| /* | 
 |  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com | 
 |  * Written by Alex Tomas <alex@clusterfs.com> | 
 |  * | 
 |  * Architecture independence: | 
 |  *   Copyright (c) 2005, Bull S.A. | 
 |  *   Written by Pierre Peiffer <pierre.peiffer@bull.net> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public Licens | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- | 
 |  */ | 
 |  | 
 | /* | 
 |  * Extents support for EXT4 | 
 |  * | 
 |  * TODO: | 
 |  *   - ext4*_error() should be used in some situations | 
 |  *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate | 
 |  *   - smart tree reduction | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/time.h> | 
 | #include <linux/jbd2.h> | 
 | #include <linux/highuid.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/quotaops.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/falloc.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/fiemap.h> | 
 | #include "ext4_jbd2.h" | 
 | #include "ext4_extents.h" | 
 | #include "xattr.h" | 
 |  | 
 | #include <trace/events/ext4.h> | 
 |  | 
 | /* | 
 |  * used by extent splitting. | 
 |  */ | 
 | #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \ | 
 | 					due to ENOSPC */ | 
 | #define EXT4_EXT_MARK_UNINIT1	0x2  /* mark first half uninitialized */ | 
 | #define EXT4_EXT_MARK_UNINIT2	0x4  /* mark second half uninitialized */ | 
 |  | 
 | #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */ | 
 | #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */ | 
 |  | 
 | static __le32 ext4_extent_block_csum(struct inode *inode, | 
 | 				     struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	__u32 csum; | 
 |  | 
 | 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh, | 
 | 			   EXT4_EXTENT_TAIL_OFFSET(eh)); | 
 | 	return cpu_to_le32(csum); | 
 | } | 
 |  | 
 | static int ext4_extent_block_csum_verify(struct inode *inode, | 
 | 					 struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_extent_tail *et; | 
 |  | 
 | 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, | 
 | 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) | 
 | 		return 1; | 
 |  | 
 | 	et = find_ext4_extent_tail(eh); | 
 | 	if (et->et_checksum != ext4_extent_block_csum(inode, eh)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void ext4_extent_block_csum_set(struct inode *inode, | 
 | 				       struct ext4_extent_header *eh) | 
 | { | 
 | 	struct ext4_extent_tail *et; | 
 |  | 
 | 	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, | 
 | 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) | 
 | 		return; | 
 |  | 
 | 	et = find_ext4_extent_tail(eh); | 
 | 	et->et_checksum = ext4_extent_block_csum(inode, eh); | 
 | } | 
 |  | 
 | static int ext4_split_extent(handle_t *handle, | 
 | 				struct inode *inode, | 
 | 				struct ext4_ext_path *path, | 
 | 				struct ext4_map_blocks *map, | 
 | 				int split_flag, | 
 | 				int flags); | 
 |  | 
 | static int ext4_split_extent_at(handle_t *handle, | 
 | 			     struct inode *inode, | 
 | 			     struct ext4_ext_path *path, | 
 | 			     ext4_lblk_t split, | 
 | 			     int split_flag, | 
 | 			     int flags); | 
 |  | 
 | static int ext4_find_delayed_extent(struct inode *inode, | 
 | 				    struct extent_status *newes); | 
 |  | 
 | static int ext4_ext_truncate_extend_restart(handle_t *handle, | 
 | 					    struct inode *inode, | 
 | 					    int needed) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!ext4_handle_valid(handle)) | 
 | 		return 0; | 
 | 	if (handle->h_buffer_credits > needed) | 
 | 		return 0; | 
 | 	err = ext4_journal_extend(handle, needed); | 
 | 	if (err <= 0) | 
 | 		return err; | 
 | 	err = ext4_truncate_restart_trans(handle, inode, needed); | 
 | 	if (err == 0) | 
 | 		err = -EAGAIN; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * could return: | 
 |  *  - EROFS | 
 |  *  - ENOMEM | 
 |  */ | 
 | static int ext4_ext_get_access(handle_t *handle, struct inode *inode, | 
 | 				struct ext4_ext_path *path) | 
 | { | 
 | 	if (path->p_bh) { | 
 | 		/* path points to block */ | 
 | 		return ext4_journal_get_write_access(handle, path->p_bh); | 
 | 	} | 
 | 	/* path points to leaf/index in inode body */ | 
 | 	/* we use in-core data, no need to protect them */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * could return: | 
 |  *  - EROFS | 
 |  *  - ENOMEM | 
 |  *  - EIO | 
 |  */ | 
 | #define ext4_ext_dirty(handle, inode, path) \ | 
 | 		__ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path)) | 
 | static int __ext4_ext_dirty(const char *where, unsigned int line, | 
 | 			    handle_t *handle, struct inode *inode, | 
 | 			    struct ext4_ext_path *path) | 
 | { | 
 | 	int err; | 
 | 	if (path->p_bh) { | 
 | 		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh)); | 
 | 		/* path points to block */ | 
 | 		err = __ext4_handle_dirty_metadata(where, line, handle, | 
 | 						   inode, path->p_bh); | 
 | 	} else { | 
 | 		/* path points to leaf/index in inode body */ | 
 | 		err = ext4_mark_inode_dirty(handle, inode); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode, | 
 | 			      struct ext4_ext_path *path, | 
 | 			      ext4_lblk_t block) | 
 | { | 
 | 	if (path) { | 
 | 		int depth = path->p_depth; | 
 | 		struct ext4_extent *ex; | 
 |  | 
 | 		/* | 
 | 		 * Try to predict block placement assuming that we are | 
 | 		 * filling in a file which will eventually be | 
 | 		 * non-sparse --- i.e., in the case of libbfd writing | 
 | 		 * an ELF object sections out-of-order but in a way | 
 | 		 * the eventually results in a contiguous object or | 
 | 		 * executable file, or some database extending a table | 
 | 		 * space file.  However, this is actually somewhat | 
 | 		 * non-ideal if we are writing a sparse file such as | 
 | 		 * qemu or KVM writing a raw image file that is going | 
 | 		 * to stay fairly sparse, since it will end up | 
 | 		 * fragmenting the file system's free space.  Maybe we | 
 | 		 * should have some hueristics or some way to allow | 
 | 		 * userspace to pass a hint to file system, | 
 | 		 * especially if the latter case turns out to be | 
 | 		 * common. | 
 | 		 */ | 
 | 		ex = path[depth].p_ext; | 
 | 		if (ex) { | 
 | 			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex); | 
 | 			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block); | 
 |  | 
 | 			if (block > ext_block) | 
 | 				return ext_pblk + (block - ext_block); | 
 | 			else | 
 | 				return ext_pblk - (ext_block - block); | 
 | 		} | 
 |  | 
 | 		/* it looks like index is empty; | 
 | 		 * try to find starting block from index itself */ | 
 | 		if (path[depth].p_bh) | 
 | 			return path[depth].p_bh->b_blocknr; | 
 | 	} | 
 |  | 
 | 	/* OK. use inode's group */ | 
 | 	return ext4_inode_to_goal_block(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocation for a meta data block | 
 |  */ | 
 | static ext4_fsblk_t | 
 | ext4_ext_new_meta_block(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_ext_path *path, | 
 | 			struct ext4_extent *ex, int *err, unsigned int flags) | 
 | { | 
 | 	ext4_fsblk_t goal, newblock; | 
 |  | 
 | 	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block)); | 
 | 	newblock = ext4_new_meta_blocks(handle, inode, goal, flags, | 
 | 					NULL, err); | 
 | 	return newblock; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_block(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
 | 			/ sizeof(struct ext4_extent); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 6) | 
 | 		size = 6; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_block_idx(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
 | 			/ sizeof(struct ext4_extent_idx); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 5) | 
 | 		size = 5; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_root(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = sizeof(EXT4_I(inode)->i_data); | 
 | 	size -= sizeof(struct ext4_extent_header); | 
 | 	size /= sizeof(struct ext4_extent); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 3) | 
 | 		size = 3; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | static inline int ext4_ext_space_root_idx(struct inode *inode, int check) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	size = sizeof(EXT4_I(inode)->i_data); | 
 | 	size -= sizeof(struct ext4_extent_header); | 
 | 	size /= sizeof(struct ext4_extent_idx); | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (!check && size > 4) | 
 | 		size = 4; | 
 | #endif | 
 | 	return size; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the number of metadata blocks needed | 
 |  * to allocate @blocks | 
 |  * Worse case is one block per extent | 
 |  */ | 
 | int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	int idxs; | 
 |  | 
 | 	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header)) | 
 | 		/ sizeof(struct ext4_extent_idx)); | 
 |  | 
 | 	/* | 
 | 	 * If the new delayed allocation block is contiguous with the | 
 | 	 * previous da block, it can share index blocks with the | 
 | 	 * previous block, so we only need to allocate a new index | 
 | 	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need | 
 | 	 * an additional index block, and at ldxs**3 blocks, yet | 
 | 	 * another index blocks. | 
 | 	 */ | 
 | 	if (ei->i_da_metadata_calc_len && | 
 | 	    ei->i_da_metadata_calc_last_lblock+1 == lblock) { | 
 | 		int num = 0; | 
 |  | 
 | 		if ((ei->i_da_metadata_calc_len % idxs) == 0) | 
 | 			num++; | 
 | 		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0) | 
 | 			num++; | 
 | 		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) { | 
 | 			num++; | 
 | 			ei->i_da_metadata_calc_len = 0; | 
 | 		} else | 
 | 			ei->i_da_metadata_calc_len++; | 
 | 		ei->i_da_metadata_calc_last_lblock++; | 
 | 		return num; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In the worst case we need a new set of index blocks at | 
 | 	 * every level of the inode's extent tree. | 
 | 	 */ | 
 | 	ei->i_da_metadata_calc_len = 1; | 
 | 	ei->i_da_metadata_calc_last_lblock = lblock; | 
 | 	return ext_depth(inode) + 1; | 
 | } | 
 |  | 
 | static int | 
 | ext4_ext_max_entries(struct inode *inode, int depth) | 
 | { | 
 | 	int max; | 
 |  | 
 | 	if (depth == ext_depth(inode)) { | 
 | 		if (depth == 0) | 
 | 			max = ext4_ext_space_root(inode, 1); | 
 | 		else | 
 | 			max = ext4_ext_space_root_idx(inode, 1); | 
 | 	} else { | 
 | 		if (depth == 0) | 
 | 			max = ext4_ext_space_block(inode, 1); | 
 | 		else | 
 | 			max = ext4_ext_space_block_idx(inode, 1); | 
 | 	} | 
 |  | 
 | 	return max; | 
 | } | 
 |  | 
 | static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext) | 
 | { | 
 | 	ext4_fsblk_t block = ext4_ext_pblock(ext); | 
 | 	int len = ext4_ext_get_actual_len(ext); | 
 |  | 
 | 	if (len == 0) | 
 | 		return 0; | 
 | 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len); | 
 | } | 
 |  | 
 | static int ext4_valid_extent_idx(struct inode *inode, | 
 | 				struct ext4_extent_idx *ext_idx) | 
 | { | 
 | 	ext4_fsblk_t block = ext4_idx_pblock(ext_idx); | 
 |  | 
 | 	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1); | 
 | } | 
 |  | 
 | static int ext4_valid_extent_entries(struct inode *inode, | 
 | 				struct ext4_extent_header *eh, | 
 | 				int depth) | 
 | { | 
 | 	unsigned short entries; | 
 | 	if (eh->eh_entries == 0) | 
 | 		return 1; | 
 |  | 
 | 	entries = le16_to_cpu(eh->eh_entries); | 
 |  | 
 | 	if (depth == 0) { | 
 | 		/* leaf entries */ | 
 | 		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh); | 
 | 		while (entries) { | 
 | 			if (!ext4_valid_extent(inode, ext)) | 
 | 				return 0; | 
 | 			ext++; | 
 | 			entries--; | 
 | 		} | 
 | 	} else { | 
 | 		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh); | 
 | 		while (entries) { | 
 | 			if (!ext4_valid_extent_idx(inode, ext_idx)) | 
 | 				return 0; | 
 | 			ext_idx++; | 
 | 			entries--; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __ext4_ext_check(const char *function, unsigned int line, | 
 | 			    struct inode *inode, struct ext4_extent_header *eh, | 
 | 			    int depth) | 
 | { | 
 | 	const char *error_msg; | 
 | 	int max = 0; | 
 |  | 
 | 	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) { | 
 | 		error_msg = "invalid magic"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) { | 
 | 		error_msg = "unexpected eh_depth"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(eh->eh_max == 0)) { | 
 | 		error_msg = "invalid eh_max"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	max = ext4_ext_max_entries(inode, depth); | 
 | 	if (unlikely(le16_to_cpu(eh->eh_max) > max)) { | 
 | 		error_msg = "too large eh_max"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) { | 
 | 		error_msg = "invalid eh_entries"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	if (!ext4_valid_extent_entries(inode, eh, depth)) { | 
 | 		error_msg = "invalid extent entries"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	/* Verify checksum on non-root extent tree nodes */ | 
 | 	if (ext_depth(inode) != depth && | 
 | 	    !ext4_extent_block_csum_verify(inode, eh)) { | 
 | 		error_msg = "extent tree corrupted"; | 
 | 		goto corrupted; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | corrupted: | 
 | 	ext4_error_inode(inode, function, line, 0, | 
 | 			"bad header/extent: %s - magic %x, " | 
 | 			"entries %u, max %u(%u), depth %u(%u)", | 
 | 			error_msg, le16_to_cpu(eh->eh_magic), | 
 | 			le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max), | 
 | 			max, le16_to_cpu(eh->eh_depth), depth); | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | #define ext4_ext_check(inode, eh, depth)	\ | 
 | 	__ext4_ext_check(__func__, __LINE__, inode, eh, depth) | 
 |  | 
 | int ext4_ext_check_inode(struct inode *inode) | 
 | { | 
 | 	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode)); | 
 | } | 
 |  | 
 | static int __ext4_ext_check_block(const char *function, unsigned int line, | 
 | 				  struct inode *inode, | 
 | 				  struct ext4_extent_header *eh, | 
 | 				  int depth, | 
 | 				  struct buffer_head *bh) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (buffer_verified(bh)) | 
 | 		return 0; | 
 | 	ret = ext4_ext_check(inode, eh, depth); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	set_buffer_verified(bh); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define ext4_ext_check_block(inode, eh, depth, bh)	\ | 
 | 	__ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh) | 
 |  | 
 | #ifdef EXT_DEBUG | 
 | static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path) | 
 | { | 
 | 	int k, l = path->p_depth; | 
 |  | 
 | 	ext_debug("path:"); | 
 | 	for (k = 0; k <= l; k++, path++) { | 
 | 		if (path->p_idx) { | 
 | 		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block), | 
 | 			    ext4_idx_pblock(path->p_idx)); | 
 | 		} else if (path->p_ext) { | 
 | 			ext_debug("  %d:[%d]%d:%llu ", | 
 | 				  le32_to_cpu(path->p_ext->ee_block), | 
 | 				  ext4_ext_is_uninitialized(path->p_ext), | 
 | 				  ext4_ext_get_actual_len(path->p_ext), | 
 | 				  ext4_ext_pblock(path->p_ext)); | 
 | 		} else | 
 | 			ext_debug("  []"); | 
 | 	} | 
 | 	ext_debug("\n"); | 
 | } | 
 |  | 
 | static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path) | 
 | { | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent *ex; | 
 | 	int i; | 
 |  | 
 | 	if (!path) | 
 | 		return; | 
 |  | 
 | 	eh = path[depth].p_hdr; | 
 | 	ex = EXT_FIRST_EXTENT(eh); | 
 |  | 
 | 	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino); | 
 |  | 
 | 	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) { | 
 | 		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block), | 
 | 			  ext4_ext_is_uninitialized(ex), | 
 | 			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex)); | 
 | 	} | 
 | 	ext_debug("\n"); | 
 | } | 
 |  | 
 | static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path, | 
 | 			ext4_fsblk_t newblock, int level) | 
 | { | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent *ex; | 
 |  | 
 | 	if (depth != level) { | 
 | 		struct ext4_extent_idx *idx; | 
 | 		idx = path[level].p_idx; | 
 | 		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) { | 
 | 			ext_debug("%d: move %d:%llu in new index %llu\n", level, | 
 | 					le32_to_cpu(idx->ei_block), | 
 | 					ext4_idx_pblock(idx), | 
 | 					newblock); | 
 | 			idx++; | 
 | 		} | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) { | 
 | 		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n", | 
 | 				le32_to_cpu(ex->ee_block), | 
 | 				ext4_ext_pblock(ex), | 
 | 				ext4_ext_is_uninitialized(ex), | 
 | 				ext4_ext_get_actual_len(ex), | 
 | 				newblock); | 
 | 		ex++; | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | #define ext4_ext_show_path(inode, path) | 
 | #define ext4_ext_show_leaf(inode, path) | 
 | #define ext4_ext_show_move(inode, path, newblock, level) | 
 | #endif | 
 |  | 
 | void ext4_ext_drop_refs(struct ext4_ext_path *path) | 
 | { | 
 | 	int depth = path->p_depth; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i <= depth; i++, path++) | 
