
if (ret) {
dev_err(dev, "failed to set quality mode bits, reg 0x%X\n",
REG_MICFIL_CTRL2);
return ret;
}
/* set default gain to max_gain */
regmap_write(micfil->regmap, REG_MICFIL_OUT_CTRL, 0x77777777);
for (i = 0; i < 8; i++)
micfil->channel_gain[i] = 0xF;
snd_soc_dai_init_dma_data(cpu_dai, NULL,
&micfil->dma_params_rx);
/* FIFO Watermark Control - FIFOWMK*/
val = MICFIL_FIFO_CTRL_FIFOWMK(micfil->soc->fifo_depth) - 1;
ret = regmap_update_bits(micfil->regmap, REG_MICFIL_FIFO_CTRL,
MICFIL_FIFO_CTRL_FIFOWMK_MASK,
val);
if (ret) {
dev_err(dev, "failed to set FIFOWMK\n");
return ret;
}
snd_soc_dai_set_drvdata(cpu_dai, micfil);
return 0;
}
static struct snd_soc_dai_driver fsl_micfil_dai = {
.probe = fsl_micfil_dai_probe,
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 8,
.rates = FSL_MICFIL_RATES,
.formats = FSL_MICFIL_FORMATS,
},
.ops = &fsl_micfil_dai_ops,
};
static const struct snd_soc_component_driver fsl_micfil_component = {
.name = "fsl-micfil-dai",
.controls = fsl_micfil_snd_controls,
.num_controls = ARRAY_SIZE(fsl_micfil_snd_controls),
};
/* REGMAP */
static const struct reg_default fsl_micfil_reg_defaults[] = {
{REG_MICFIL_CTRL1, 0x00000000},
{REG_MICFIL_CTRL2, 0x00000000},
{REG_MICFIL_STAT, 0x00000000},
{REG_MICFIL_FIFO_CTRL, 0x00000007},
{REG_MICFIL_FIFO_STAT, 0x00000000},
{REG_MICFIL_DATACH0, 0x00000000},
{REG_MICFIL_DATACH1, 0x00000000},
{REG_MICFIL_DATACH2, 0x00000000},
{REG_MICFIL_DATACH3, 0x00000000},
{REG_MICFIL_DATACH4, 0x00000000},
{REG_MICFIL_DATACH5, 0x00000000},
{REG_MICFIL_DATACH6, 0x00000000},
{REG_MICFIL_DATACH7, 0x00000000},
{REG_MICFIL_DC_CTRL, 0x00000000},
{REG_MICFIL_OUT_CTRL, 0x00000000},
{REG_MICFIL_OUT_STAT, 0x00000000},
{REG_MICFIL_VAD0_CTRL1, 0x00000000},
{REG_MICFIL_VAD0_CTRL2, 0x000A0000},
{REG_MICFIL_VAD0_STAT, 0x00000000},
{REG_MICFIL_VAD0_SCONFIG, 0x00000000},
{REG_MICFIL_VAD0_NCONFIG, 0x80000000},
{REG_MICFIL_VAD0_NDATA, 0x00000000},
{REG_MICFIL_VAD0_ZCD, 0x00000004},
};
static bool fsl_micfil_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_MICFIL_CTRL1:
case REG_MICFIL_CTRL2:
case REG_MICFIL_STAT:
case REG_MICFIL_FIFO_CTRL:
case REG_MICFIL_FIFO_STAT:
case REG_MICFIL_DATACH0:
case REG_MICFIL_DATACH1:
case REG_MICFIL_DATACH2:
case REG_MICFIL_DATACH3:
case REG_MICFIL_DATACH4:
case REG_MICFIL_DATACH5:
case REG_MICFIL_DATACH6:
case REG_MICFIL_DATACH7:
case REG_MICFIL_DC_CTRL:
case REG_MICFIL_OUT_CTRL:
case REG_MICFIL_OUT_STAT:
case REG_MICFIL_VAD0_CTRL1:
case REG_MICFIL_VAD0_CTRL2:
case REG_MICFIL_VAD0_STAT:
case REG_MICFIL_VAD0_SCONFIG:
case REG_MICFIL_VAD0_NCONFIG:
case REG_MICFIL_VAD0_NDATA:
case REG_MICFIL_VAD0_ZCD:
return true;
default:
return false;
}
}
static bool fsl_micfil_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_MICFIL_CTRL1:
case REG_MICFIL_CTRL2:
case REG_MICFIL_STAT: /* Write 1 to Clear */
case REG_MICFIL_FIFO_CTRL:
case REG_MICFIL_FIFO_STAT: /* Write 1 to Clear */
case REG_MICFIL_DC_CTRL:
case REG_MICFIL_OUT_CTRL:
case REG_MICFIL_OUT_STAT: /* Write 1 to Clear */
case REG_MICFIL_VAD0_CTRL1:
case REG_MICFIL_VAD0_CTRL2:
case REG_MICFIL_VAD0_STAT: /* Write 1 to Clear */
case REG_MICFIL_VAD0_SCONFIG:
case REG_MICFIL_VAD0_NCONFIG:
case REG_MICFIL_VAD0_ZCD:
return true;
default:
return false;
}
}
static bool fsl_micfil_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_MICFIL_CTRL1:
case REG_MICFIL_CTRL2:
case REG_MICFIL_STAT:
case REG_MICFIL_DATACH0:
case REG_MICFIL_DATACH1:
case REG_MICFIL_DATACH2:
case REG_MICFIL_DATACH3:
case REG_MICFIL_DATACH4:
case REG_MICFIL_DATACH5:
case REG_MICFIL_DATACH6:
case REG_MICFIL_DATACH7:
case REG_MICFIL_VAD0_CTRL1:
case REG_MICFIL_VAD0_CTRL2:
case REG_MICFIL_VAD0_STAT:
case REG_MICFIL_VAD0_SCONFIG:
case REG_MICFIL_VAD0_NCONFIG:
case REG_MICFIL_VAD0_NDATA:
case REG_MICFIL_VAD0_ZCD:
return true;
default:
return false;
}
}
static const struct regmap_config fsl_micfil_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_MICFIL_VAD0_ZCD,
.reg_defaults = fsl_micfil_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(fsl_micfil_reg_defaults),
.readable_reg = fsl_micfil_readable_reg,
.volatile_reg = fsl_micfil_volatile_reg,
.writeable_reg = fsl_micfil_writeable_reg,
.cache_type = REGCACHE_RBTREE,
};
/* END OF REGMAP */
static irqreturn_t voice_detected_fn(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct device *dev = &micfil->pdev->dev;
int ret;
/* disable hwvad */
ret = disable_hwvad(dev, true);
if (ret)
dev_err(dev, "Failed to disable HWVAD module\n");
/* notify userspace that voice was detected */
kobject_uevent_env(&dev->kobj, KOBJ_CHANGE, envp);
return IRQ_HANDLED;
}
static irqreturn_t hwvad_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct device *dev = &micfil->pdev->dev;
int ret;
u32 vad0_reg;
regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg);
/* The only difference between MICFIL_VAD0_STAT_EF and
* MICFIL_VAD0_STAT_IF is that the former requires Write
* 1 to Clear. Since both flags are set, it is enough
* to only read one of them
*/
if (vad0_reg & MICFIL_VAD0_STAT_IF_MASK) {
/* Write 1 to clear */
regmap_write_bits(micfil->regmap, REG_MICFIL_VAD0_STAT,
MICFIL_VAD0_STAT_IF_MASK,
MICFIL_VAD0_STAT_IF);
/* disable hwvad interrupts */
ret = configure_hwvad_interrupts(dev, 0);
if (ret)
dev_err(dev, "Failed to disable interrupts\n");
}
return IRQ_WAKE_THREAD;
}
static irqreturn_t hwvad_err_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct device *dev = &micfil->pdev->dev;
u32 vad0_reg;
regmap_read(micfil->regmap, REG_MICFIL_VAD0_STAT, &vad0_reg);
if (vad0_reg & MICFIL_VAD0_STAT_INSATF_MASK)
dev_dbg(dev, "voice activity input overflow/underflow detected\n");
if (vad0_reg & MICFIL_VAD0_STAT_INITF_MASK)
dev_dbg(dev, "voice activity dectector is initializing\n");
return IRQ_HANDLED;
}
static irqreturn_t micfil_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct platform_device *pdev = micfil->pdev;
u32 stat_reg;
u32 fifo_stat_reg;
u32 ctrl1_reg;
bool dma_enabled;
int i;
regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg);
regmap_read(micfil->regmap, REG_MICFIL_CTRL1, &ctrl1_reg);
regmap_read(micfil->regmap, REG_MICFIL_FIFO_STAT, &fifo_stat_reg);