 | 		if (path->p_bh) { | 
 | 			brelse(path->p_bh); | 
 | 			path->p_bh = NULL; | 
 | 		} | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_binsearch_idx: | 
 |  * binary search for the closest index of the given block | 
 |  * the header must be checked before calling this | 
 |  */ | 
 | static void | 
 | ext4_ext_binsearch_idx(struct inode *inode, | 
 | 			struct ext4_ext_path *path, ext4_lblk_t block) | 
 | { | 
 | 	struct ext4_extent_header *eh = path->p_hdr; | 
 | 	struct ext4_extent_idx *r, *l, *m; | 
 |  | 
 |  | 
 | 	ext_debug("binsearch for %u(idx):  ", block); | 
 |  | 
 | 	l = EXT_FIRST_INDEX(eh) + 1; | 
 | 	r = EXT_LAST_INDEX(eh); | 
 | 	while (l <= r) { | 
 | 		m = l + (r - l) / 2; | 
 | 		if (block < le32_to_cpu(m->ei_block)) | 
 | 			r = m - 1; | 
 | 		else | 
 | 			l = m + 1; | 
 | 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block), | 
 | 				m, le32_to_cpu(m->ei_block), | 
 | 				r, le32_to_cpu(r->ei_block)); | 
 | 	} | 
 |  | 
 | 	path->p_idx = l - 1; | 
 | 	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block), | 
 | 		  ext4_idx_pblock(path->p_idx)); | 
 |  | 
 | #ifdef CHECK_BINSEARCH | 
 | 	{ | 
 | 		struct ext4_extent_idx *chix, *ix; | 
 | 		int k; | 
 |  | 
 | 		chix = ix = EXT_FIRST_INDEX(eh); | 
 | 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) { | 
 | 		  if (k != 0 && | 
 | 		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) { | 
 | 				printk(KERN_DEBUG "k=%d, ix=0x%p, " | 
 | 				       "first=0x%p\n", k, | 
 | 				       ix, EXT_FIRST_INDEX(eh)); | 
 | 				printk(KERN_DEBUG "%u <= %u\n", | 
 | 				       le32_to_cpu(ix->ei_block), | 
 | 				       le32_to_cpu(ix[-1].ei_block)); | 
 | 			} | 
 | 			BUG_ON(k && le32_to_cpu(ix->ei_block) | 
 | 					   <= le32_to_cpu(ix[-1].ei_block)); | 
 | 			if (block < le32_to_cpu(ix->ei_block)) | 
 | 				break; | 
 | 			chix = ix; | 
 | 		} | 
 | 		BUG_ON(chix != path->p_idx); | 
 | 	} | 
 | #endif | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_binsearch: | 
 |  * binary search for closest extent of the given block | 
 |  * the header must be checked before calling this | 
 |  */ | 
 | static void | 
 | ext4_ext_binsearch(struct inode *inode, | 
 | 		struct ext4_ext_path *path, ext4_lblk_t block) | 
 | { | 
 | 	struct ext4_extent_header *eh = path->p_hdr; | 
 | 	struct ext4_extent *r, *l, *m; | 
 |  | 
 | 	if (eh->eh_entries == 0) { | 
 | 		/* | 
 | 		 * this leaf is empty: | 
 | 		 * we get such a leaf in split/add case | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ext_debug("binsearch for %u:  ", block); | 
 |  | 
 | 	l = EXT_FIRST_EXTENT(eh) + 1; | 
 | 	r = EXT_LAST_EXTENT(eh); | 
 |  | 
 | 	while (l <= r) { | 
 | 		m = l + (r - l) / 2; | 
 | 		if (block < le32_to_cpu(m->ee_block)) | 
 | 			r = m - 1; | 
 | 		else | 
 | 			l = m + 1; | 
 | 		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block), | 
 | 				m, le32_to_cpu(m->ee_block), | 
 | 				r, le32_to_cpu(r->ee_block)); | 
 | 	} | 
 |  | 
 | 	path->p_ext = l - 1; | 
 | 	ext_debug("  -> %d:%llu:[%d]%d ", | 
 | 			le32_to_cpu(path->p_ext->ee_block), | 
 | 			ext4_ext_pblock(path->p_ext), | 
 | 			ext4_ext_is_uninitialized(path->p_ext), | 
 | 			ext4_ext_get_actual_len(path->p_ext)); | 
 |  | 
 | #ifdef CHECK_BINSEARCH | 
 | 	{ | 
 | 		struct ext4_extent *chex, *ex; | 
 | 		int k; | 
 |  | 
 | 		chex = ex = EXT_FIRST_EXTENT(eh); | 
 | 		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) { | 
 | 			BUG_ON(k && le32_to_cpu(ex->ee_block) | 
 | 					  <= le32_to_cpu(ex[-1].ee_block)); | 
 | 			if (block < le32_to_cpu(ex->ee_block)) | 
 | 				break; | 
 | 			chex = ex; | 
 | 		} | 
 | 		BUG_ON(chex != path->p_ext); | 
 | 	} | 
 | #endif | 
 |  | 
 | } | 
 |  | 
 | int ext4_ext_tree_init(handle_t *handle, struct inode *inode) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 |  | 
 | 	eh = ext_inode_hdr(inode); | 
 | 	eh->eh_depth = 0; | 
 | 	eh->eh_entries = 0; | 
 | 	eh->eh_magic = EXT4_EXT_MAGIC; | 
 | 	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0)); | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct ext4_ext_path * | 
 | ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block, | 
 | 					struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct buffer_head *bh; | 
 | 	short int depth, i, ppos = 0, alloc = 0; | 
 | 	int ret; | 
 |  | 
 | 	eh = ext_inode_hdr(inode); | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | 	/* account possible depth increase */ | 
 | 	if (!path) { | 
 | 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2), | 
 | 				GFP_NOFS); | 
 | 		if (!path) | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 		alloc = 1; | 
 | 	} | 
 | 	path[0].p_hdr = eh; | 
 | 	path[0].p_bh = NULL; | 
 |  | 
 | 	i = depth; | 
 | 	/* walk through the tree */ | 
 | 	while (i) { | 
 | 		ext_debug("depth %d: num %d, max %d\n", | 
 | 			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); | 
 |  | 
 | 		ext4_ext_binsearch_idx(inode, path + ppos, block); | 
 | 		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx); | 
 | 		path[ppos].p_depth = i; | 
 | 		path[ppos].p_ext = NULL; | 
 |  | 
 | 		bh = sb_getblk(inode->i_sb, path[ppos].p_block); | 
 | 		if (unlikely(!bh)) { | 
 | 			ret = -ENOMEM; | 
 | 			goto err; | 
 | 		} | 
 | 		if (!bh_uptodate_or_lock(bh)) { | 
 | 			trace_ext4_ext_load_extent(inode, block, | 
 | 						path[ppos].p_block); | 
 | 			ret = bh_submit_read(bh); | 
 | 			if (ret < 0) { | 
 | 				put_bh(bh); | 
 | 				goto err; | 
 | 			} | 
 | 		} | 
 | 		eh = ext_block_hdr(bh); | 
 | 		ppos++; | 
 | 		if (unlikely(ppos > depth)) { | 
 | 			put_bh(bh); | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "ppos %d > depth %d", ppos, depth); | 
 | 			ret = -EIO; | 
 | 			goto err; | 
 | 		} | 
 | 		path[ppos].p_bh = bh; | 
 | 		path[ppos].p_hdr = eh; | 
 | 		i--; | 
 |  | 
 | 		ret = ext4_ext_check_block(inode, eh, i, bh); | 
 | 		if (ret < 0) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	path[ppos].p_depth = i; | 
 | 	path[ppos].p_ext = NULL; | 
 | 	path[ppos].p_idx = NULL; | 
 |  | 
 | 	/* find extent */ | 
 | 	ext4_ext_binsearch(inode, path + ppos, block); | 
 | 	/* if not an empty leaf */ | 
 | 	if (path[ppos].p_ext) | 
 | 		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext); | 
 |  | 
 | 	ext4_ext_show_path(inode, path); | 
 |  | 
 | 	return path; | 
 |  | 
 | err: | 
 | 	ext4_ext_drop_refs(path); | 
 | 	if (alloc) | 
 | 		kfree(path); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_insert_index: | 
 |  * insert new index [@logical;@ptr] into the block at @curp; | 
 |  * check where to insert: before @curp or after @curp | 
 |  */ | 
 | static int ext4_ext_insert_index(handle_t *handle, struct inode *inode, | 
 | 				 struct ext4_ext_path *curp, | 
 | 				 int logical, ext4_fsblk_t ptr) | 
 | { | 
 | 	struct ext4_extent_idx *ix; | 
 | 	int len, err; | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, curp); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "logical %d == ei_block %d!", | 
 | 				 logical, le32_to_cpu(curp->p_idx->ei_block)); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries) | 
 | 			     >= le16_to_cpu(curp->p_hdr->eh_max))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "eh_entries %d >= eh_max %d!", | 
 | 				 le16_to_cpu(curp->p_hdr->eh_entries), | 
 | 				 le16_to_cpu(curp->p_hdr->eh_max)); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (logical > le32_to_cpu(curp->p_idx->ei_block)) { | 
 | 		/* insert after */ | 
 | 		ext_debug("insert new index %d after: %llu\n", logical, ptr); | 
 | 		ix = curp->p_idx + 1; | 
 | 	} else { | 
 | 		/* insert before */ | 
 | 		ext_debug("insert new index %d before: %llu\n", logical, ptr); | 
 | 		ix = curp->p_idx; | 
 | 	} | 
 |  | 
 | 	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1; | 
 | 	BUG_ON(len < 0); | 
 | 	if (len > 0) { | 
 | 		ext_debug("insert new index %d: " | 
 | 				"move %d indices from 0x%p to 0x%p\n", | 
 | 				logical, len, ix, ix + 1); | 
 | 		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx)); | 
 | 	} | 
 |  | 
 | 	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) { | 
 | 		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	ix->ei_block = cpu_to_le32(logical); | 
 | 	ext4_idx_store_pblock(ix, ptr); | 
 | 	le16_add_cpu(&curp->p_hdr->eh_entries, 1); | 
 |  | 
 | 	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) { | 
 | 		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	err = ext4_ext_dirty(handle, inode, curp); | 
 | 	ext4_std_error(inode->i_sb, err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_split: | 
 |  * inserts new subtree into the path, using free index entry | 
 |  * at depth @at: | 
 |  * - allocates all needed blocks (new leaf and all intermediate index blocks) | 
 |  * - makes decision where to split | 
 |  * - moves remaining extents and index entries (right to the split point) | 
 |  *   into the newly allocated blocks | 
 |  * - initializes subtree | 
 |  */ | 
 | static int ext4_ext_split(handle_t *handle, struct inode *inode, | 
 | 			  unsigned int flags, | 
 | 			  struct ext4_ext_path *path, | 
 | 			  struct ext4_extent *newext, int at) | 
 | { | 
 | 	struct buffer_head *bh = NULL; | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent_header *neh; | 
 | 	struct ext4_extent_idx *fidx; | 
 | 	int i = at, k, m, a; | 
 | 	ext4_fsblk_t newblock, oldblock; | 
 | 	__le32 border; | 
 | 	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */ | 
 | 	int err = 0; | 
 |  | 
 | 	/* make decision: where to split? */ | 
 | 	/* FIXME: now decision is simplest: at current extent */ | 
 |  | 
 | 	/* if current leaf will be split, then we should use | 
 | 	 * border from split point */ | 
 | 	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) { | 
 | 		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) { | 
 | 		border = path[depth].p_ext[1].ee_block; | 
 | 		ext_debug("leaf will be split." | 
 | 				" next leaf starts at %d\n", | 
 | 				  le32_to_cpu(border)); | 
 | 	} else { | 
 | 		border = newext->ee_block; | 
 | 		ext_debug("leaf will be added." | 
 | 				" next leaf starts at %d\n", | 
 | 				le32_to_cpu(border)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If error occurs, then we break processing | 
 | 	 * and mark filesystem read-only. index won't | 
 | 	 * be inserted and tree will be in consistent | 
 | 	 * state. Next mount will repair buffers too. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Get array to track all allocated blocks. | 
 | 	 * We need this to handle errors and free blocks | 
 | 	 * upon them. | 
 | 	 */ | 
 | 	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS); | 
 | 	if (!ablocks) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* allocate all needed blocks */ | 
 | 	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at); | 
 | 	for (a = 0; a < depth - at; a++) { | 
 | 		newblock = ext4_ext_new_meta_block(handle, inode, path, | 
 | 						   newext, &err, flags); | 
 | 		if (newblock == 0) | 
 | 			goto cleanup; | 
 | 		ablocks[a] = newblock; | 
 | 	} | 
 |  | 
 | 	/* initialize new leaf */ | 
 | 	newblock = ablocks[--a]; | 
 | 	if (unlikely(newblock == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "newblock == 0!"); | 
 | 		err = -EIO; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	bh = sb_getblk(inode->i_sb, newblock); | 
 | 	if (unlikely(!bh)) { | 
 | 		err = -ENOMEM; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	lock_buffer(bh); | 
 |  | 
 | 	err = ext4_journal_get_create_access(handle, bh); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 |  | 
 | 	neh = ext_block_hdr(bh); | 
 | 	neh->eh_entries = 0; | 
 | 	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); | 
 | 	neh->eh_magic = EXT4_EXT_MAGIC; | 
 | 	neh->eh_depth = 0; | 
 |  | 
 | 	/* move remainder of path[depth] to the new leaf */ | 
 | 	if (unlikely(path[depth].p_hdr->eh_entries != | 
 | 		     path[depth].p_hdr->eh_max)) { | 
 | 		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!", | 
 | 				 path[depth].p_hdr->eh_entries, | 
 | 				 path[depth].p_hdr->eh_max); | 
 | 		err = -EIO; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	/* start copy from next extent */ | 
 | 	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++; | 
 | 	ext4_ext_show_move(inode, path, newblock, depth); | 
 | 	if (m) { | 
 | 		struct ext4_extent *ex; | 
 | 		ex = EXT_FIRST_EXTENT(neh); | 
 | 		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m); | 
 | 		le16_add_cpu(&neh->eh_entries, m); | 
 | 	} | 
 |  | 
 | 	ext4_extent_block_csum_set(inode, neh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	unlock_buffer(bh); | 
 |  | 
 | 	err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 | 	brelse(bh); | 
 | 	bh = NULL; | 
 |  | 
 | 	/* correct old leaf */ | 
 | 	if (m) { | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 | 		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m); | 
 | 		err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* create intermediate indexes */ | 
 | 	k = depth - at - 1; | 
 | 	if (unlikely(k < 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "k %d < 0!", k); | 
 | 		err = -EIO; | 
 | 		goto cleanup; | 
 | 	} | 
 | 	if (k) | 
 | 		ext_debug("create %d intermediate indices\n", k); | 
 | 	/* insert new index into current index block */ | 
 | 	/* current depth stored in i var */ | 
 | 	i = depth - 1; | 
 | 	while (k--) { | 
 | 		oldblock = newblock; | 
 | 		newblock = ablocks[--a]; | 
 | 		bh = sb_getblk(inode->i_sb, newblock); | 
 | 		if (unlikely(!bh)) { | 
 | 			err = -ENOMEM; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		lock_buffer(bh); | 
 |  | 
 | 		err = ext4_journal_get_create_access(handle, bh); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 |  | 
 | 		neh = ext_block_hdr(bh); | 
 | 		neh->eh_entries = cpu_to_le16(1); | 
 | 		neh->eh_magic = EXT4_EXT_MAGIC; | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); | 
 | 		neh->eh_depth = cpu_to_le16(depth - i); | 
 | 		fidx = EXT_FIRST_INDEX(neh); | 
 | 		fidx->ei_block = border; | 
 | 		ext4_idx_store_pblock(fidx, oldblock); | 
 |  | 
 | 		ext_debug("int.index at %d (block %llu): %u -> %llu\n", | 
 | 				i, newblock, le32_to_cpu(border), oldblock); | 
 |  | 
 | 		/* move remainder of path[i] to the new index block */ | 
 | 		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) != | 
 | 					EXT_LAST_INDEX(path[i].p_hdr))) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!", | 
 | 					 le32_to_cpu(path[i].p_ext->ee_block)); | 
 | 			err = -EIO; | 
 | 			goto cleanup; | 
 | 		} | 
 | 		/* start copy indexes */ | 
 | 		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++; | 
 | 		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx, | 
 | 				EXT_MAX_INDEX(path[i].p_hdr)); | 
 | 		ext4_ext_show_move(inode, path, newblock, i); | 
 | 		if (m) { | 
 | 			memmove(++fidx, path[i].p_idx, | 
 | 				sizeof(struct ext4_extent_idx) * m); | 
 | 			le16_add_cpu(&neh->eh_entries, m); | 
 | 		} | 
 | 		ext4_extent_block_csum_set(inode, neh); | 
 | 		set_buffer_uptodate(bh); | 
 | 		unlock_buffer(bh); | 
 |  | 
 | 		err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 		if (err) | 
 | 			goto cleanup; | 
 | 		brelse(bh); | 
 | 		bh = NULL; | 
 |  | 
 | 		/* correct old index */ | 
 | 		if (m) { | 
 | 			err = ext4_ext_get_access(handle, inode, path + i); | 
 | 			if (err) | 
 | 				goto cleanup; | 
 | 			le16_add_cpu(&path[i].p_hdr->eh_entries, -m); | 
 | 			err = ext4_ext_dirty(handle, inode, path + i); | 
 | 			if (err) | 
 | 				goto cleanup; | 
 | 		} | 
 |  | 
 | 		i--; | 
 | 	} | 
 |  | 
 | 	/* insert new index */ | 
 | 	err = ext4_ext_insert_index(handle, inode, path + at, | 
 | 				    le32_to_cpu(border), newblock); | 
 |  | 
 | cleanup: | 
 | 	if (bh) { | 
 | 		if (buffer_locked(bh)) | 
 | 			unlock_buffer(bh); | 
 | 		brelse(bh); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		/* free all allocated blocks in error case */ | 
 | 		for (i = 0; i < depth; i++) { | 
 | 			if (!ablocks[i]) | 
 | 				continue; | 
 | 			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1, | 
 | 					 EXT4_FREE_BLOCKS_METADATA); | 
 | 		} | 
 | 	} | 
 | 	kfree(ablocks); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_grow_indepth: | 
 |  * implements tree growing procedure: | 
 |  * - allocates new block | 
 |  * - moves top-level data (index block or leaf) into the new block | 
 |  * - initializes new top-level, creating index that points to the | 
 |  *   just created block | 
 |  */ | 
 | static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode, | 
 | 				 unsigned int flags, | 
 | 				 struct ext4_extent *newext) | 
 | { | 
 | 	struct ext4_extent_header *neh; | 
 | 	struct buffer_head *bh; | 
 | 	ext4_fsblk_t newblock; | 
 | 	int err = 0; | 
 |  | 
 | 	newblock = ext4_ext_new_meta_block(handle, inode, NULL, | 
 | 		newext, &err, flags); | 
 | 	if (newblock == 0) | 
 | 		return err; | 
 |  | 
 | 	bh = sb_getblk(inode->i_sb, newblock); | 
 | 	if (unlikely(!bh)) | 
 | 		return -ENOMEM; | 
 | 	lock_buffer(bh); | 
 |  | 
 | 	err = ext4_journal_get_create_access(handle, bh); | 
 | 	if (err) { | 
 | 		unlock_buffer(bh); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* move top-level index/leaf into new block */ | 
 | 	memmove(bh->b_data, EXT4_I(inode)->i_data, | 
 | 		sizeof(EXT4_I(inode)->i_data)); | 
 |  | 
 | 	/* set size of new block */ | 
 | 	neh = ext_block_hdr(bh); | 
 | 	/* old root could have indexes or leaves | 
 | 	 * so calculate e_max right way */ | 
 | 	if (ext_depth(inode)) | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0)); | 
 | 	else | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0)); | 
 | 	neh->eh_magic = EXT4_EXT_MAGIC; | 
 | 	ext4_extent_block_csum_set(inode, neh); | 
 | 	set_buffer_uptodate(bh); | 
 | 	unlock_buffer(bh); | 
 |  | 
 | 	err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Update top-level index: num,max,pointer */ | 
 | 	neh = ext_inode_hdr(inode); | 
 | 	neh->eh_entries = cpu_to_le16(1); | 
 | 	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock); | 
 | 	if (neh->eh_depth == 0) { | 
 | 		/* Root extent block becomes index block */ | 
 | 		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0)); | 
 | 		EXT_FIRST_INDEX(neh)->ei_block = | 
 | 			EXT_FIRST_EXTENT(neh)->ee_block; | 
 | 	} | 
 | 	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n", | 
 | 		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max), | 
 | 		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block), | 
 | 		  ext4_idx_pblock(EXT_FIRST_INDEX(neh))); | 
 |  | 
 | 	le16_add_cpu(&neh->eh_depth, 1); | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | out: | 
 | 	brelse(bh); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_create_new_leaf: | 
 |  * finds empty index and adds new leaf. | 
 |  * if no free index is found, then it requests in-depth growing. | 
 |  */ | 
 | static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode, | 
 | 				    unsigned int flags, | 
 | 				    struct ext4_ext_path *path, | 
 | 				    struct ext4_extent *newext) | 
 | { | 
 | 	struct ext4_ext_path *curp; | 
 | 	int depth, i, err = 0; | 
 |  | 
 | repeat: | 
 | 	i = depth = ext_depth(inode); | 
 |  | 
 | 	/* walk up to the tree and look for free index entry */ | 
 | 	curp = path + depth; | 
 | 	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) { | 
 | 		i--; | 
 | 		curp--; | 
 | 	} | 
 |  | 
 | 	/* we use already allocated block for index block, | 
 | 	 * so subsequent data blocks should be contiguous */ | 
 | 	if (EXT_HAS_FREE_INDEX(curp)) { | 
 | 		/* if we found index with free entry, then use that | 
 | 		 * entry: create all needed subtree and add new leaf */ | 
 | 		err = ext4_ext_split(handle, inode, flags, path, newext, i); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		/* refill path */ | 
 | 		ext4_ext_drop_refs(path); | 
 | 		path = ext4_ext_find_extent(inode, | 
 | 				    (ext4_lblk_t)le32_to_cpu(newext->ee_block), | 
 | 				    path); | 
 | 		if (IS_ERR(path)) | 
 | 			err = PTR_ERR(path); | 
 | 	} else { | 
 | 		/* tree is full, time to grow in depth */ | 
 | 		err = ext4_ext_grow_indepth(handle, inode, flags, newext); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		/* refill path */ | 
 | 		ext4_ext_drop_refs(path); | 
 | 		path = ext4_ext_find_extent(inode, | 
 | 				   (ext4_lblk_t)le32_to_cpu(newext->ee_block), | 
 | 				    path); | 
 | 		if (IS_ERR(path)) { | 
 | 			err = PTR_ERR(path); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * only first (depth 0 -> 1) produces free space; | 
 | 		 * in all other cases we have to split the grown tree | 
 | 		 */ | 
 | 		depth = ext_depth(inode); | 
 | 		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) { | 
 | 			/* now we need to split */ | 
 | 			goto repeat; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * search the closest allocated block to the left for *logical | 
 |  * and returns it at @logical + it's physical address at @phys | 
 |  * if *logical is the smallest allocated block, the function | 
 |  * returns 0 at @phys | 
 |  * return value contains 0 (success) or error code | 
 |  */ | 
 | static int ext4_ext_search_left(struct inode *inode, | 
 | 				struct ext4_ext_path *path, | 
 | 				ext4_lblk_t *logical, ext4_fsblk_t *phys) | 
 | { | 
 | 	struct ext4_extent_idx *ix; | 
 | 	struct ext4_extent *ex; | 
 | 	int depth, ee_len; | 
 |  | 
 | 	if (unlikely(path == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); | 
 | 		return -EIO; | 
 | 	} | 
 | 	depth = path->p_depth; | 
 | 	*phys = 0; | 
 |  | 
 | 	if (depth == 0 && path->p_ext == NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* usually extent in the path covers blocks smaller | 
 | 	 * then *logical, but it can be that extent is the | 
 | 	 * first one in the file */ | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	if (*logical < le32_to_cpu(ex->ee_block)) { | 
 | 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!", | 
 | 					 *logical, le32_to_cpu(ex->ee_block)); | 
 | 			return -EIO; | 
 | 		} | 
 | 		while (--depth >= 0) { | 
 | 			ix = path[depth].p_idx; | 
 | 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!", | 
 | 				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0, | 
 | 				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ? | 
 | 		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0, | 
 | 				  depth); | 
 | 				return -EIO; | 
 | 			} | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "logical %d < ee_block %d + ee_len %d!", | 
 | 				 *logical, le32_to_cpu(ex->ee_block), ee_len); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1; | 
 | 	*phys = ext4_ext_pblock(ex) + ee_len - 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * search the closest allocated block to the right for *logical | 
 |  * and returns it at @logical + it's physical address at @phys | 
 |  * if *logical is the largest allocated block, the function | 
 |  * returns 0 at @phys | 
 |  * return value contains 0 (success) or error code | 
 |  */ | 
 | static int ext4_ext_search_right(struct inode *inode, | 
 | 				 struct ext4_ext_path *path, | 
 | 				 ext4_lblk_t *logical, ext4_fsblk_t *phys, | 
 | 				 struct ext4_extent **ret_ex) | 
 | { | 
 | 	struct buffer_head *bh = NULL; | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent_idx *ix; | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_fsblk_t block; | 
 | 	int depth;	/* Note, NOT eh_depth; depth from top of tree */ | 
 | 	int ee_len; | 
 |  | 
 | 	if (unlikely(path == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical); | 
 | 		return -EIO; | 
 | 	} | 
 | 	depth = path->p_depth; | 
 | 	*phys = 0; | 
 |  | 
 | 	if (depth == 0 && path->p_ext == NULL) | 
 | 		return 0; | 
 |  | 
 | 	/* usually extent in the path covers blocks smaller | 
 | 	 * then *logical, but it can be that extent is the | 
 | 	 * first one in the file */ | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	if (*logical < le32_to_cpu(ex->ee_block)) { | 
 | 		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "first_extent(path[%d].p_hdr) != ex", | 
 | 					 depth); | 
 | 			return -EIO; | 
 | 		} | 
 | 		while (--depth >= 0) { | 
 | 			ix = path[depth].p_idx; | 
 | 			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 						 "ix != EXT_FIRST_INDEX *logical %d!", | 
 | 						 *logical); | 
 | 				return -EIO; | 
 | 			} | 
 | 		} | 
 | 		goto found_extent; | 
 | 	} | 
 |  | 
 | 	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "logical %d < ee_block %d + ee_len %d!", | 
 | 				 *logical, le32_to_cpu(ex->ee_block), ee_len); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) { | 
 | 		/* next allocated block in this leaf */ | 
 | 		ex++; | 
 | 		goto found_extent; | 
 | 	} | 
 |  | 
 | 	/* go up and search for index to the right */ | 
 | 	while (--depth >= 0) { | 
 | 		ix = path[depth].p_idx; | 
 | 		if (ix != EXT_LAST_INDEX(path[depth].p_hdr)) | 
 | 			goto got_index; | 
 | 	} | 
 |  | 
 | 	/* we've gone up to the root and found no index to the right */ | 
 | 	return 0; | 
 |  | 
 | got_index: | 
 | 	/* we've found index to the right, let's | 
 | 	 * follow it and find the closest allocated | 
 | 	 * block to the right */ | 
 | 	ix++; | 
 | 	block = ext4_idx_pblock(ix); | 
 | 	while (++depth < path->p_depth) { | 
 | 		bh = sb_bread(inode->i_sb, block); | 
 | 		if (bh == NULL) | 
 | 			return -EIO; | 
 | 		eh = ext_block_hdr(bh); | 
 | 		/* subtract from p_depth to get proper eh_depth */ | 
 | 		if (ext4_ext_check_block(inode, eh, | 
 | 					 path->p_depth - depth, bh)) { | 
 | 			put_bh(bh); | 
 | 			return -EIO; | 
 | 		} | 
 | 		ix = EXT_FIRST_INDEX(eh); | 
 | 		block = ext4_idx_pblock(ix); | 
 | 		put_bh(bh); | 
 | 	} | 
 |  | 
 | 	bh = sb_bread(inode->i_sb, block); | 
 | 	if (bh == NULL) | 
 | 		return -EIO; | 
 | 	eh = ext_block_hdr(bh); | 
 | 	if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) { | 
 | 		put_bh(bh); | 
 | 		return -EIO; | 
 | 	} | 
 | 	ex = EXT_FIRST_EXTENT(eh); | 
 | found_extent: | 
 | 	*logical = le32_to_cpu(ex->ee_block); | 
 | 	*phys = ext4_ext_pblock(ex); | 
 | 	*ret_ex = ex; | 
 | 	if (bh) | 
 | 		put_bh(bh); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_next_allocated_block: | 
 |  * returns allocated block in subsequent extent or EXT_MAX_BLOCKS. | 
 |  * NOTE: it considers block number from index entry as | 
 |  * allocated block. Thus, index entries have to be consistent | 
 |  * with leaves. | 
 |  */ | 
 | static ext4_lblk_t | 
 | ext4_ext_next_allocated_block(struct ext4_ext_path *path) | 
 | { | 
 | 	int depth; | 
 |  | 
 | 	BUG_ON(path == NULL); | 
 | 	depth = path->p_depth; | 
 |  | 
 | 	if (depth == 0 && path->p_ext == NULL) | 
 | 		return EXT_MAX_BLOCKS; | 
 |  | 
 | 	while (depth >= 0) { | 
 | 		if (depth == path->p_depth) { | 
 | 			/* leaf */ | 
 | 			if (path[depth].p_ext && | 
 | 				path[depth].p_ext != | 
 | 					EXT_LAST_EXTENT(path[depth].p_hdr)) | 
 | 			  return le32_to_cpu(path[depth].p_ext[1].ee_block); | 
 | 		} else { | 
 | 			/* index */ | 
 | 			if (path[depth].p_idx != | 
 | 					EXT_LAST_INDEX(path[depth].p_hdr)) | 
 | 			  return le32_to_cpu(path[depth].p_idx[1].ei_block); | 
 | 		} | 
 | 		depth--; | 
 | 	} | 
 |  | 
 | 	return EXT_MAX_BLOCKS; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_next_leaf_block: | 
 |  * returns first allocated block from next leaf or EXT_MAX_BLOCKS | 
 |  */ | 
 | static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path) | 
 | { | 
 | 	int depth; | 
 |  | 
 | 	BUG_ON(path == NULL); | 
 | 	depth = path->p_depth; | 
 |  | 
 | 	/* zero-tree has no leaf blocks at all */ | 
 | 	if (depth == 0) | 
 | 		return EXT_MAX_BLOCKS; | 
 |  | 
 | 	/* go to index block */ | 
 | 	depth--; | 
 |  | 
 | 	while (depth >= 0) { | 
 | 		if (path[depth].p_idx != | 
 | 				EXT_LAST_INDEX(path[depth].p_hdr)) | 
 | 			return (ext4_lblk_t) | 
 | 				le32_to_cpu(path[depth].p_idx[1].ei_block); | 
 | 		depth--; | 
 | 	} | 
 |  | 
 | 	return EXT_MAX_BLOCKS; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_correct_indexes: | 
 |  * if leaf gets modified and modified extent is first in the leaf, | 
 |  * then we have to correct all indexes above. | 
 |  * TODO: do we need to correct tree in all cases? | 
 |  */ | 
 | static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode, | 
 | 				struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_extent *ex; | 
 | 	__le32 border; | 
 | 	int k, err = 0; | 
 |  | 
 | 	eh = path[depth].p_hdr; | 
 | 	ex = path[depth].p_ext; | 
 |  | 
 | 	if (unlikely(ex == NULL || eh == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, | 
 | 				 "ex %p == NULL or eh %p == NULL", ex, eh); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (depth == 0) { | 
 | 		/* there is no tree at all */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (ex != EXT_FIRST_EXTENT(eh)) { | 
 | 		/* we correct tree if first leaf got modified only */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * TODO: we need correction if border is smaller than current one | 
 | 	 */ | 
 | 	k = depth - 1; | 
 | 	border = path[depth].p_ext->ee_block; | 
 | 	err = ext4_ext_get_access(handle, inode, path + k); | 
 | 	if (err) | 
 | 		return err; | 
 | 	path[k].p_idx->ei_block = border; | 
 | 	err = ext4_ext_dirty(handle, inode, path + k); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	while (k--) { | 
 | 		/* change all left-side indexes */ | 
 | 		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr)) | 
 | 			break; | 
 | 		err = ext4_ext_get_access(handle, inode, path + k); | 
 | 		if (err) | 
 | 			break; | 
 | 		path[k].p_idx->ei_block = border; | 
 | 		err = ext4_ext_dirty(handle, inode, path + k); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int | 
 | ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1, | 
 | 				struct ext4_extent *ex2) | 
 | { | 
 | 	unsigned short ext1_ee_len, ext2_ee_len, max_len; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that either both extents are uninitialized, or | 
 | 	 * both are _not_. | 
 | 	 */ | 
 | 	if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2)) | 
 | 		return 0; | 
 |  | 
 | 	if (ext4_ext_is_uninitialized(ex1)) | 
 | 		max_len = EXT_UNINIT_MAX_LEN; | 
 | 	else | 
 | 		max_len = EXT_INIT_MAX_LEN; | 
 |  | 
 | 	ext1_ee_len = ext4_ext_get_actual_len(ex1); | 
 | 	ext2_ee_len = ext4_ext_get_actual_len(ex2); | 
 |  | 
 | 	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len != | 
 | 			le32_to_cpu(ex2->ee_block)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * To allow future support for preallocated extents to be added | 
 | 	 * as an RO_COMPAT feature, refuse to merge to extents if | 
 | 	 * this can result in the top bit of ee_len being set. | 
 | 	 */ | 
 | 	if (ext1_ee_len + ext2_ee_len > max_len) | 
 | 		return 0; | 
 | #ifdef AGGRESSIVE_TEST | 
 | 	if (ext1_ee_len >= 4) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function tries to merge the "ex" extent to the next extent in the tree. | 
 |  * It always tries to merge towards right. If you want to merge towards | 
 |  * left, pass "ex - 1" as argument instead of "ex". | 
 |  * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns | 
 |  * 1 if they got merged. | 
 |  */ | 
 | static int ext4_ext_try_to_merge_right(struct inode *inode, | 
 | 				 struct ext4_ext_path *path, | 
 | 				 struct ext4_extent *ex) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	unsigned int depth, len; | 
 | 	int merge_done = 0; | 
 | 	int uninitialized = 0; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	BUG_ON(path[depth].p_hdr == NULL); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | 	while (ex < EXT_LAST_EXTENT(eh)) { | 
 | 		if (!ext4_can_extents_be_merged(inode, ex, ex + 1)) | 
 | 			break; | 
 | 		/* merge with next extent! */ | 
 | 		if (ext4_ext_is_uninitialized(ex)) | 
 | 			uninitialized = 1; | 
 | 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
 | 				+ ext4_ext_get_actual_len(ex + 1)); | 
 | 		if (uninitialized) | 
 | 			ext4_ext_mark_uninitialized(ex); | 
 |  | 
 | 		if (ex + 1 < EXT_LAST_EXTENT(eh)) { | 
 | 			len = (EXT_LAST_EXTENT(eh) - ex - 1) | 
 | 				* sizeof(struct ext4_extent); | 
 | 			memmove(ex + 1, ex + 2, len); | 
 | 		} | 
 | 		le16_add_cpu(&eh->eh_entries, -1); | 
 | 		merge_done = 1; | 
 | 		WARN_ON(eh->eh_entries == 0); | 
 | 		if (!eh->eh_entries) | 
 | 			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!"); | 
 | 	} | 
 |  | 
 | 	return merge_done; | 
 | } | 
 |  | 
 | /* | 
 |  * This function does a very simple check to see if we can collapse | 
 |  * an extent tree with a single extent tree leaf block into the inode. | 
 |  */ | 
 | static void ext4_ext_try_to_merge_up(handle_t *handle, | 
 | 				     struct inode *inode, | 
 | 				     struct ext4_ext_path *path) | 
 | { | 
 | 	size_t s; | 
 | 	unsigned max_root = ext4_ext_space_root(inode, 0); | 
 | 	ext4_fsblk_t blk; | 
 |  | 
 | 	if ((path[0].p_depth != 1) || | 
 | 	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) || | 
 | 	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We need to modify the block allocation bitmap and the block | 
 | 	 * group descriptor to release the extent tree block.  If we | 
 | 	 * can't get the journal credits, give up. | 
 | 	 */ | 
 | 	if (ext4_journal_extend(handle, 2)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Copy the extent data up to the inode | 
 | 	 */ | 
 | 	blk = ext4_idx_pblock(path[0].p_idx); | 
 | 	s = le16_to_cpu(path[1].p_hdr->eh_entries) * | 
 | 		sizeof(struct ext4_extent_idx); | 
 | 	s += sizeof(struct ext4_extent_header); | 
 |  | 
 | 	memcpy(path[0].p_hdr, path[1].p_hdr, s); | 
 | 	path[0].p_depth = 0; | 
 | 	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) + | 
 | 		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr)); | 
 | 	path[0].p_hdr->eh_max = cpu_to_le16(max_root); | 
 |  | 
 | 	brelse(path[1].p_bh); | 
 | 	ext4_free_blocks(handle, inode, NULL, blk, 1, | 
 | 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); | 
 | } | 
 |  | 
 | /* | 
 |  * This function tries to merge the @ex extent to neighbours in the tree. | 
 |  * return 1 if merge left else 0. | 
 |  */ | 