dma_enabled = MICFIL_DMA_ENABLED(ctrl1_reg);
/* Channel 0-7 Output Data Flags */
for (i = 0; i < MICFIL_OUTPUT_CHANNELS; i++) {
if (stat_reg & MICFIL_STAT_CHXF_MASK(i))
dev_dbg(&pdev->dev,
"Data available in Data Channel %d\n", i);
/* if DMA is not enabled, field must be written with 1
* to clear
*/
if (!dma_enabled)
regmap_write_bits(micfil->regmap,
REG_MICFIL_STAT,
MICFIL_STAT_CHXF_MASK(i),
1);
}
for (i = 0; i < MICFIL_FIFO_NUM; i++) {
if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_OVER_MASK(i))
dev_dbg(&pdev->dev,
"FIFO Overflow Exception flag for channel %d\n",
i);
if (fifo_stat_reg & MICFIL_FIFO_STAT_FIFOX_UNDER_MASK(i))
dev_dbg(&pdev->dev,
"FIFO Underflow Exception flag for channel %d\n",
i);
}
return IRQ_HANDLED;
}
static irqreturn_t micfil_err_isr(int irq, void *devid)
{
struct fsl_micfil *micfil = (struct fsl_micfil *)devid;
struct platform_device *pdev = micfil->pdev;
u32 stat_reg;
regmap_read(micfil->regmap, REG_MICFIL_STAT, &stat_reg);
if (stat_reg & MICFIL_STAT_BSY_FIL_MASK)
dev_dbg(&pdev->dev, "isr: Decimation Filter is running\n");
if (stat_reg & MICFIL_STAT_FIR_RDY_MASK)
dev_dbg(&pdev->dev, "isr: FIR Filter Data ready\n");
if (stat_reg & MICFIL_STAT_LOWFREQF_MASK) {
dev_dbg(&pdev->dev, "isr: ipg_clk_app is too low\n");
regmap_write_bits(micfil->regmap, REG_MICFIL_STAT,
MICFIL_STAT_LOWFREQF_MASK, 1);
}
return IRQ_HANDLED;
}
static int fsl_set_clock_params(struct device *, unsigned int);
static int enable_hwvad(struct device *dev, bool sync)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
int rate;
u32 state;
if (sync)
pm_runtime_get_sync(dev);
state = atomic_cmpxchg(&micfil->hwvad_state,
MICFIL_HWVAD_OFF,
MICFIL_HWVAD_ON);
/* we should not reenable when sync = true because
* this means enable was called for second time by
* user. However state = ON and sync = false can only
* occur when enable is called from system_resume. In
* this case we should enable the hwvad
*/
if (sync && state == MICFIL_HWVAD_ON) {
dev_err(dev, "hwvad already on\n");
ret = -EBUSY;
goto enable_error;
}
if (micfil->vad_rate_index >= ARRAY_SIZE(micfil_hwvad_rate_ints)) {
dev_err(dev, "There are more select texts than rates\n");
ret = -EINVAL;
goto enable_error;
}
rate = micfil_hwvad_rate_ints[micfil->vad_rate_index];
/* This is required because if an arecord was done,
* suspend function will mark regmap as cache only
* and reads/writes in volatile regs will fail
*/
regcache_cache_only(micfil->regmap, false);
regcache_mark_dirty(micfil->regmap);
regcache_sync(micfil->regmap);
ret = fsl_set_clock_params(dev, rate);
if (ret)
return ret;
ret = fsl_micfil_reset(dev);
if (ret)
return ret;
/* Initialize Hardware Voice Activity */
ret = init_hwvad(dev);
return ret;
enable_error:
if (sync)
pm_runtime_put_sync(dev);
return ret;
}
static int disable_hwvad(struct device *dev, bool sync)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret = 0;
u32 state;
/* This is required because if an arecord was done,
* suspend function will mark regmap as cache only
* and reads/writes in volatile regs will fail