 | static void ext4_ext_try_to_merge(handle_t *handle, | 
 | 				  struct inode *inode, | 
 | 				  struct ext4_ext_path *path, | 
 | 				  struct ext4_extent *ex) { | 
 | 	struct ext4_extent_header *eh; | 
 | 	unsigned int depth; | 
 | 	int merge_done = 0; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	BUG_ON(path[depth].p_hdr == NULL); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | 	if (ex > EXT_FIRST_EXTENT(eh)) | 
 | 		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1); | 
 |  | 
 | 	if (!merge_done) | 
 | 		(void) ext4_ext_try_to_merge_right(inode, path, ex); | 
 |  | 
 | 	ext4_ext_try_to_merge_up(handle, inode, path); | 
 | } | 
 |  | 
 | /* | 
 |  * check if a portion of the "newext" extent overlaps with an | 
 |  * existing extent. | 
 |  * | 
 |  * If there is an overlap discovered, it updates the length of the newext | 
 |  * such that there will be no overlap, and then returns 1. | 
 |  * If there is no overlap found, it returns 0. | 
 |  */ | 
 | static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi, | 
 | 					   struct inode *inode, | 
 | 					   struct ext4_extent *newext, | 
 | 					   struct ext4_ext_path *path) | 
 | { | 
 | 	ext4_lblk_t b1, b2; | 
 | 	unsigned int depth, len1; | 
 | 	unsigned int ret = 0; | 
 |  | 
 | 	b1 = le32_to_cpu(newext->ee_block); | 
 | 	len1 = ext4_ext_get_actual_len(newext); | 
 | 	depth = ext_depth(inode); | 
 | 	if (!path[depth].p_ext) | 
 | 		goto out; | 
 | 	b2 = le32_to_cpu(path[depth].p_ext->ee_block); | 
 | 	b2 &= ~(sbi->s_cluster_ratio - 1); | 
 |  | 
 | 	/* | 
 | 	 * get the next allocated block if the extent in the path | 
 | 	 * is before the requested block(s) | 
 | 	 */ | 
 | 	if (b2 < b1) { | 
 | 		b2 = ext4_ext_next_allocated_block(path); | 
 | 		if (b2 == EXT_MAX_BLOCKS) | 
 | 			goto out; | 
 | 		b2 &= ~(sbi->s_cluster_ratio - 1); | 
 | 	} | 
 |  | 
 | 	/* check for wrap through zero on extent logical start block*/ | 
 | 	if (b1 + len1 < b1) { | 
 | 		len1 = EXT_MAX_BLOCKS - b1; | 
 | 		newext->ee_len = cpu_to_le16(len1); | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	/* check for overlap */ | 
 | 	if (b1 + len1 > b2) { | 
 | 		newext->ee_len = cpu_to_le16(b2 - b1); | 
 | 		ret = 1; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_insert_extent: | 
 |  * tries to merge requsted extent into the existing extent or | 
 |  * inserts requested extent as new one into the tree, | 
 |  * creating new leaf in the no-space case. | 
 |  */ | 
 | int ext4_ext_insert_extent(handle_t *handle, struct inode *inode, | 
 | 				struct ext4_ext_path *path, | 
 | 				struct ext4_extent *newext, int flag) | 
 | { | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent *ex, *fex; | 
 | 	struct ext4_extent *nearex; /* nearest extent */ | 
 | 	struct ext4_ext_path *npath = NULL; | 
 | 	int depth, len, err; | 
 | 	ext4_lblk_t next; | 
 | 	unsigned uninitialized = 0; | 
 | 	int flags = 0; | 
 |  | 
 | 	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	if (unlikely(path[depth].p_hdr == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* try to insert block into found extent and return */ | 
 | 	if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO) | 
 | 		&& ext4_can_extents_be_merged(inode, ex, newext)) { | 
 | 		ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n", | 
 | 			  ext4_ext_is_uninitialized(newext), | 
 | 			  ext4_ext_get_actual_len(newext), | 
 | 			  le32_to_cpu(ex->ee_block), | 
 | 			  ext4_ext_is_uninitialized(ex), | 
 | 			  ext4_ext_get_actual_len(ex), | 
 | 			  ext4_ext_pblock(ex)); | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		/* | 
 | 		 * ext4_can_extents_be_merged should have checked that either | 
 | 		 * both extents are uninitialized, or both aren't. Thus we | 
 | 		 * need to check only one of them here. | 
 | 		 */ | 
 | 		if (ext4_ext_is_uninitialized(ex)) | 
 | 			uninitialized = 1; | 
 | 		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex) | 
 | 					+ ext4_ext_get_actual_len(newext)); | 
 | 		if (uninitialized) | 
 | 			ext4_ext_mark_uninitialized(ex); | 
 | 		eh = path[depth].p_hdr; | 
 | 		nearex = ex; | 
 | 		goto merge; | 
 | 	} | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 | 	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) | 
 | 		goto has_space; | 
 |  | 
 | 	/* probably next leaf has space for us? */ | 
 | 	fex = EXT_LAST_EXTENT(eh); | 
 | 	next = EXT_MAX_BLOCKS; | 
 | 	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)) | 
 | 		next = ext4_ext_next_leaf_block(path); | 
 | 	if (next != EXT_MAX_BLOCKS) { | 
 | 		ext_debug("next leaf block - %u\n", next); | 
 | 		BUG_ON(npath != NULL); | 
 | 		npath = ext4_ext_find_extent(inode, next, NULL); | 
 | 		if (IS_ERR(npath)) | 
 | 			return PTR_ERR(npath); | 
 | 		BUG_ON(npath->p_depth != path->p_depth); | 
 | 		eh = npath[depth].p_hdr; | 
 | 		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) { | 
 | 			ext_debug("next leaf isn't full(%d)\n", | 
 | 				  le16_to_cpu(eh->eh_entries)); | 
 | 			path = npath; | 
 | 			goto has_space; | 
 | 		} | 
 | 		ext_debug("next leaf has no free space(%d,%d)\n", | 
 | 			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * There is no free space in the found leaf. | 
 | 	 * We're gonna add a new leaf in the tree. | 
 | 	 */ | 
 | 	if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) | 
 | 		flags = EXT4_MB_USE_ROOT_BLOCKS; | 
 | 	err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | has_space: | 
 | 	nearex = path[depth].p_ext; | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 |  | 
 | 	if (!nearex) { | 
 | 		/* there is no extent in this leaf, create first one */ | 
 | 		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n", | 
 | 				le32_to_cpu(newext->ee_block), | 
 | 				ext4_ext_pblock(newext), | 
 | 				ext4_ext_is_uninitialized(newext), | 
 | 				ext4_ext_get_actual_len(newext)); | 
 | 		nearex = EXT_FIRST_EXTENT(eh); | 
 | 	} else { | 
 | 		if (le32_to_cpu(newext->ee_block) | 
 | 			   > le32_to_cpu(nearex->ee_block)) { | 
 | 			/* Insert after */ | 
 | 			ext_debug("insert %u:%llu:[%d]%d before: " | 
 | 					"nearest %p\n", | 
 | 					le32_to_cpu(newext->ee_block), | 
 | 					ext4_ext_pblock(newext), | 
 | 					ext4_ext_is_uninitialized(newext), | 
 | 					ext4_ext_get_actual_len(newext), | 
 | 					nearex); | 
 | 			nearex++; | 
 | 		} else { | 
 | 			/* Insert before */ | 
 | 			BUG_ON(newext->ee_block == nearex->ee_block); | 
 | 			ext_debug("insert %u:%llu:[%d]%d after: " | 
 | 					"nearest %p\n", | 
 | 					le32_to_cpu(newext->ee_block), | 
 | 					ext4_ext_pblock(newext), | 
 | 					ext4_ext_is_uninitialized(newext), | 
 | 					ext4_ext_get_actual_len(newext), | 
 | 					nearex); | 
 | 		} | 
 | 		len = EXT_LAST_EXTENT(eh) - nearex + 1; | 
 | 		if (len > 0) { | 
 | 			ext_debug("insert %u:%llu:[%d]%d: " | 
 | 					"move %d extents from 0x%p to 0x%p\n", | 
 | 					le32_to_cpu(newext->ee_block), | 
 | 					ext4_ext_pblock(newext), | 
 | 					ext4_ext_is_uninitialized(newext), | 
 | 					ext4_ext_get_actual_len(newext), | 
 | 					len, nearex, nearex + 1); | 
 | 			memmove(nearex + 1, nearex, | 
 | 				len * sizeof(struct ext4_extent)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	le16_add_cpu(&eh->eh_entries, 1); | 
 | 	path[depth].p_ext = nearex; | 
 | 	nearex->ee_block = newext->ee_block; | 
 | 	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext)); | 
 | 	nearex->ee_len = newext->ee_len; | 
 |  | 
 | merge: | 
 | 	/* try to merge extents */ | 
 | 	if (!(flag & EXT4_GET_BLOCKS_PRE_IO)) | 
 | 		ext4_ext_try_to_merge(handle, inode, path, nearex); | 
 |  | 
 |  | 
 | 	/* time to correct all indexes above */ | 
 | 	err = ext4_ext_correct_indexes(handle, inode, path); | 
 | 	if (err) | 
 | 		goto cleanup; | 
 |  | 
 | 	err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 |  | 
 | cleanup: | 
 | 	if (npath) { | 
 | 		ext4_ext_drop_refs(npath); | 
 | 		kfree(npath); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ext4_fill_fiemap_extents(struct inode *inode, | 
 | 				    ext4_lblk_t block, ext4_lblk_t num, | 
 | 				    struct fiemap_extent_info *fieinfo) | 
 | { | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct ext4_extent *ex; | 
 | 	struct extent_status es; | 
 | 	ext4_lblk_t next, next_del, start = 0, end = 0; | 
 | 	ext4_lblk_t last = block + num; | 
 | 	int exists, depth = 0, err = 0; | 
 | 	unsigned int flags = 0; | 
 | 	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits; | 
 |  | 
 | 	while (block < last && block != EXT_MAX_BLOCKS) { | 
 | 		num = last - block; | 
 | 		/* find extent for this block */ | 
 | 		down_read(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | 		if (path && ext_depth(inode) != depth) { | 
 | 			/* depth was changed. we have to realloc path */ | 
 | 			kfree(path); | 
 | 			path = NULL; | 
 | 		} | 
 |  | 
 | 		path = ext4_ext_find_extent(inode, block, path); | 
 | 		if (IS_ERR(path)) { | 
 | 			up_read(&EXT4_I(inode)->i_data_sem); | 
 | 			err = PTR_ERR(path); | 
 | 			path = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		depth = ext_depth(inode); | 
 | 		if (unlikely(path[depth].p_hdr == NULL)) { | 
 | 			up_read(&EXT4_I(inode)->i_data_sem); | 
 | 			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
 | 			err = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		ex = path[depth].p_ext; | 
 | 		next = ext4_ext_next_allocated_block(path); | 
 | 		ext4_ext_drop_refs(path); | 
 |  | 
 | 		flags = 0; | 
 | 		exists = 0; | 
 | 		if (!ex) { | 
 | 			/* there is no extent yet, so try to allocate | 
 | 			 * all requested space */ | 
 | 			start = block; | 
 | 			end = block + num; | 
 | 		} else if (le32_to_cpu(ex->ee_block) > block) { | 
 | 			/* need to allocate space before found extent */ | 
 | 			start = block; | 
 | 			end = le32_to_cpu(ex->ee_block); | 
 | 			if (block + num < end) | 
 | 				end = block + num; | 
 | 		} else if (block >= le32_to_cpu(ex->ee_block) | 
 | 					+ ext4_ext_get_actual_len(ex)) { | 
 | 			/* need to allocate space after found extent */ | 
 | 			start = block; | 
 | 			end = block + num; | 
 | 			if (end >= next) | 
 | 				end = next; | 
 | 		} else if (block >= le32_to_cpu(ex->ee_block)) { | 
 | 			/* | 
 | 			 * some part of requested space is covered | 
 | 			 * by found extent | 
 | 			 */ | 
 | 			start = block; | 
 | 			end = le32_to_cpu(ex->ee_block) | 
 | 				+ ext4_ext_get_actual_len(ex); | 
 | 			if (block + num < end) | 
 | 				end = block + num; | 
 | 			exists = 1; | 
 | 		} else { | 
 | 			BUG(); | 
 | 		} | 
 | 		BUG_ON(end <= start); | 
 |  | 
 | 		if (!exists) { | 
 | 			es.es_lblk = start; | 
 | 			es.es_len = end - start; | 
 | 			es.es_pblk = 0; | 
 | 		} else { | 
 | 			es.es_lblk = le32_to_cpu(ex->ee_block); | 
 | 			es.es_len = ext4_ext_get_actual_len(ex); | 
 | 			es.es_pblk = ext4_ext_pblock(ex); | 
 | 			if (ext4_ext_is_uninitialized(ex)) | 
 | 				flags |= FIEMAP_EXTENT_UNWRITTEN; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Find delayed extent and update es accordingly. We call | 
 | 		 * it even in !exists case to find out whether es is the | 
 | 		 * last existing extent or not. | 
 | 		 */ | 
 | 		next_del = ext4_find_delayed_extent(inode, &es); | 
 | 		if (!exists && next_del) { | 
 | 			exists = 1; | 
 | 			flags |= FIEMAP_EXTENT_DELALLOC; | 
 | 		} | 
 | 		up_read(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | 		if (unlikely(es.es_len == 0)) { | 
 | 			EXT4_ERROR_INODE(inode, "es.es_len == 0"); | 
 | 			err = -EIO; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This is possible iff next == next_del == EXT_MAX_BLOCKS. | 
 | 		 * we need to check next == EXT_MAX_BLOCKS because it is | 
 | 		 * possible that an extent is with unwritten and delayed | 
 | 		 * status due to when an extent is delayed allocated and | 
 | 		 * is allocated by fallocate status tree will track both of | 
 | 		 * them in a extent. | 
 | 		 * | 
 | 		 * So we could return a unwritten and delayed extent, and | 
 | 		 * its block is equal to 'next'. | 
 | 		 */ | 
 | 		if (next == next_del && next == EXT_MAX_BLOCKS) { | 
 | 			flags |= FIEMAP_EXTENT_LAST; | 
 | 			if (unlikely(next_del != EXT_MAX_BLOCKS || | 
 | 				     next != EXT_MAX_BLOCKS)) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 						 "next extent == %u, next " | 
 | 						 "delalloc extent = %u", | 
 | 						 next, next_del); | 
 | 				err = -EIO; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (exists) { | 
 | 			err = fiemap_fill_next_extent(fieinfo, | 
 | 				(__u64)es.es_lblk << blksize_bits, | 
 | 				(__u64)es.es_pblk << blksize_bits, | 
 | 				(__u64)es.es_len << blksize_bits, | 
 | 				flags); | 
 | 			if (err < 0) | 
 | 				break; | 
 | 			if (err == 1) { | 
 | 				err = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		block = es.es_lblk + es.es_len; | 
 | 	} | 
 |  | 
 | 	if (path) { | 
 | 		ext4_ext_drop_refs(path); | 
 | 		kfree(path); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_put_gap_in_cache: | 
 |  * calculate boundaries of the gap that the requested block fits into | 
 |  * and cache this gap | 
 |  */ | 
 | static void | 
 | ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path, | 
 | 				ext4_lblk_t block) | 
 | { | 
 | 	int depth = ext_depth(inode); | 
 | 	unsigned long len; | 
 | 	ext4_lblk_t lblock; | 
 | 	struct ext4_extent *ex; | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	if (ex == NULL) { | 
 | 		/* | 
 | 		 * there is no extent yet, so gap is [0;-] and we | 
 | 		 * don't cache it | 
 | 		 */ | 
 | 		ext_debug("cache gap(whole file):"); | 
 | 	} else if (block < le32_to_cpu(ex->ee_block)) { | 
 | 		lblock = block; | 
 | 		len = le32_to_cpu(ex->ee_block) - block; | 
 | 		ext_debug("cache gap(before): %u [%u:%u]", | 
 | 				block, | 
 | 				le32_to_cpu(ex->ee_block), | 
 | 				 ext4_ext_get_actual_len(ex)); | 
 | 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) | 
 | 			ext4_es_insert_extent(inode, lblock, len, ~0, | 
 | 					      EXTENT_STATUS_HOLE); | 
 | 	} else if (block >= le32_to_cpu(ex->ee_block) | 
 | 			+ ext4_ext_get_actual_len(ex)) { | 
 | 		ext4_lblk_t next; | 
 | 		lblock = le32_to_cpu(ex->ee_block) | 
 | 			+ ext4_ext_get_actual_len(ex); | 
 |  | 
 | 		next = ext4_ext_next_allocated_block(path); | 
 | 		ext_debug("cache gap(after): [%u:%u] %u", | 
 | 				le32_to_cpu(ex->ee_block), | 
 | 				ext4_ext_get_actual_len(ex), | 
 | 				block); | 
 | 		BUG_ON(next == lblock); | 
 | 		len = next - lblock; | 
 | 		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1)) | 
 | 			ext4_es_insert_extent(inode, lblock, len, ~0, | 
 | 					      EXTENT_STATUS_HOLE); | 
 | 	} else { | 
 | 		lblock = len = 0; | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	ext_debug(" -> %u:%lu\n", lblock, len); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_rm_idx: | 
 |  * removes index from the index block. | 
 |  */ | 
 | static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_ext_path *path, int depth) | 
 | { | 
 | 	int err; | 
 | 	ext4_fsblk_t leaf; | 
 |  | 
 | 	/* free index block */ | 
 | 	depth--; | 
 | 	path = path + depth; | 
 | 	leaf = ext4_idx_pblock(path->p_idx); | 
 | 	if (unlikely(path->p_hdr->eh_entries == 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	err = ext4_ext_get_access(handle, inode, path); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) { | 
 | 		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx; | 
 | 		len *= sizeof(struct ext4_extent_idx); | 
 | 		memmove(path->p_idx, path->p_idx + 1, len); | 
 | 	} | 
 |  | 
 | 	le16_add_cpu(&path->p_hdr->eh_entries, -1); | 
 | 	err = ext4_ext_dirty(handle, inode, path); | 
 | 	if (err) | 
 | 		return err; | 
 | 	ext_debug("index is empty, remove it, free block %llu\n", leaf); | 
 | 	trace_ext4_ext_rm_idx(inode, leaf); | 
 |  | 
 | 	ext4_free_blocks(handle, inode, NULL, leaf, 1, | 
 | 			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); | 
 |  | 
 | 	while (--depth >= 0) { | 
 | 		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr)) | 
 | 			break; | 
 | 		path--; | 
 | 		err = ext4_ext_get_access(handle, inode, path); | 
 | 		if (err) | 
 | 			break; | 
 | 		path->p_idx->ei_block = (path+1)->p_idx->ei_block; | 
 | 		err = ext4_ext_dirty(handle, inode, path); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_calc_credits_for_single_extent: | 
 |  * This routine returns max. credits that needed to insert an extent | 
 |  * to the extent tree. | 
 |  * When pass the actual path, the caller should calculate credits | 
 |  * under i_data_sem. | 
 |  */ | 
 | int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks, | 
 | 						struct ext4_ext_path *path) | 
 | { | 
 | 	if (path) { | 
 | 		int depth = ext_depth(inode); | 
 | 		int ret = 0; | 
 |  | 
 | 		/* probably there is space in leaf? */ | 
 | 		if (le16_to_cpu(path[depth].p_hdr->eh_entries) | 
 | 				< le16_to_cpu(path[depth].p_hdr->eh_max)) { | 
 |  | 
 | 			/* | 
 | 			 *  There are some space in the leaf tree, no | 
 | 			 *  need to account for leaf block credit | 
 | 			 * | 
 | 			 *  bitmaps and block group descriptor blocks | 
 | 			 *  and other metadata blocks still need to be | 
 | 			 *  accounted. | 
 | 			 */ | 
 | 			/* 1 bitmap, 1 block group descriptor */ | 
 | 			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ext4_chunk_trans_blocks(inode, nrblocks); | 
 | } | 
 |  | 
 | /* | 
 |  * How many index/leaf blocks need to change/allocate to modify nrblocks? | 
 |  * | 
 |  * if nrblocks are fit in a single extent (chunk flag is 1), then | 
 |  * in the worse case, each tree level index/leaf need to be changed | 
 |  * if the tree split due to insert a new extent, then the old tree | 
 |  * index/leaf need to be updated too | 
 |  * | 
 |  * If the nrblocks are discontiguous, they could cause | 
 |  * the whole tree split more than once, but this is really rare. | 
 |  */ | 
 | int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) | 
 | { | 
 | 	int index; | 
 | 	int depth; | 
 |  | 
 | 	/* If we are converting the inline data, only one is needed here. */ | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return 1; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | 	if (chunk) | 
 | 		index = depth * 2; | 
 | 	else | 
 | 		index = depth * 3; | 
 |  | 
 | 	return index; | 
 | } | 
 |  | 
 | static int ext4_remove_blocks(handle_t *handle, struct inode *inode, | 
 | 			      struct ext4_extent *ex, | 
 | 			      ext4_fsblk_t *partial_cluster, | 
 | 			      ext4_lblk_t from, ext4_lblk_t to) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	unsigned short ee_len =  ext4_ext_get_actual_len(ex); | 
 | 	ext4_fsblk_t pblk; | 
 | 	int flags = 0; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 		flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET; | 
 | 	else if (ext4_should_journal_data(inode)) | 
 | 		flags |= EXT4_FREE_BLOCKS_FORGET; | 
 |  | 
 | 	/* | 
 | 	 * For bigalloc file systems, we never free a partial cluster | 
 | 	 * at the beginning of the extent.  Instead, we make a note | 
 | 	 * that we tried freeing the cluster, and check to see if we | 
 | 	 * need to free it on a subsequent call to ext4_remove_blocks, | 
 | 	 * or at the end of the ext4_truncate() operation. | 
 | 	 */ | 
 | 	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER; | 
 |  | 
 | 	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster); | 
 | 	/* | 
 | 	 * If we have a partial cluster, and it's different from the | 
 | 	 * cluster of the last block, we need to explicitly free the | 
 | 	 * partial cluster here. | 
 | 	 */ | 
 | 	pblk = ext4_ext_pblock(ex) + ee_len - 1; | 
 | 	if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) { | 
 | 		ext4_free_blocks(handle, inode, NULL, | 
 | 				 EXT4_C2B(sbi, *partial_cluster), | 
 | 				 sbi->s_cluster_ratio, flags); | 
 | 		*partial_cluster = 0; | 
 | 	} | 
 |  | 
 | #ifdef EXTENTS_STATS | 
 | 	{ | 
 | 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 		spin_lock(&sbi->s_ext_stats_lock); | 
 | 		sbi->s_ext_blocks += ee_len; | 
 | 		sbi->s_ext_extents++; | 
 | 		if (ee_len < sbi->s_ext_min) | 
 | 			sbi->s_ext_min = ee_len; | 
 | 		if (ee_len > sbi->s_ext_max) | 
 | 			sbi->s_ext_max = ee_len; | 
 | 		if (ext_depth(inode) > sbi->s_depth_max) | 
 | 			sbi->s_depth_max = ext_depth(inode); | 
 | 		spin_unlock(&sbi->s_ext_stats_lock); | 
 | 	} | 
 | #endif | 
 | 	if (from >= le32_to_cpu(ex->ee_block) | 
 | 	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) { | 
 | 		/* tail removal */ | 
 | 		ext4_lblk_t num; | 
 |  | 
 | 		num = le32_to_cpu(ex->ee_block) + ee_len - from; | 
 | 		pblk = ext4_ext_pblock(ex) + ee_len - num; | 
 | 		ext_debug("free last %u blocks starting %llu\n", num, pblk); | 
 | 		ext4_free_blocks(handle, inode, NULL, pblk, num, flags); | 
 | 		/* | 
 | 		 * If the block range to be freed didn't start at the | 
 | 		 * beginning of a cluster, and we removed the entire | 
 | 		 * extent, save the partial cluster here, since we | 
 | 		 * might need to delete if we determine that the | 
 | 		 * truncate operation has removed all of the blocks in | 
 | 		 * the cluster. | 
 | 		 */ | 
 | 		if (pblk & (sbi->s_cluster_ratio - 1) && | 
 | 		    (ee_len == num)) | 
 | 			*partial_cluster = EXT4_B2C(sbi, pblk); | 
 | 		else | 
 | 			*partial_cluster = 0; | 
 | 	} else if (from == le32_to_cpu(ex->ee_block) | 
 | 		   && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) { | 
 | 		/* head removal */ | 
 | 		ext4_lblk_t num; | 
 | 		ext4_fsblk_t start; | 
 |  | 
 | 		num = to - from; | 
 | 		start = ext4_ext_pblock(ex); | 
 |  | 
 | 		ext_debug("free first %u blocks starting %llu\n", num, start); | 
 | 		ext4_free_blocks(handle, inode, NULL, start, num, flags); | 
 |  | 
 | 	} else { | 
 | 		printk(KERN_INFO "strange request: removal(2) " | 
 | 				"%u-%u from %u:%u\n", | 
 | 				from, to, le32_to_cpu(ex->ee_block), ee_len); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * ext4_ext_rm_leaf() Removes the extents associated with the | 
 |  * blocks appearing between "start" and "end", and splits the extents | 
 |  * if "start" and "end" appear in the same extent | 
 |  * | 
 |  * @handle: The journal handle | 
 |  * @inode:  The files inode | 
 |  * @path:   The path to the leaf | 
 |  * @start:  The first block to remove | 
 |  * @end:   The last block to remove | 
 |  */ | 
 | static int | 
 | ext4_ext_rm_leaf(handle_t *handle, struct inode *inode, | 
 | 		 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster, | 
 | 		 ext4_lblk_t start, ext4_lblk_t end) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	int err = 0, correct_index = 0; | 
 | 	int depth = ext_depth(inode), credits; | 
 | 	struct ext4_extent_header *eh; | 
 | 	ext4_lblk_t a, b; | 
 | 	unsigned num; | 
 | 	ext4_lblk_t ex_ee_block; | 
 | 	unsigned short ex_ee_len; | 
 | 	unsigned uninitialized = 0; | 
 | 	struct ext4_extent *ex; | 
 |  | 
 | 	/* the header must be checked already in ext4_ext_remove_space() */ | 
 | 	ext_debug("truncate since %u in leaf to %u\n", start, end); | 
 | 	if (!path[depth].p_hdr) | 
 | 		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh); | 
 | 	eh = path[depth].p_hdr; | 
 | 	if (unlikely(path[depth].p_hdr == NULL)) { | 
 | 		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth); | 
 | 		return -EIO; | 
 | 	} | 
 | 	/* find where to start removing */ | 
 | 	ex = EXT_LAST_EXTENT(eh); | 
 |  | 
 | 	ex_ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ex_ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster); | 
 |  | 
 | 	while (ex >= EXT_FIRST_EXTENT(eh) && | 
 | 			ex_ee_block + ex_ee_len > start) { | 
 |  | 
 | 		if (ext4_ext_is_uninitialized(ex)) | 
 | 			uninitialized = 1; | 
 | 		else | 
 | 			uninitialized = 0; | 
 |  | 
 | 		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block, | 
 | 			 uninitialized, ex_ee_len); | 
 | 		path[depth].p_ext = ex; | 
 |  | 
 | 		a = ex_ee_block > start ? ex_ee_block : start; | 
 | 		b = ex_ee_block+ex_ee_len - 1 < end ? | 
 | 			ex_ee_block+ex_ee_len - 1 : end; | 
 |  | 
 | 		ext_debug("  border %u:%u\n", a, b); | 
 |  | 
 | 		/* If this extent is beyond the end of the hole, skip it */ | 
 | 		if (end < ex_ee_block) { | 
 | 			ex--; | 
 | 			ex_ee_block = le32_to_cpu(ex->ee_block); | 
 | 			ex_ee_len = ext4_ext_get_actual_len(ex); | 
 | 			continue; | 
 | 		} else if (b != ex_ee_block + ex_ee_len - 1) { | 
 | 			EXT4_ERROR_INODE(inode, | 
 | 					 "can not handle truncate %u:%u " | 
 | 					 "on extent %u:%u", | 
 | 					 start, end, ex_ee_block, | 
 | 					 ex_ee_block + ex_ee_len - 1); | 
 | 			err = -EIO; | 
 | 			goto out; | 
 | 		} else if (a != ex_ee_block) { | 
 | 			/* remove tail of the extent */ | 
 | 			num = a - ex_ee_block; | 
 | 		} else { | 
 | 			/* remove whole extent: excellent! */ | 
 | 			num = 0; | 
 | 		} | 
 | 		/* | 
 | 		 * 3 for leaf, sb, and inode plus 2 (bmap and group | 
 | 		 * descriptor) for each block group; assume two block | 
 | 		 * groups plus ex_ee_len/blocks_per_block_group for | 
 | 		 * the worst case | 
 | 		 */ | 
 | 		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb)); | 
 | 		if (ex == EXT_FIRST_EXTENT(eh)) { | 
 | 			correct_index = 1; | 
 | 			credits += (ext_depth(inode)) + 1; | 
 | 		} | 
 | 		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb); | 
 |  | 
 | 		err = ext4_ext_truncate_extend_restart(handle, inode, credits); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = ext4_remove_blocks(handle, inode, ex, partial_cluster, | 
 | 					 a, b); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		if (num == 0) | 
 | 			/* this extent is removed; mark slot entirely unused */ | 
 | 			ext4_ext_store_pblock(ex, 0); | 
 |  | 
 | 		ex->ee_len = cpu_to_le16(num); | 
 | 		/* | 
 | 		 * Do not mark uninitialized if all the blocks in the | 
 | 		 * extent have been removed. | 
 | 		 */ | 
 | 		if (uninitialized && num) | 
 | 			ext4_ext_mark_uninitialized(ex); | 
 | 		/* | 
 | 		 * If the extent was completely released, | 
 | 		 * we need to remove it from the leaf | 
 | 		 */ | 
 | 		if (num == 0) { | 
 | 			if (end != EXT_MAX_BLOCKS - 1) { | 
 | 				/* | 
 | 				 * For hole punching, we need to scoot all the | 
 | 				 * extents up when an extent is removed so that | 
 | 				 * we dont have blank extents in the middle | 
 | 				 */ | 
 | 				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) * | 
 | 					sizeof(struct ext4_extent)); | 
 |  | 
 | 				/* Now get rid of the one at the end */ | 
 | 				memset(EXT_LAST_EXTENT(eh), 0, | 
 | 					sizeof(struct ext4_extent)); | 
 | 			} | 
 | 			le16_add_cpu(&eh->eh_entries, -1); | 
 | 		} else | 
 | 			*partial_cluster = 0; | 
 |  | 
 | 		err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num, | 
 | 				ext4_ext_pblock(ex)); | 
 | 		ex--; | 
 | 		ex_ee_block = le32_to_cpu(ex->ee_block); | 
 | 		ex_ee_len = ext4_ext_get_actual_len(ex); | 
 | 	} | 
 |  | 
 | 	if (correct_index && eh->eh_entries) | 
 | 		err = ext4_ext_correct_indexes(handle, inode, path); | 
 |  | 
 | 	/* | 
 | 	 * If there is still a entry in the leaf node, check to see if | 
 | 	 * it references the partial cluster.  This is the only place | 
 | 	 * where it could; if it doesn't, we can free the cluster. | 
 | 	 */ | 
 | 	if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) && | 
 | 	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) != | 
 | 	     *partial_cluster)) { | 
 | 		int flags = EXT4_FREE_BLOCKS_FORGET; | 
 |  | 
 | 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 			flags |= EXT4_FREE_BLOCKS_METADATA; | 
 |  | 
 | 		ext4_free_blocks(handle, inode, NULL, | 
 | 				 EXT4_C2B(sbi, *partial_cluster), | 
 | 				 sbi->s_cluster_ratio, flags); | 
 | 		*partial_cluster = 0; | 
 | 	} | 
 |  | 
 | 	/* if this leaf is free, then we should | 
 | 	 * remove it from index block above */ | 
 | 	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL) | 
 | 		err = ext4_ext_rm_idx(handle, inode, path, depth); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_more_to_rm: | 
 |  * returns 1 if current index has to be freed (even partial) | 
 |  */ | 
 | static int | 
 | ext4_ext_more_to_rm(struct ext4_ext_path *path) | 
 | { | 
 | 	BUG_ON(path->p_idx == NULL); | 
 |  | 
 | 	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * if truncate on deeper level happened, it wasn't partial, | 
 | 	 * so we have to consider current index for truncation | 
 | 	 */ | 
 | 	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, | 
 | 				 ext4_lblk_t end) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	int depth = ext_depth(inode); | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	ext4_fsblk_t partial_cluster = 0; | 
 | 	handle_t *handle; | 
 | 	int i = 0, err = 0; | 
 |  | 
 | 	ext_debug("truncate since %u to %u\n", start, end); | 
 |  | 
 | 	/* probably first extent we're gonna free will be last in block */ | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1); | 
 | 	if (IS_ERR(handle)) | 
 | 		return PTR_ERR(handle); | 
 |  | 
 | again: | 
 | 	trace_ext4_ext_remove_space(inode, start, depth); | 
 |  | 
 | 	/* | 
 | 	 * Check if we are removing extents inside the extent tree. If that | 
 | 	 * is the case, we are going to punch a hole inside the extent tree | 
 | 	 * so we have to check whether we need to split the extent covering | 
 | 	 * the last block to remove so we can easily remove the part of it | 
 | 	 * in ext4_ext_rm_leaf(). | 
 | 	 */ | 
 | 	if (end < EXT_MAX_BLOCKS - 1) { | 
 | 		struct ext4_extent *ex; | 
 | 		ext4_lblk_t ee_block; | 
 |  | 
 | 		/* find extent for this block */ | 
 | 		path = ext4_ext_find_extent(inode, end, NULL); | 
 | 		if (IS_ERR(path)) { | 
 | 			ext4_journal_stop(handle); | 
 | 			return PTR_ERR(path); | 
 | 		} | 
 | 		depth = ext_depth(inode); | 
 | 		/* Leaf not may not exist only if inode has no blocks at all */ | 
 | 		ex = path[depth].p_ext; | 
 | 		if (!ex) { | 
 | 			if (depth) { | 
 | 				EXT4_ERROR_INODE(inode, | 
 | 						 "path[%d].p_hdr == NULL", | 
 | 						 depth); | 
 | 				err = -EIO; | 
 | 			} | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ee_block = le32_to_cpu(ex->ee_block); | 
 |  | 
 | 		/* | 
 | 		 * See if the last block is inside the extent, if so split | 
 | 		 * the extent at 'end' block so we can easily remove the | 
 | 		 * tail of the first part of the split extent in | 
 | 		 * ext4_ext_rm_leaf(). | 
 | 		 */ | 
 | 		if (end >= ee_block && | 
 | 		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) { | 
 | 			int split_flag = 0; | 
 |  | 
 | 			if (ext4_ext_is_uninitialized(ex)) | 
 | 				split_flag = EXT4_EXT_MARK_UNINIT1 | | 
 | 					     EXT4_EXT_MARK_UNINIT2; | 
 |  | 
 | 			/* | 
 | 			 * Split the extent in two so that 'end' is the last | 
 | 			 * block in the first new extent | 
 | 			 */ | 
 | 			err = ext4_split_extent_at(handle, inode, path, | 
 | 						end + 1, split_flag, | 
 | 						EXT4_GET_BLOCKS_PRE_IO | | 
 | 						EXT4_GET_BLOCKS_PUNCH_OUT_EXT); | 
 |  | 
 | 			if (err < 0) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * We start scanning from right side, freeing all the blocks | 
 | 	 * after i_size and walking into the tree depth-wise. | 
 | 	 */ | 
 | 	depth = ext_depth(inode); | 
 | 	if (path) { | 
 | 		int k = i = depth; | 
 | 		while (--k > 0) | 
 | 			path[k].p_block = | 
 | 				le16_to_cpu(path[k].p_hdr->eh_entries)+1; | 
 | 	} else { | 
 | 		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), | 
 | 			       GFP_NOFS); | 
 | 		if (path == NULL) { | 
 | 			ext4_journal_stop(handle); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		path[0].p_depth = depth; | 
 | 		path[0].p_hdr = ext_inode_hdr(inode); | 
 | 		i = 0; | 
 |  | 
 | 		if (ext4_ext_check(inode, path[0].p_hdr, depth)) { | 
 | 			err = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	err = 0; | 
 |  | 
 | 	while (i >= 0 && err == 0) { | 
 | 		if (i == depth) { | 
 | 			/* this is leaf block */ | 
 | 			err = ext4_ext_rm_leaf(handle, inode, path, | 
 | 					       &partial_cluster, start, | 
 | 					       end); | 
 | 			/* root level has p_bh == NULL, brelse() eats this */ | 
 | 			brelse(path[i].p_bh); | 
 | 			path[i].p_bh = NULL; | 
 | 			i--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* this is index block */ | 
 | 		if (!path[i].p_hdr) { | 
 | 			ext_debug("initialize header\n"); | 
 | 			path[i].p_hdr = ext_block_hdr(path[i].p_bh); | 
 | 		} | 
 |  | 
 | 		if (!path[i].p_idx) { | 
 | 			/* this level hasn't been touched yet */ | 
 | 			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr); | 
 | 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1; | 
 | 			ext_debug("init index ptr: hdr 0x%p, num %d\n", | 
 | 				  path[i].p_hdr, | 
 | 				  le16_to_cpu(path[i].p_hdr->eh_entries)); | 
 | 		} else { | 
 | 			/* we were already here, see at next index */ | 
 | 			path[i].p_idx--; | 
 | 		} | 
 |  | 
 | 		ext_debug("level %d - index, first 0x%p, cur 0x%p\n", | 
 | 				i, EXT_FIRST_INDEX(path[i].p_hdr), | 
 | 				path[i].p_idx); | 
 | 		if (ext4_ext_more_to_rm(path + i)) { | 
 | 			struct buffer_head *bh; | 
 | 			/* go to the next level */ | 
 | 			ext_debug("move to level %d (block %llu)\n", | 
 | 				  i + 1, ext4_idx_pblock(path[i].p_idx)); | 
 | 			memset(path + i + 1, 0, sizeof(*path)); | 
 | 			bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx)); | 
 | 			if (!bh) { | 
 | 				/* should we reset i_size? */ | 
 | 				err = -EIO; | 
 | 				break; | 
 | 			} | 
 | 			if (WARN_ON(i + 1 > depth)) { | 
 | 				err = -EIO; | 
 | 				break; | 
 | 			} | 
 | 			if (ext4_ext_check_block(inode, ext_block_hdr(bh), | 
 | 							depth - i - 1, bh)) { | 
 | 				err = -EIO; | 
 | 				break; | 
 | 			} | 
 | 			path[i + 1].p_bh = bh; | 
 |  | 
 | 			/* save actual number of indexes since this | 
 | 			 * number is changed at the next iteration */ | 
 | 			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries); | 
 | 			i++; | 
 | 		} else { | 
 | 			/* we finished processing this index, go up */ | 
 | 			if (path[i].p_hdr->eh_entries == 0 && i > 0) { | 
 | 				/* index is empty, remove it; | 
 | 				 * handle must be already prepared by the | 
 | 				 * truncatei_leaf() */ | 
 | 				err = ext4_ext_rm_idx(handle, inode, path, i); | 