*/
regcache_cache_only(micfil->regmap, false);
regcache_mark_dirty(micfil->regmap);
regcache_sync(micfil->regmap);
/* disable is called with sync = false only from
* system suspend and in this case, you should not
* change the hwvad_state so we know at system_resume
* to reenable hwvad
*/
if (sync)
state = atomic_cmpxchg(&micfil->hwvad_state,
MICFIL_HWVAD_ON,
MICFIL_HWVAD_OFF);
else
state = atomic_read(&micfil->hwvad_state);
if (state == MICFIL_HWVAD_ON) {
/* Voice Activity Detector Reset */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_RST_SHIFT,
MICFIL_VAD0_CTRL1_RST);
/* Disable HWVAD */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_VAD0_CTRL1,
MICFIL_VAD0_CTRL1_EN_MASK,
0);
/* Disable Signal Filter */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SFILEN_MASK,
0);
/* Signal Maximum Enable */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_VAD0_SCONFIG,
MICFIL_VAD0_SCONFIG_SMAXEN_MASK,
0);
/* Enable pre-filter Noise & Signal */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_VAD0_CTRL2,
MICFIL_VAD0_CTRL2_PREFEN_MASK,
0);
/* Noise Decimation Enable */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_VAD0_NCONFIG,
MICFIL_VAD0_NCONFIG_NDECEN_MASK,
0);
/* disable the module and clock only if recording
* is not done in parallel
*/
state = atomic_read(&micfil->recording_state);
if (state == MICFIL_RECORDING_OFF) {
/* Disable MICFIL module */
ret |= regmap_update_bits(micfil->regmap,
REG_MICFIL_CTRL1,
MICFIL_CTRL1_PDMIEN_MASK,
0);
}
} else {
ret = -EPERM;
dev_err(dev, "HWVAD is not enabled %d\n", ret);
}
if (sync)
pm_runtime_put_sync(dev);
return ret;
}
static ssize_t micfil_hwvad_handler(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct kobject *nand_kobj = kobj->parent;
struct device *dev = container_of(nand_kobj, struct device, kobj);
struct fsl_micfil *micfil = dev_get_drvdata(dev);
unsigned long vad_channel;
int ret;
ret = kstrtoul(buf, 16, &vad_channel);
if (ret < 0)
return -EINVAL;
if (vad_channel <= 7) {
micfil->vad_channel = vad_channel;
ret = enable_hwvad(dev, true);
if (ret)
dev_err(dev, "Failed to enable hwvad");
} else {
micfil->vad_channel = -1;
ret = disable_hwvad(dev, true);
}
if (ret)
return ret;
return count;
}
static struct kobj_attribute hwvad_en_attr = __ATTR(enable,
0660,
NULL,
micfil_hwvad_handler);
static int fsl_micfil_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *of_id;
struct fsl_micfil *micfil;
struct resource *res;
void __iomem *regs;
int ret, i;
unsigned long irqflag = 0;
micfil = devm_kzalloc(&pdev->dev, sizeof(*micfil), GFP_KERNEL);
if (!micfil)
return -ENOMEM;
micfil->pdev = pdev;
strncpy(micfil->name, np->name, sizeof(micfil->name) - 1);
of_id = of_match_device(fsl_micfil_dt_ids, &pdev->dev);
if (!of_id || !of_id->data)
return -EINVAL;
micfil->soc = of_id->data;
/* ipg_clk is used to control the registers
* ipg_clk_app is used to operate the filter
*/
micfil->mclk = devm_clk_get(&pdev->dev, "ipg_clk_app");
if (IS_ERR(micfil->mclk)) {
dev_err(&pdev->dev, "failed to get core clock: %ld\n",
PTR_ERR(micfil->mclk));