 | 			} | 
 | 			/* root level has p_bh == NULL, brelse() eats this */ | 
 | 			brelse(path[i].p_bh); | 
 | 			path[i].p_bh = NULL; | 
 | 			i--; | 
 | 			ext_debug("return to level %d\n", i); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster, | 
 | 			path->p_hdr->eh_entries); | 
 |  | 
 | 	/* If we still have something in the partial cluster and we have removed | 
 | 	 * even the first extent, then we should free the blocks in the partial | 
 | 	 * cluster as well. */ | 
 | 	if (partial_cluster && path->p_hdr->eh_entries == 0) { | 
 | 		int flags = EXT4_FREE_BLOCKS_FORGET; | 
 |  | 
 | 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 			flags |= EXT4_FREE_BLOCKS_METADATA; | 
 |  | 
 | 		ext4_free_blocks(handle, inode, NULL, | 
 | 				 EXT4_C2B(EXT4_SB(sb), partial_cluster), | 
 | 				 EXT4_SB(sb)->s_cluster_ratio, flags); | 
 | 		partial_cluster = 0; | 
 | 	} | 
 |  | 
 | 	/* TODO: flexible tree reduction should be here */ | 
 | 	if (path->p_hdr->eh_entries == 0) { | 
 | 		/* | 
 | 		 * truncate to zero freed all the tree, | 
 | 		 * so we need to correct eh_depth | 
 | 		 */ | 
 | 		err = ext4_ext_get_access(handle, inode, path); | 
 | 		if (err == 0) { | 
 | 			ext_inode_hdr(inode)->eh_depth = 0; | 
 | 			ext_inode_hdr(inode)->eh_max = | 
 | 				cpu_to_le16(ext4_ext_space_root(inode, 0)); | 
 | 			err = ext4_ext_dirty(handle, inode, path); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	ext4_ext_drop_refs(path); | 
 | 	kfree(path); | 
 | 	if (err == -EAGAIN) { | 
 | 		path = NULL; | 
 | 		goto again; | 
 | 	} | 
 | 	ext4_journal_stop(handle); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * called at mount time | 
 |  */ | 
 | void ext4_ext_init(struct super_block *sb) | 
 | { | 
 | 	/* | 
 | 	 * possible initialization would be here | 
 | 	 */ | 
 |  | 
 | 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { | 
 | #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS) | 
 | 		printk(KERN_INFO "EXT4-fs: file extents enabled" | 
 | #ifdef AGGRESSIVE_TEST | 
 | 		       ", aggressive tests" | 
 | #endif | 
 | #ifdef CHECK_BINSEARCH | 
 | 		       ", check binsearch" | 
 | #endif | 
 | #ifdef EXTENTS_STATS | 
 | 		       ", stats" | 
 | #endif | 
 | 		       "\n"); | 
 | #endif | 
 | #ifdef EXTENTS_STATS | 
 | 		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock); | 
 | 		EXT4_SB(sb)->s_ext_min = 1 << 30; | 
 | 		EXT4_SB(sb)->s_ext_max = 0; | 
 | #endif | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called at umount time | 
 |  */ | 
 | void ext4_ext_release(struct super_block *sb) | 
 | { | 
 | 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) | 
 | 		return; | 
 |  | 
 | #ifdef EXTENTS_STATS | 
 | 	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) { | 
 | 		struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n", | 
 | 			sbi->s_ext_blocks, sbi->s_ext_extents, | 
 | 			sbi->s_ext_blocks / sbi->s_ext_extents); | 
 | 		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n", | 
 | 			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* FIXME!! we need to try to merge to left or right after zero-out  */ | 
 | static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex) | 
 | { | 
 | 	ext4_fsblk_t ee_pblock; | 
 | 	unsigned int ee_len; | 
 | 	int ret; | 
 |  | 
 | 	ee_len    = ext4_ext_get_actual_len(ex); | 
 | 	ee_pblock = ext4_ext_pblock(ex); | 
 |  | 
 | 	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS); | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_split_extent_at() splits an extent at given block. | 
 |  * | 
 |  * @handle: the journal handle | 
 |  * @inode: the file inode | 
 |  * @path: the path to the extent | 
 |  * @split: the logical block where the extent is splitted. | 
 |  * @split_flags: indicates if the extent could be zeroout if split fails, and | 
 |  *		 the states(init or uninit) of new extents. | 
 |  * @flags: flags used to insert new extent to extent tree. | 
 |  * | 
 |  * | 
 |  * Splits extent [a, b] into two extents [a, @split) and [@split, b], states | 
 |  * of which are deterimined by split_flag. | 
 |  * | 
 |  * There are two cases: | 
 |  *  a> the extent are splitted into two extent. | 
 |  *  b> split is not needed, and just mark the extent. | 
 |  * | 
 |  * return 0 on success. | 
 |  */ | 
 | static int ext4_split_extent_at(handle_t *handle, | 
 | 			     struct inode *inode, | 
 | 			     struct ext4_ext_path *path, | 
 | 			     ext4_lblk_t split, | 
 | 			     int split_flag, | 
 | 			     int flags) | 
 | { | 
 | 	ext4_fsblk_t newblock; | 
 | 	ext4_lblk_t ee_block; | 
 | 	struct ext4_extent *ex, newex, orig_ex; | 
 | 	struct ext4_extent *ex2 = NULL; | 
 | 	unsigned int ee_len, depth; | 
 | 	int err = 0; | 
 |  | 
 | 	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) == | 
 | 	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)); | 
 |  | 
 | 	ext_debug("ext4_split_extents_at: inode %lu, logical" | 
 | 		"block %llu\n", inode->i_ino, (unsigned long long)split); | 
 |  | 
 | 	ext4_ext_show_leaf(inode, path); | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	newblock = split - ee_block + ext4_ext_pblock(ex); | 
 |  | 
 | 	BUG_ON(split < ee_block || split >= (ee_block + ee_len)); | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (split == ee_block) { | 
 | 		/* | 
 | 		 * case b: block @split is the block that the extent begins with | 
 | 		 * then we just change the state of the extent, and splitting | 
 | 		 * is not needed. | 
 | 		 */ | 
 | 		if (split_flag & EXT4_EXT_MARK_UNINIT2) | 
 | 			ext4_ext_mark_uninitialized(ex); | 
 | 		else | 
 | 			ext4_ext_mark_initialized(ex); | 
 |  | 
 | 		if (!(flags & EXT4_GET_BLOCKS_PRE_IO)) | 
 | 			ext4_ext_try_to_merge(handle, inode, path, ex); | 
 |  | 
 | 		err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* case a */ | 
 | 	memcpy(&orig_ex, ex, sizeof(orig_ex)); | 
 | 	ex->ee_len = cpu_to_le16(split - ee_block); | 
 | 	if (split_flag & EXT4_EXT_MARK_UNINIT1) | 
 | 		ext4_ext_mark_uninitialized(ex); | 
 |  | 
 | 	/* | 
 | 	 * path may lead to new leaf, not to original leaf any more | 
 | 	 * after ext4_ext_insert_extent() returns, | 
 | 	 */ | 
 | 	err = ext4_ext_dirty(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto fix_extent_len; | 
 |  | 
 | 	ex2 = &newex; | 
 | 	ex2->ee_block = cpu_to_le32(split); | 
 | 	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block)); | 
 | 	ext4_ext_store_pblock(ex2, newblock); | 
 | 	if (split_flag & EXT4_EXT_MARK_UNINIT2) | 
 | 		ext4_ext_mark_uninitialized(ex2); | 
 |  | 
 | 	err = ext4_ext_insert_extent(handle, inode, path, &newex, flags); | 
 | 	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) { | 
 | 		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) { | 
 | 			if (split_flag & EXT4_EXT_DATA_VALID1) | 
 | 				err = ext4_ext_zeroout(inode, ex2); | 
 | 			else | 
 | 				err = ext4_ext_zeroout(inode, ex); | 
 | 		} else | 
 | 			err = ext4_ext_zeroout(inode, &orig_ex); | 
 |  | 
 | 		if (err) | 
 | 			goto fix_extent_len; | 
 | 		/* update the extent length and mark as initialized */ | 
 | 		ex->ee_len = cpu_to_le16(ee_len); | 
 | 		ext4_ext_try_to_merge(handle, inode, path, ex); | 
 | 		err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 		goto out; | 
 | 	} else if (err) | 
 | 		goto fix_extent_len; | 
 |  | 
 | out: | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	return err; | 
 |  | 
 | fix_extent_len: | 
 | 	ex->ee_len = orig_ex.ee_len; | 
 | 	ext4_ext_dirty(handle, inode, path + depth); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_split_extents() splits an extent and mark extent which is covered | 
 |  * by @map as split_flags indicates | 
 |  * | 
 |  * It may result in splitting the extent into multiple extents (upto three) | 
 |  * There are three possibilities: | 
 |  *   a> There is no split required | 
 |  *   b> Splits in two extents: Split is happening at either end of the extent | 
 |  *   c> Splits in three extents: Somone is splitting in middle of the extent | 
 |  * | 
 |  */ | 
 | static int ext4_split_extent(handle_t *handle, | 
 | 			      struct inode *inode, | 
 | 			      struct ext4_ext_path *path, | 
 | 			      struct ext4_map_blocks *map, | 
 | 			      int split_flag, | 
 | 			      int flags) | 
 | { | 
 | 	ext4_lblk_t ee_block; | 
 | 	struct ext4_extent *ex; | 
 | 	unsigned int ee_len, depth; | 
 | 	int err = 0; | 
 | 	int uninitialized; | 
 | 	int split_flag1, flags1; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	uninitialized = ext4_ext_is_uninitialized(ex); | 
 |  | 
 | 	if (map->m_lblk + map->m_len < ee_block + ee_len) { | 
 | 		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT; | 
 | 		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO; | 
 | 		if (uninitialized) | 
 | 			split_flag1 |= EXT4_EXT_MARK_UNINIT1 | | 
 | 				       EXT4_EXT_MARK_UNINIT2; | 
 | 		if (split_flag & EXT4_EXT_DATA_VALID2) | 
 | 			split_flag1 |= EXT4_EXT_DATA_VALID1; | 
 | 		err = ext4_split_extent_at(handle, inode, path, | 
 | 				map->m_lblk + map->m_len, split_flag1, flags1); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ext4_ext_drop_refs(path); | 
 | 	path = ext4_ext_find_extent(inode, map->m_lblk, path); | 
 | 	if (IS_ERR(path)) | 
 | 		return PTR_ERR(path); | 
 |  | 
 | 	if (map->m_lblk >= ee_block) { | 
 | 		split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT | | 
 | 					    EXT4_EXT_DATA_VALID2); | 
 | 		if (uninitialized) | 
 | 			split_flag1 |= EXT4_EXT_MARK_UNINIT1; | 
 | 		if (split_flag & EXT4_EXT_MARK_UNINIT2) | 
 | 			split_flag1 |= EXT4_EXT_MARK_UNINIT2; | 
 | 		err = ext4_split_extent_at(handle, inode, path, | 
 | 				map->m_lblk, split_flag1, flags); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | out: | 
 | 	return err ? err : map->m_len; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called by ext4_ext_map_blocks() if someone tries to write | 
 |  * to an uninitialized extent. It may result in splitting the uninitialized | 
 |  * extent into multiple extents (up to three - one initialized and two | 
 |  * uninitialized). | 
 |  * There are three possibilities: | 
 |  *   a> There is no split required: Entire extent should be initialized | 
 |  *   b> Splits in two extents: Write is happening at either end of the extent | 
 |  *   c> Splits in three extents: Somone is writing in middle of the extent | 
 |  * | 
 |  * Pre-conditions: | 
 |  *  - The extent pointed to by 'path' is uninitialized. | 
 |  *  - The extent pointed to by 'path' contains a superset | 
 |  *    of the logical span [map->m_lblk, map->m_lblk + map->m_len). | 
 |  * | 
 |  * Post-conditions on success: | 
 |  *  - the returned value is the number of blocks beyond map->l_lblk | 
 |  *    that are allocated and initialized. | 
 |  *    It is guaranteed to be >= map->m_len. | 
 |  */ | 
 | static int ext4_ext_convert_to_initialized(handle_t *handle, | 
 | 					   struct inode *inode, | 
 | 					   struct ext4_map_blocks *map, | 
 | 					   struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_sb_info *sbi; | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_map_blocks split_map; | 
 | 	struct ext4_extent zero_ex; | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t ee_block, eof_block; | 
 | 	unsigned int ee_len, depth; | 
 | 	int allocated, max_zeroout = 0; | 
 | 	int err = 0; | 
 | 	int split_flag = 0; | 
 |  | 
 | 	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical" | 
 | 		"block %llu, max_blocks %u\n", inode->i_ino, | 
 | 		(unsigned long long)map->m_lblk, map->m_len); | 
 |  | 
 | 	sbi = EXT4_SB(inode->i_sb); | 
 | 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> | 
 | 		inode->i_sb->s_blocksize_bits; | 
 | 	if (eof_block < map->m_lblk + map->m_len) | 
 | 		eof_block = map->m_lblk + map->m_len; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 | 	allocated = ee_len - (map->m_lblk - ee_block); | 
 |  | 
 | 	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex); | 
 |  | 
 | 	/* Pre-conditions */ | 
 | 	BUG_ON(!ext4_ext_is_uninitialized(ex)); | 
 | 	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len)); | 
 |  | 
 | 	/* | 
 | 	 * Attempt to transfer newly initialized blocks from the currently | 
 | 	 * uninitialized extent to its left neighbor. This is much cheaper | 
 | 	 * than an insertion followed by a merge as those involve costly | 
 | 	 * memmove() calls. This is the common case in steady state for | 
 | 	 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append | 
 | 	 * writes. | 
 | 	 * | 
 | 	 * Limitations of the current logic: | 
 | 	 *  - L1: we only deal with writes at the start of the extent. | 
 | 	 *    The approach could be extended to writes at the end | 
 | 	 *    of the extent but this scenario was deemed less common. | 
 | 	 *  - L2: we do not deal with writes covering the whole extent. | 
 | 	 *    This would require removing the extent if the transfer | 
 | 	 *    is possible. | 
 | 	 *  - L3: we only attempt to merge with an extent stored in the | 
 | 	 *    same extent tree node. | 
 | 	 */ | 
 | 	if ((map->m_lblk == ee_block) &&	/*L1*/ | 
 | 		(map->m_len < ee_len) &&	/*L2*/ | 
 | 		(ex > EXT_FIRST_EXTENT(eh))) {	/*L3*/ | 
 | 		struct ext4_extent *prev_ex; | 
 | 		ext4_lblk_t prev_lblk; | 
 | 		ext4_fsblk_t prev_pblk, ee_pblk; | 
 | 		unsigned int prev_len, write_len; | 
 |  | 
 | 		prev_ex = ex - 1; | 
 | 		prev_lblk = le32_to_cpu(prev_ex->ee_block); | 
 | 		prev_len = ext4_ext_get_actual_len(prev_ex); | 
 | 		prev_pblk = ext4_ext_pblock(prev_ex); | 
 | 		ee_pblk = ext4_ext_pblock(ex); | 
 | 		write_len = map->m_len; | 
 |  | 
 | 		/* | 
 | 		 * A transfer of blocks from 'ex' to 'prev_ex' is allowed | 
 | 		 * upon those conditions: | 
 | 		 * - C1: prev_ex is initialized, | 
 | 		 * - C2: prev_ex is logically abutting ex, | 
 | 		 * - C3: prev_ex is physically abutting ex, | 
 | 		 * - C4: prev_ex can receive the additional blocks without | 
 | 		 *   overflowing the (initialized) length limit. | 
 | 		 */ | 
 | 		if ((!ext4_ext_is_uninitialized(prev_ex)) &&		/*C1*/ | 
 | 			((prev_lblk + prev_len) == ee_block) &&		/*C2*/ | 
 | 			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/ | 
 | 			(prev_len < (EXT_INIT_MAX_LEN - write_len))) {	/*C4*/ | 
 | 			err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 			if (err) | 
 | 				goto out; | 
 |  | 
 | 			trace_ext4_ext_convert_to_initialized_fastpath(inode, | 
 | 				map, ex, prev_ex); | 
 |  | 
 | 			/* Shift the start of ex by 'write_len' blocks */ | 
 | 			ex->ee_block = cpu_to_le32(ee_block + write_len); | 
 | 			ext4_ext_store_pblock(ex, ee_pblk + write_len); | 
 | 			ex->ee_len = cpu_to_le16(ee_len - write_len); | 
 | 			ext4_ext_mark_uninitialized(ex); /* Restore the flag */ | 
 |  | 
 | 			/* Extend prev_ex by 'write_len' blocks */ | 
 | 			prev_ex->ee_len = cpu_to_le16(prev_len + write_len); | 
 |  | 
 | 			/* Mark the block containing both extents as dirty */ | 
 | 			ext4_ext_dirty(handle, inode, path + depth); | 
 |  | 
 | 			/* Update path to point to the right extent */ | 
 | 			path[depth].p_ext = prev_ex; | 
 |  | 
 | 			/* Result: number of initialized blocks past m_lblk */ | 
 | 			allocated = write_len; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	WARN_ON(map->m_lblk < ee_block); | 
 | 	/* | 
 | 	 * It is safe to convert extent to initialized via explicit | 
 | 	 * zeroout only if extent is fully insde i_size or new_size. | 
 | 	 */ | 
 | 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; | 
 |  | 
 | 	if (EXT4_EXT_MAY_ZEROOUT & split_flag) | 
 | 		max_zeroout = sbi->s_extent_max_zeroout_kb >> | 
 | 			inode->i_sb->s_blocksize_bits; | 
 |  | 
 | 	/* If extent is less than s_max_zeroout_kb, zeroout directly */ | 
 | 	if (max_zeroout && (ee_len <= max_zeroout)) { | 
 | 		err = ext4_ext_zeroout(inode, ex); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 		if (err) | 
 | 			goto out; | 
 | 		ext4_ext_mark_initialized(ex); | 
 | 		ext4_ext_try_to_merge(handle, inode, path, ex); | 
 | 		err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * four cases: | 
 | 	 * 1. split the extent into three extents. | 
 | 	 * 2. split the extent into two extents, zeroout the first half. | 
 | 	 * 3. split the extent into two extents, zeroout the second half. | 
 | 	 * 4. split the extent into two extents with out zeroout. | 
 | 	 */ | 
 | 	split_map.m_lblk = map->m_lblk; | 
 | 	split_map.m_len = map->m_len; | 
 |  | 
 | 	if (max_zeroout && (allocated > map->m_len)) { | 
 | 		if (allocated <= max_zeroout) { | 
 | 			/* case 3 */ | 
 | 			zero_ex.ee_block = | 
 | 					 cpu_to_le32(map->m_lblk); | 
 | 			zero_ex.ee_len = cpu_to_le16(allocated); | 
 | 			ext4_ext_store_pblock(&zero_ex, | 
 | 				ext4_ext_pblock(ex) + map->m_lblk - ee_block); | 
 | 			err = ext4_ext_zeroout(inode, &zero_ex); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			split_map.m_lblk = map->m_lblk; | 
 | 			split_map.m_len = allocated; | 
 | 		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) { | 
 | 			/* case 2 */ | 
 | 			if (map->m_lblk != ee_block) { | 
 | 				zero_ex.ee_block = ex->ee_block; | 
 | 				zero_ex.ee_len = cpu_to_le16(map->m_lblk - | 
 | 							ee_block); | 
 | 				ext4_ext_store_pblock(&zero_ex, | 
 | 						      ext4_ext_pblock(ex)); | 
 | 				err = ext4_ext_zeroout(inode, &zero_ex); | 
 | 				if (err) | 
 | 					goto out; | 
 | 			} | 
 |  | 
 | 			split_map.m_lblk = ee_block; | 
 | 			split_map.m_len = map->m_lblk - ee_block + map->m_len; | 
 | 			allocated = map->m_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	allocated = ext4_split_extent(handle, inode, path, | 
 | 				      &split_map, split_flag, 0); | 
 | 	if (allocated < 0) | 
 | 		err = allocated; | 
 |  | 
 | out: | 
 | 	return err ? err : allocated; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called by ext4_ext_map_blocks() from | 
 |  * ext4_get_blocks_dio_write() when DIO to write | 
 |  * to an uninitialized extent. | 
 |  * | 
 |  * Writing to an uninitialized extent may result in splitting the uninitialized | 
 |  * extent into multiple initialized/uninitialized extents (up to three) | 
 |  * There are three possibilities: | 
 |  *   a> There is no split required: Entire extent should be uninitialized | 
 |  *   b> Splits in two extents: Write is happening at either end of the extent | 
 |  *   c> Splits in three extents: Somone is writing in middle of the extent | 
 |  * | 
 |  * One of more index blocks maybe needed if the extent tree grow after | 
 |  * the uninitialized extent split. To prevent ENOSPC occur at the IO | 
 |  * complete, we need to split the uninitialized extent before DIO submit | 
 |  * the IO. The uninitialized extent called at this time will be split | 
 |  * into three uninitialized extent(at most). After IO complete, the part | 
 |  * being filled will be convert to initialized by the end_io callback function | 
 |  * via ext4_convert_unwritten_extents(). | 
 |  * | 
 |  * Returns the size of uninitialized extent to be written on success. | 
 |  */ | 
 | static int ext4_split_unwritten_extents(handle_t *handle, | 
 | 					struct inode *inode, | 
 | 					struct ext4_map_blocks *map, | 
 | 					struct ext4_ext_path *path, | 
 | 					int flags) | 
 | { | 
 | 	ext4_lblk_t eof_block; | 
 | 	ext4_lblk_t ee_block; | 
 | 	struct ext4_extent *ex; | 
 | 	unsigned int ee_len; | 
 | 	int split_flag = 0, depth; | 
 |  | 
 | 	ext_debug("ext4_split_unwritten_extents: inode %lu, logical" | 
 | 		"block %llu, max_blocks %u\n", inode->i_ino, | 
 | 		(unsigned long long)map->m_lblk, map->m_len); | 
 |  | 
 | 	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >> | 
 | 		inode->i_sb->s_blocksize_bits; | 
 | 	if (eof_block < map->m_lblk + map->m_len) | 
 | 		eof_block = map->m_lblk + map->m_len; | 
 | 	/* | 
 | 	 * It is safe to convert extent to initialized via explicit | 
 | 	 * zeroout only if extent is fully insde i_size or new_size. | 
 | 	 */ | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0; | 
 | 	split_flag |= EXT4_EXT_MARK_UNINIT2; | 
 | 	if (flags & EXT4_GET_BLOCKS_CONVERT) | 
 | 		split_flag |= EXT4_EXT_DATA_VALID2; | 
 | 	flags |= EXT4_GET_BLOCKS_PRE_IO; | 
 | 	return ext4_split_extent(handle, inode, path, map, split_flag, flags); | 
 | } | 
 |  | 
 | static int ext4_convert_unwritten_extents_endio(handle_t *handle, | 
 | 						struct inode *inode, | 
 | 						struct ext4_map_blocks *map, | 
 | 						struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_extent *ex; | 
 | 	ext4_lblk_t ee_block; | 
 | 	unsigned int ee_len; | 
 | 	int depth; | 
 | 	int err = 0; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	ex = path[depth].p_ext; | 
 | 	ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical" | 
 | 		"block %llu, max_blocks %u\n", inode->i_ino, | 
 | 		  (unsigned long long)ee_block, ee_len); | 
 |  | 
 | 	/* If extent is larger than requested then split is required */ | 
 | 	if (ee_block != map->m_lblk || ee_len > map->m_len) { | 
 | 		err = ext4_split_unwritten_extents(handle, inode, map, path, | 
 | 						   EXT4_GET_BLOCKS_CONVERT); | 
 | 		if (err < 0) | 
 | 			goto out; | 
 | 		ext4_ext_drop_refs(path); | 
 | 		path = ext4_ext_find_extent(inode, map->m_lblk, path); | 
 | 		if (IS_ERR(path)) { | 
 | 			err = PTR_ERR(path); | 
 | 			goto out; | 
 | 		} | 
 | 		depth = ext_depth(inode); | 
 | 		ex = path[depth].p_ext; | 
 | 	} | 
 |  | 
 | 	err = ext4_ext_get_access(handle, inode, path + depth); | 
 | 	if (err) | 
 | 		goto out; | 
 | 	/* first mark the extent as initialized */ | 
 | 	ext4_ext_mark_initialized(ex); | 
 |  | 
 | 	/* note: ext4_ext_correct_indexes() isn't needed here because | 
 | 	 * borders are not changed | 
 | 	 */ | 
 | 	ext4_ext_try_to_merge(handle, inode, path, ex); | 
 |  | 
 | 	/* Mark modified extent as dirty */ | 
 | 	err = ext4_ext_dirty(handle, inode, path + path->p_depth); | 
 | out: | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void unmap_underlying_metadata_blocks(struct block_device *bdev, | 
 | 			sector_t block, int count) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < count; i++) | 
 |                 unmap_underlying_metadata(bdev, block + i); | 
 | } | 
 |  | 
 | /* | 
 |  * Handle EOFBLOCKS_FL flag, clearing it if necessary | 
 |  */ | 
 | static int check_eofblocks_fl(handle_t *handle, struct inode *inode, | 
 | 			      ext4_lblk_t lblk, | 
 | 			      struct ext4_ext_path *path, | 
 | 			      unsigned int len) | 
 | { | 
 | 	int i, depth; | 
 | 	struct ext4_extent_header *eh; | 
 | 	struct ext4_extent *last_ex; | 
 |  | 
 | 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)) | 
 | 		return 0; | 
 |  | 
 | 	depth = ext_depth(inode); | 
 | 	eh = path[depth].p_hdr; | 
 |  | 
 | 	/* | 
 | 	 * We're going to remove EOFBLOCKS_FL entirely in future so we | 
 | 	 * do not care for this case anymore. Simply remove the flag | 
 | 	 * if there are no extents. | 
 | 	 */ | 
 | 	if (unlikely(!eh->eh_entries)) | 
 | 		goto out; | 
 | 	last_ex = EXT_LAST_EXTENT(eh); | 
 | 	/* | 
 | 	 * We should clear the EOFBLOCKS_FL flag if we are writing the | 
 | 	 * last block in the last extent in the file.  We test this by | 
 | 	 * first checking to see if the caller to | 
 | 	 * ext4_ext_get_blocks() was interested in the last block (or | 
 | 	 * a block beyond the last block) in the current extent.  If | 
 | 	 * this turns out to be false, we can bail out from this | 
 | 	 * function immediately. | 
 | 	 */ | 
 | 	if (lblk + len < le32_to_cpu(last_ex->ee_block) + | 
 | 	    ext4_ext_get_actual_len(last_ex)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If the caller does appear to be planning to write at or | 
 | 	 * beyond the end of the current extent, we then test to see | 
 | 	 * if the current extent is the last extent in the file, by | 
 | 	 * checking to make sure it was reached via the rightmost node | 
 | 	 * at each level of the tree. | 
 | 	 */ | 
 | 	for (i = depth-1; i >= 0; i--) | 
 | 		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr)) | 
 | 			return 0; | 
 | out: | 
 | 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
 | 	return ext4_mark_inode_dirty(handle, inode); | 
 | } | 
 |  | 
 | /** | 
 |  * ext4_find_delalloc_range: find delayed allocated block in the given range. | 
 |  * | 
 |  * Return 1 if there is a delalloc block in the range, otherwise 0. | 
 |  */ | 
 | int ext4_find_delalloc_range(struct inode *inode, | 
 | 			     ext4_lblk_t lblk_start, | 
 | 			     ext4_lblk_t lblk_end) | 
 | { | 
 | 	struct extent_status es; | 
 |  | 
 | 	ext4_es_find_delayed_extent(inode, lblk_start, &es); | 
 | 	if (es.es_len == 0) | 
 | 		return 0; /* there is no delay extent in this tree */ | 
 | 	else if (es.es_lblk <= lblk_start && | 
 | 		 lblk_start < es.es_lblk + es.es_len) | 
 | 		return 1; | 
 | 	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end) | 
 | 		return 1; | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	ext4_lblk_t lblk_start, lblk_end; | 
 | 	lblk_start = lblk & (~(sbi->s_cluster_ratio - 1)); | 
 | 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1; | 
 |  | 
 | 	return ext4_find_delalloc_range(inode, lblk_start, lblk_end); | 
 | } | 
 |  | 
 | /** | 
 |  * Determines how many complete clusters (out of those specified by the 'map') | 
 |  * are under delalloc and were reserved quota for. | 
 |  * This function is called when we are writing out the blocks that were | 
 |  * originally written with their allocation delayed, but then the space was | 
 |  * allocated using fallocate() before the delayed allocation could be resolved. | 
 |  * The cases to look for are: | 
 |  * ('=' indicated delayed allocated blocks | 
 |  *  '-' indicates non-delayed allocated blocks) | 
 |  * (a) partial clusters towards beginning and/or end outside of allocated range | 
 |  *     are not delalloc'ed. | 
 |  *	Ex: | 
 |  *	|----c---=|====c====|====c====|===-c----| | 
 |  *	         |++++++ allocated ++++++| | 
 |  *	==> 4 complete clusters in above example | 
 |  * | 
 |  * (b) partial cluster (outside of allocated range) towards either end is | 
 |  *     marked for delayed allocation. In this case, we will exclude that | 
 |  *     cluster. | 
 |  *	Ex: | 
 |  *	|----====c========|========c========| | 
 |  *	     |++++++ allocated ++++++| | 
 |  *	==> 1 complete clusters in above example | 
 |  * | 
 |  *	Ex: | 
 |  *	|================c================| | 
 |  *            |++++++ allocated ++++++| | 
 |  *	==> 0 complete clusters in above example | 
 |  * | 
 |  * The ext4_da_update_reserve_space will be called only if we | 
 |  * determine here that there were some "entire" clusters that span | 
 |  * this 'allocated' range. | 
 |  * In the non-bigalloc case, this function will just end up returning num_blks | 
 |  * without ever calling ext4_find_delalloc_range. | 
 |  */ | 
 | static unsigned int | 
 | get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start, | 
 | 			   unsigned int num_blks) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	ext4_lblk_t alloc_cluster_start, alloc_cluster_end; | 
 | 	ext4_lblk_t lblk_from, lblk_to, c_offset; | 
 | 	unsigned int allocated_clusters = 0; | 
 |  | 
 | 	alloc_cluster_start = EXT4_B2C(sbi, lblk_start); | 
 | 	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1); | 
 |  | 
 | 	/* max possible clusters for this allocation */ | 
 | 	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1; | 
 |  | 
 | 	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks); | 
 |  | 
 | 	/* Check towards left side */ | 
 | 	c_offset = lblk_start & (sbi->s_cluster_ratio - 1); | 
 | 	if (c_offset) { | 
 | 		lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1)); | 
 | 		lblk_to = lblk_from + c_offset - 1; | 
 |  | 
 | 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) | 
 | 			allocated_clusters--; | 
 | 	} | 
 |  | 
 | 	/* Now check towards right. */ | 
 | 	c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1); | 
 | 	if (allocated_clusters && c_offset) { | 
 | 		lblk_from = lblk_start + num_blks; | 
 | 		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1; | 
 |  | 
 | 		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to)) | 
 | 			allocated_clusters--; | 
 | 	} | 
 |  | 
 | 	return allocated_clusters; | 
 | } | 
 |  | 
 | static int | 
 | ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_map_blocks *map, | 
 | 			struct ext4_ext_path *path, int flags, | 
 | 			unsigned int allocated, ext4_fsblk_t newblock) | 
 | { | 
 | 	int ret = 0; | 
 | 	int err = 0; | 
 | 	ext4_io_end_t *io = ext4_inode_aio(inode); | 
 |  | 
 | 	ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical " | 
 | 		  "block %llu, max_blocks %u, flags %x, allocated %u\n", | 
 | 		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len, | 
 | 		  flags, allocated); | 
 | 	ext4_ext_show_leaf(inode, path); | 
 |  | 
 | 	trace_ext4_ext_handle_uninitialized_extents(inode, map, flags, | 
 | 						    allocated, newblock); | 
 |  | 
 | 	/* get_block() before submit the IO, split the extent */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_PRE_IO)) { | 
 | 		ret = ext4_split_unwritten_extents(handle, inode, map, | 
 | 						   path, flags); | 
 | 		if (ret <= 0) | 
 | 			goto out; | 
 | 		/* | 
 | 		 * Flag the inode(non aio case) or end_io struct (aio case) | 
 | 		 * that this IO needs to conversion to written when IO is | 
 | 		 * completed | 
 | 		 */ | 
 | 		if (io) | 
 | 			ext4_set_io_unwritten_flag(inode, io); | 
 | 		else | 
 | 			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		if (ext4_should_dioread_nolock(inode)) | 
 | 			map->m_flags |= EXT4_MAP_UNINIT; | 
 | 		goto out; | 
 | 	} | 
 | 	/* IO end_io complete, convert the filled extent to written */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_CONVERT)) { | 
 | 		ret = ext4_convert_unwritten_extents_endio(handle, inode, map, | 
 | 							path); | 
 | 		if (ret >= 0) { | 
 | 			ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 			err = check_eofblocks_fl(handle, inode, map->m_lblk, | 
 | 						 path, map->m_len); | 
 | 		} else | 
 | 			err = ret; | 
 | 		goto out2; | 
 | 	} | 
 | 	/* buffered IO case */ | 
 | 	/* | 
 | 	 * repeat fallocate creation request | 
 | 	 * we already have an unwritten extent | 
 | 	 */ | 
 | 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) { | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		goto map_out; | 
 | 	} | 
 |  | 
 | 	/* buffered READ or buffered write_begin() lookup */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
 | 		/* | 
 | 		 * We have blocks reserved already.  We | 
 | 		 * return allocated blocks so that delalloc | 
 | 		 * won't do block reservation for us.  But | 
 | 		 * the buffer head will be unmapped so that | 
 | 		 * a read from the block returns 0s. | 
 | 		 */ | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		goto out1; | 
 | 	} | 
 |  | 
 | 	/* buffered write, writepage time, convert*/ | 
 | 	ret = ext4_ext_convert_to_initialized(handle, inode, map, path); | 
 | 	if (ret >= 0) | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | out: | 
 | 	if (ret <= 0) { | 
 | 		err = ret; | 
 | 		goto out2; | 
 | 	} else | 
 | 		allocated = ret; | 
 | 	map->m_flags |= EXT4_MAP_NEW; | 
 | 	/* | 
 | 	 * if we allocated more blocks than requested | 
 | 	 * we need to make sure we unmap the extra block | 
 | 	 * allocated. The actual needed block will get | 
 | 	 * unmapped later when we find the buffer_head marked | 
 | 	 * new. | 
 | 	 */ | 
 | 	if (allocated > map->m_len) { | 
 | 		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev, | 
 | 					newblock + map->m_len, | 
 | 					allocated - map->m_len); | 
 | 		allocated = map->m_len; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have done fallocate with the offset that is already | 
 | 	 * delayed allocated, we would have block reservation | 
 | 	 * and quota reservation done in the delayed write path. | 
 | 	 * But fallocate would have already updated quota and block | 
 | 	 * count for this offset. So cancel these reservation | 
 | 	 */ | 
 | 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { | 
 | 		unsigned int reserved_clusters; | 
 | 		reserved_clusters = get_reserved_cluster_alloc(inode, | 
 | 				map->m_lblk, map->m_len); | 
 | 		if (reserved_clusters) | 
 | 			ext4_da_update_reserve_space(inode, | 
 | 						     reserved_clusters, | 
 | 						     0); | 
 | 	} | 
 |  | 
 | map_out: | 
 | 	map->m_flags |= EXT4_MAP_MAPPED; | 
 | 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) { | 
 | 		err = check_eofblocks_fl(handle, inode, map->m_lblk, path, | 
 | 					 map->m_len); | 
 | 		if (err < 0) | 
 | 			goto out2; | 
 | 	} | 
 | out1: | 
 | 	if (allocated > map->m_len) | 
 | 		allocated = map->m_len; | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	map->m_pblk = newblock; | 
 | 	map->m_len = allocated; | 
 | out2: | 
 | 	if (path) { | 
 | 		ext4_ext_drop_refs(path); | 
 | 		kfree(path); | 
 | 	} | 
 | 	return err ? err : allocated; | 
 | } | 
 |  | 
 | /* | 
 |  * get_implied_cluster_alloc - check to see if the requested | 
 |  * allocation (in the map structure) overlaps with a cluster already | 
 |  * allocated in an extent. | 
 |  *	@sb	The filesystem superblock structure | 
 |  *	@map	The requested lblk->pblk mapping | 
 |  *	@ex	The extent structure which might contain an implied | 
 |  *			cluster allocation | 
 |  * | 
 |  * This function is called by ext4_ext_map_blocks() after we failed to | 
 |  * find blocks that were already in the inode's extent tree.  Hence, | 
 |  * we know that the beginning of the requested region cannot overlap | 
 |  * the extent from the inode's extent tree.  There are three cases we | 
 |  * want to catch.  The first is this case: | 
 |  * | 
 |  *		 |--- cluster # N--| | 
 |  *    |--- extent ---|	|---- requested region ---| | 
 |  *			|==========| | 
 |  * | 
 |  * The second case that we need to test for is this one: | 
 |  * | 
 |  *   |--------- cluster # N ----------------| | 
 |  *	   |--- requested region --|   |------- extent ----| | 
 |  *	   |=======================| | 
 |  * | 
 |  * The third case is when the requested region lies between two extents | 