return PTR_ERR(micfil->mclk);
}
/* get audio pll1 and pll2 */
micfil->clk_src[MICFIL_AUDIO_PLL1] = devm_clk_get(&pdev->dev, "pll8k");
if (IS_ERR(micfil->clk_src[MICFIL_AUDIO_PLL1]))
micfil->clk_src[MICFIL_AUDIO_PLL1] = NULL;
micfil->clk_src[MICFIL_AUDIO_PLL2] = devm_clk_get(&pdev->dev, "pll11k");
if (IS_ERR(micfil->clk_src[MICFIL_AUDIO_PLL2]))
micfil->clk_src[MICFIL_AUDIO_PLL2] = NULL;
micfil->clk_src[MICFIL_CLK_EXT3] = devm_clk_get(&pdev->dev, "clkext3");
if (IS_ERR(micfil->clk_src[MICFIL_CLK_EXT3]))
micfil->clk_src[MICFIL_CLK_EXT3] = NULL;
/* init regmap */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
micfil->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
"ipg_clk",
regs,
&fsl_micfil_regmap_config);
if (IS_ERR(micfil->regmap)) {
dev_err(&pdev->dev, "failed to init MICFIL regmap: %ld\n",
PTR_ERR(micfil->regmap));
return PTR_ERR(micfil->regmap);
}
/* dataline mask for RX */
ret = of_property_read_u32_index(np,
"fsl,dataline",
0,
&micfil->dataline);
if (ret)
micfil->dataline = 1;
if (micfil->dataline & ~micfil->soc->dataline) {
dev_err(&pdev->dev, "dataline setting error, Mask is 0x%X\n",
micfil->soc->dataline);
return -EINVAL;
}
/* get IRQs */
for (i = 0; i < MICFIL_IRQ_LINES; i++) {
micfil->irq[i] = platform_get_irq(pdev, i);
dev_err(&pdev->dev, "GET IRQ: %d\n", micfil->irq[i]);
if (micfil->irq[i] < 0) {
dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
return micfil->irq[i];
}
}
if (of_property_read_bool(np, "fsl,shared-interrupt"))
irqflag = IRQF_SHARED;
/* Digital Microphone interface voice activity detector event
* interrupt - IRQ 44
*/
ret = devm_request_threaded_irq(&pdev->dev, micfil->irq[0],
hwvad_isr, voice_detected_fn,
irqflag, micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim hwvad event irq %u\n",
micfil->irq[0]);
return ret;
}
/* Digital Microphone interface voice activity detector error
* interrupt - IRQ 45
*/
ret = devm_request_irq(&pdev->dev, micfil->irq[1],
hwvad_err_isr, irqflag,
micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim hwvad error irq %u\n",
micfil->irq[1]);
return ret;
}
/* Digital Microphone interface interrupt - IRQ 109 */
ret = devm_request_irq(&pdev->dev, micfil->irq[2],
micfil_isr, irqflag,
micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim mic interface irq %u\n",
micfil->irq[2]);
return ret;
}
/* Digital Microphone interface error interrupt - IRQ 110 */
ret = devm_request_irq(&pdev->dev, micfil->irq[3],
micfil_err_isr, irqflag,
micfil->name, micfil);
if (ret) {
dev_err(&pdev->dev, "failed to claim mic interface error irq %u\n",
micfil->irq[3]);
return ret;
}
micfil->slave_mode = false;
micfil->dma_params_rx.chan_name = "rx";
micfil->dma_params_rx.addr = res->start + REG_MICFIL_DATACH0;
micfil->dma_params_rx.maxburst = MICFIL_DMA_MAXBURST_RX;
/* set default rate to first value in available vad rates */
micfil->vad_rate_index = 0;
platform_set_drvdata(pdev, micfil);
pm_runtime_enable(&pdev->dev);
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_micfil_component,
&fsl_micfil_dai, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register component %s\n",
fsl_micfil_component.name);
return ret;
}
if (micfil->soc->imx)
ret = imx_pcm_platform_register(&pdev->dev);
else
ret = devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (ret) {
dev_err(&pdev->dev, "failed to pcm register\n");
return ret;
}
/* create sysfs entry used to enable hwvad from userspace */
micfil->hwvad_kobject = kobject_create_and_add("hwvad",
&pdev->dev.kobj);
if (!micfil->hwvad_kobject)
return -ENOMEM;
ret = sysfs_create_file(micfil->hwvad_kobject,
&hwvad_en_attr.attr);
if (ret) {
dev_err(&pdev->dev, "failed to create file for hwvad_enable\n");
kobject_put(micfil->hwvad_kobject);
return -ENOMEM;
}
return 0;
}
#ifdef CONFIG_PM
static int __maybe_unused fsl_micfil_runtime_suspend(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
u32 state;
state = atomic_read(&micfil->hwvad_state);
if (state == MICFIL_HWVAD_ON)
return 0;
regcache_cache_only(micfil->regmap, true);
/* Disable the clock only if the hwvad is not enabled */
if (state == MICFIL_HWVAD_OFF)
clk_disable_unprepare(micfil->mclk);
return 0;
}
static int __maybe_unused fsl_micfil_runtime_resume(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
u32 state;
state = atomic_read(&micfil->hwvad_state);
/* enable mclk only if the hwvad is not enabled
* When hwvad is enabled, clock won't be disabled
* in suspend since hwvad and recording share the
* same clock
*/
if (state == MICFIL_HWVAD_ON)
return 0;
ret = clk_prepare_enable(micfil->mclk);
if (ret < 0)
return ret;
regcache_cache_only(micfil->regmap, false);
regcache_mark_dirty(micfil->regmap);
regcache_sync(micfil->regmap);
return 0;
}
#endif /* CONFIG_PM*/
#ifdef CONFIG_PM_SLEEP
static int __maybe_unused fsl_micfil_suspend(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
u32 state;
state = atomic_read(&micfil->hwvad_state);
if (state == MICFIL_HWVAD_ON) {
dev_err(dev, "Disabling hwvad on suspend");
ret = disable_hwvad(dev, false);
if (ret)
dev_warn(dev, "Failed to disable hwvad");
}
pm_runtime_force_suspend(dev);
return 0;
}
static int __maybe_unused fsl_micfil_resume(struct device *dev)
{
struct fsl_micfil *micfil = dev_get_drvdata(dev);
int ret;
u32 state;
pm_runtime_force_resume(dev);
state = atomic_read(&micfil->hwvad_state);
if (state == MICFIL_HWVAD_ON) {
dev_err(dev, "Enabling hwvad on resume");
ret = enable_hwvad(dev, false);
if (ret)
dev_warn(dev, "Failed to re-enable hwvad");
}
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops fsl_micfil_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_micfil_runtime_suspend,
fsl_micfil_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(fsl_micfil_suspend,
fsl_micfil_resume)
};
static struct platform_driver fsl_micfil_driver = {
.probe = fsl_micfil_probe,
.driver = {
.name = "fsl-micfil-dai",
.pm = &fsl_micfil_pm_ops,
.of_match_table = fsl_micfil_dt_ids,
},
};
module_platform_driver(fsl_micfil_driver);
MODULE_AUTHOR("Cosmin-Gabriel Samoila <cosmin.samoila@nxp.com>");
MODULE_DESCRIPTION("NXP PDM Microphone Interface (MICFIL) driver");
MODULE_LICENSE("GPL v2");