 |  * within the same cluster: | 
 |  *          |------------- cluster # N-------------| | 
 |  * |----- ex -----|                  |---- ex_right ----| | 
 |  *                  |------ requested region ------| | 
 |  *                  |================| | 
 |  * | 
 |  * In each of the above cases, we need to set the map->m_pblk and | 
 |  * map->m_len so it corresponds to the return the extent labelled as | 
 |  * "|====|" from cluster #N, since it is already in use for data in | 
 |  * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to | 
 |  * signal to ext4_ext_map_blocks() that map->m_pblk should be treated | 
 |  * as a new "allocated" block region.  Otherwise, we will return 0 and | 
 |  * ext4_ext_map_blocks() will then allocate one or more new clusters | 
 |  * by calling ext4_mb_new_blocks(). | 
 |  */ | 
 | static int get_implied_cluster_alloc(struct super_block *sb, | 
 | 				     struct ext4_map_blocks *map, | 
 | 				     struct ext4_extent *ex, | 
 | 				     struct ext4_ext_path *path) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1); | 
 | 	ext4_lblk_t ex_cluster_start, ex_cluster_end; | 
 | 	ext4_lblk_t rr_cluster_start; | 
 | 	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); | 
 | 	ext4_fsblk_t ee_start = ext4_ext_pblock(ex); | 
 | 	unsigned short ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 	/* The extent passed in that we are trying to match */ | 
 | 	ex_cluster_start = EXT4_B2C(sbi, ee_block); | 
 | 	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1); | 
 |  | 
 | 	/* The requested region passed into ext4_map_blocks() */ | 
 | 	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk); | 
 |  | 
 | 	if ((rr_cluster_start == ex_cluster_end) || | 
 | 	    (rr_cluster_start == ex_cluster_start)) { | 
 | 		if (rr_cluster_start == ex_cluster_end) | 
 | 			ee_start += ee_len - 1; | 
 | 		map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) + | 
 | 			c_offset; | 
 | 		map->m_len = min(map->m_len, | 
 | 				 (unsigned) sbi->s_cluster_ratio - c_offset); | 
 | 		/* | 
 | 		 * Check for and handle this case: | 
 | 		 * | 
 | 		 *   |--------- cluster # N-------------| | 
 | 		 *		       |------- extent ----| | 
 | 		 *	   |--- requested region ---| | 
 | 		 *	   |===========| | 
 | 		 */ | 
 |  | 
 | 		if (map->m_lblk < ee_block) | 
 | 			map->m_len = min(map->m_len, ee_block - map->m_lblk); | 
 |  | 
 | 		/* | 
 | 		 * Check for the case where there is already another allocated | 
 | 		 * block to the right of 'ex' but before the end of the cluster. | 
 | 		 * | 
 | 		 *          |------------- cluster # N-------------| | 
 | 		 * |----- ex -----|                  |---- ex_right ----| | 
 | 		 *                  |------ requested region ------| | 
 | 		 *                  |================| | 
 | 		 */ | 
 | 		if (map->m_lblk > ee_block) { | 
 | 			ext4_lblk_t next = ext4_ext_next_allocated_block(path); | 
 | 			map->m_len = min(map->m_len, next - map->m_lblk); | 
 | 		} | 
 |  | 
 | 		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Block allocation/map/preallocation routine for extents based files | 
 |  * | 
 |  * | 
 |  * Need to be called with | 
 |  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block | 
 |  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem) | 
 |  * | 
 |  * return > 0, number of of blocks already mapped/allocated | 
 |  *          if create == 0 and these are pre-allocated blocks | 
 |  *          	buffer head is unmapped | 
 |  *          otherwise blocks are mapped | 
 |  * | 
 |  * return = 0, if plain look up failed (blocks have not been allocated) | 
 |  *          buffer head is unmapped | 
 |  * | 
 |  * return < 0, error case. | 
 |  */ | 
 | int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, | 
 | 			struct ext4_map_blocks *map, int flags) | 
 | { | 
 | 	struct ext4_ext_path *path = NULL; | 
 | 	struct ext4_extent newex, *ex, *ex2; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	ext4_fsblk_t newblock = 0; | 
 | 	int free_on_err = 0, err = 0, depth; | 
 | 	unsigned int allocated = 0, offset = 0; | 
 | 	unsigned int allocated_clusters = 0; | 
 | 	struct ext4_allocation_request ar; | 
 | 	ext4_io_end_t *io = ext4_inode_aio(inode); | 
 | 	ext4_lblk_t cluster_offset; | 
 | 	int set_unwritten = 0; | 
 |  | 
 | 	ext_debug("blocks %u/%u requested for inode %lu\n", | 
 | 		  map->m_lblk, map->m_len, inode->i_ino); | 
 | 	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); | 
 |  | 
 | 	/* find extent for this block */ | 
 | 	path = ext4_ext_find_extent(inode, map->m_lblk, NULL); | 
 | 	if (IS_ERR(path)) { | 
 | 		err = PTR_ERR(path); | 
 | 		path = NULL; | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	depth = ext_depth(inode); | 
 |  | 
 | 	/* | 
 | 	 * consistent leaf must not be empty; | 
 | 	 * this situation is possible, though, _during_ tree modification; | 
 | 	 * this is why assert can't be put in ext4_ext_find_extent() | 
 | 	 */ | 
 | 	if (unlikely(path[depth].p_ext == NULL && depth != 0)) { | 
 | 		EXT4_ERROR_INODE(inode, "bad extent address " | 
 | 				 "lblock: %lu, depth: %d pblock %lld", | 
 | 				 (unsigned long) map->m_lblk, depth, | 
 | 				 path[depth].p_block); | 
 | 		err = -EIO; | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	ex = path[depth].p_ext; | 
 | 	if (ex) { | 
 | 		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block); | 
 | 		ext4_fsblk_t ee_start = ext4_ext_pblock(ex); | 
 | 		unsigned short ee_len; | 
 |  | 
 | 		/* | 
 | 		 * Uninitialized extents are treated as holes, except that | 
 | 		 * we split out initialized portions during a write. | 
 | 		 */ | 
 | 		ee_len = ext4_ext_get_actual_len(ex); | 
 |  | 
 | 		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len); | 
 |  | 
 | 		/* if found extent covers block, simply return it */ | 
 | 		if (in_range(map->m_lblk, ee_block, ee_len)) { | 
 | 			newblock = map->m_lblk - ee_block + ee_start; | 
 | 			/* number of remaining blocks in the extent */ | 
 | 			allocated = ee_len - (map->m_lblk - ee_block); | 
 | 			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk, | 
 | 				  ee_block, ee_len, newblock); | 
 |  | 
 | 			if (!ext4_ext_is_uninitialized(ex)) | 
 | 				goto out; | 
 |  | 
 | 			allocated = ext4_ext_handle_uninitialized_extents( | 
 | 				handle, inode, map, path, flags, | 
 | 				allocated, newblock); | 
 | 			goto out3; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((sbi->s_cluster_ratio > 1) && | 
 | 	    ext4_find_delalloc_cluster(inode, map->m_lblk)) | 
 | 		map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
 |  | 
 | 	/* | 
 | 	 * requested block isn't allocated yet; | 
 | 	 * we couldn't try to create block if create flag is zero | 
 | 	 */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) { | 
 | 		/* | 
 | 		 * put just found gap into cache to speed up | 
 | 		 * subsequent requests | 
 | 		 */ | 
 | 		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0) | 
 | 			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk); | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Okay, we need to do block allocation. | 
 | 	 */ | 
 | 	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; | 
 | 	newex.ee_block = cpu_to_le32(map->m_lblk); | 
 | 	cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1); | 
 |  | 
 | 	/* | 
 | 	 * If we are doing bigalloc, check to see if the extent returned | 
 | 	 * by ext4_ext_find_extent() implies a cluster we can use. | 
 | 	 */ | 
 | 	if (cluster_offset && ex && | 
 | 	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) { | 
 | 		ar.len = allocated = map->m_len; | 
 | 		newblock = map->m_pblk; | 
 | 		map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
 | 		goto got_allocated_blocks; | 
 | 	} | 
 |  | 
 | 	/* find neighbour allocated blocks */ | 
 | 	ar.lleft = map->m_lblk; | 
 | 	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft); | 
 | 	if (err) | 
 | 		goto out2; | 
 | 	ar.lright = map->m_lblk; | 
 | 	ex2 = NULL; | 
 | 	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2); | 
 | 	if (err) | 
 | 		goto out2; | 
 |  | 
 | 	/* Check if the extent after searching to the right implies a | 
 | 	 * cluster we can use. */ | 
 | 	if ((sbi->s_cluster_ratio > 1) && ex2 && | 
 | 	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) { | 
 | 		ar.len = allocated = map->m_len; | 
 | 		newblock = map->m_pblk; | 
 | 		map->m_flags |= EXT4_MAP_FROM_CLUSTER; | 
 | 		goto got_allocated_blocks; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * See if request is beyond maximum number of blocks we can have in | 
 | 	 * a single extent. For an initialized extent this limit is | 
 | 	 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is | 
 | 	 * EXT_UNINIT_MAX_LEN. | 
 | 	 */ | 
 | 	if (map->m_len > EXT_INIT_MAX_LEN && | 
 | 	    !(flags & EXT4_GET_BLOCKS_UNINIT_EXT)) | 
 | 		map->m_len = EXT_INIT_MAX_LEN; | 
 | 	else if (map->m_len > EXT_UNINIT_MAX_LEN && | 
 | 		 (flags & EXT4_GET_BLOCKS_UNINIT_EXT)) | 
 | 		map->m_len = EXT_UNINIT_MAX_LEN; | 
 |  | 
 | 	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */ | 
 | 	newex.ee_len = cpu_to_le16(map->m_len); | 
 | 	err = ext4_ext_check_overlap(sbi, inode, &newex, path); | 
 | 	if (err) | 
 | 		allocated = ext4_ext_get_actual_len(&newex); | 
 | 	else | 
 | 		allocated = map->m_len; | 
 |  | 
 | 	/* allocate new block */ | 
 | 	ar.inode = inode; | 
 | 	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk); | 
 | 	ar.logical = map->m_lblk; | 
 | 	/* | 
 | 	 * We calculate the offset from the beginning of the cluster | 
 | 	 * for the logical block number, since when we allocate a | 
 | 	 * physical cluster, the physical block should start at the | 
 | 	 * same offset from the beginning of the cluster.  This is | 
 | 	 * needed so that future calls to get_implied_cluster_alloc() | 
 | 	 * work correctly. | 
 | 	 */ | 
 | 	offset = map->m_lblk & (sbi->s_cluster_ratio - 1); | 
 | 	ar.len = EXT4_NUM_B2C(sbi, offset+allocated); | 
 | 	ar.goal -= offset; | 
 | 	ar.logical -= offset; | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		ar.flags = EXT4_MB_HINT_DATA; | 
 | 	else | 
 | 		/* disable in-core preallocation for non-regular files */ | 
 | 		ar.flags = 0; | 
 | 	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE) | 
 | 		ar.flags |= EXT4_MB_HINT_NOPREALLOC; | 
 | 	newblock = ext4_mb_new_blocks(handle, &ar, &err); | 
 | 	if (!newblock) | 
 | 		goto out2; | 
 | 	ext_debug("allocate new block: goal %llu, found %llu/%u\n", | 
 | 		  ar.goal, newblock, allocated); | 
 | 	free_on_err = 1; | 
 | 	allocated_clusters = ar.len; | 
 | 	ar.len = EXT4_C2B(sbi, ar.len) - offset; | 
 | 	if (ar.len > allocated) | 
 | 		ar.len = allocated; | 
 |  | 
 | got_allocated_blocks: | 
 | 	/* try to insert new extent into found leaf and return */ | 
 | 	ext4_ext_store_pblock(&newex, newblock + offset); | 
 | 	newex.ee_len = cpu_to_le16(ar.len); | 
 | 	/* Mark uninitialized */ | 
 | 	if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){ | 
 | 		ext4_ext_mark_uninitialized(&newex); | 
 | 		map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		/* | 
 | 		 * io_end structure was created for every IO write to an | 
 | 		 * uninitialized extent. To avoid unnecessary conversion, | 
 | 		 * here we flag the IO that really needs the conversion. | 
 | 		 * For non asycn direct IO case, flag the inode state | 
 | 		 * that we need to perform conversion when IO is done. | 
 | 		 */ | 
 | 		if ((flags & EXT4_GET_BLOCKS_PRE_IO)) | 
 | 			set_unwritten = 1; | 
 | 		if (ext4_should_dioread_nolock(inode)) | 
 | 			map->m_flags |= EXT4_MAP_UNINIT; | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | 	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) | 
 | 		err = check_eofblocks_fl(handle, inode, map->m_lblk, | 
 | 					 path, ar.len); | 
 | 	if (!err) | 
 | 		err = ext4_ext_insert_extent(handle, inode, path, | 
 | 					     &newex, flags); | 
 |  | 
 | 	if (!err && set_unwritten) { | 
 | 		if (io) | 
 | 			ext4_set_io_unwritten_flag(inode, io); | 
 | 		else | 
 | 			ext4_set_inode_state(inode, | 
 | 					     EXT4_STATE_DIO_UNWRITTEN); | 
 | 	} | 
 |  | 
 | 	if (err && free_on_err) { | 
 | 		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ? | 
 | 			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0; | 
 | 		/* free data blocks we just allocated */ | 
 | 		/* not a good idea to call discard here directly, | 
 | 		 * but otherwise we'd need to call it every free() */ | 
 | 		ext4_discard_preallocations(inode); | 
 | 		ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex), | 
 | 				 ext4_ext_get_actual_len(&newex), fb_flags); | 
 | 		goto out2; | 
 | 	} | 
 |  | 
 | 	/* previous routine could use block we allocated */ | 
 | 	newblock = ext4_ext_pblock(&newex); | 
 | 	allocated = ext4_ext_get_actual_len(&newex); | 
 | 	if (allocated > map->m_len) | 
 | 		allocated = map->m_len; | 
 | 	map->m_flags |= EXT4_MAP_NEW; | 
 |  | 
 | 	/* | 
 | 	 * Update reserved blocks/metadata blocks after successful | 
 | 	 * block allocation which had been deferred till now. | 
 | 	 */ | 
 | 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { | 
 | 		unsigned int reserved_clusters; | 
 | 		/* | 
 | 		 * Check how many clusters we had reserved this allocated range | 
 | 		 */ | 
 | 		reserved_clusters = get_reserved_cluster_alloc(inode, | 
 | 						map->m_lblk, allocated); | 
 | 		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) { | 
 | 			if (reserved_clusters) { | 
 | 				/* | 
 | 				 * We have clusters reserved for this range. | 
 | 				 * But since we are not doing actual allocation | 
 | 				 * and are simply using blocks from previously | 
 | 				 * allocated cluster, we should release the | 
 | 				 * reservation and not claim quota. | 
 | 				 */ | 
 | 				ext4_da_update_reserve_space(inode, | 
 | 						reserved_clusters, 0); | 
 | 			} | 
 | 		} else { | 
 | 			BUG_ON(allocated_clusters < reserved_clusters); | 
 | 			/* We will claim quota for all newly allocated blocks.*/ | 
 | 			ext4_da_update_reserve_space(inode, allocated_clusters, | 
 | 							1); | 
 | 			if (reserved_clusters < allocated_clusters) { | 
 | 				struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 				int reservation = allocated_clusters - | 
 | 						  reserved_clusters; | 
 | 				/* | 
 | 				 * It seems we claimed few clusters outside of | 
 | 				 * the range of this allocation. We should give | 
 | 				 * it back to the reservation pool. This can | 
 | 				 * happen in the following case: | 
 | 				 * | 
 | 				 * * Suppose s_cluster_ratio is 4 (i.e., each | 
 | 				 *   cluster has 4 blocks. Thus, the clusters | 
 | 				 *   are [0-3],[4-7],[8-11]... | 
 | 				 * * First comes delayed allocation write for | 
 | 				 *   logical blocks 10 & 11. Since there were no | 
 | 				 *   previous delayed allocated blocks in the | 
 | 				 *   range [8-11], we would reserve 1 cluster | 
 | 				 *   for this write. | 
 | 				 * * Next comes write for logical blocks 3 to 8. | 
 | 				 *   In this case, we will reserve 2 clusters | 
 | 				 *   (for [0-3] and [4-7]; and not for [8-11] as | 
 | 				 *   that range has a delayed allocated blocks. | 
 | 				 *   Thus total reserved clusters now becomes 3. | 
 | 				 * * Now, during the delayed allocation writeout | 
 | 				 *   time, we will first write blocks [3-8] and | 
 | 				 *   allocate 3 clusters for writing these | 
 | 				 *   blocks. Also, we would claim all these | 
 | 				 *   three clusters above. | 
 | 				 * * Now when we come here to writeout the | 
 | 				 *   blocks [10-11], we would expect to claim | 
 | 				 *   the reservation of 1 cluster we had made | 
 | 				 *   (and we would claim it since there are no | 
 | 				 *   more delayed allocated blocks in the range | 
 | 				 *   [8-11]. But our reserved cluster count had | 
 | 				 *   already gone to 0. | 
 | 				 * | 
 | 				 *   Thus, at the step 4 above when we determine | 
 | 				 *   that there are still some unwritten delayed | 
 | 				 *   allocated blocks outside of our current | 
 | 				 *   block range, we should increment the | 
 | 				 *   reserved clusters count so that when the | 
 | 				 *   remaining blocks finally gets written, we | 
 | 				 *   could claim them. | 
 | 				 */ | 
 | 				dquot_reserve_block(inode, | 
 | 						EXT4_C2B(sbi, reservation)); | 
 | 				spin_lock(&ei->i_block_reservation_lock); | 
 | 				ei->i_reserved_data_blocks += reservation; | 
 | 				spin_unlock(&ei->i_block_reservation_lock); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cache the extent and update transaction to commit on fdatasync only | 
 | 	 * when it is _not_ an uninitialized extent. | 
 | 	 */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 	else | 
 | 		ext4_update_inode_fsync_trans(handle, inode, 0); | 
 | out: | 
 | 	if (allocated > map->m_len) | 
 | 		allocated = map->m_len; | 
 | 	ext4_ext_show_leaf(inode, path); | 
 | 	map->m_flags |= EXT4_MAP_MAPPED; | 
 | 	map->m_pblk = newblock; | 
 | 	map->m_len = allocated; | 
 | out2: | 
 | 	if (path) { | 
 | 		ext4_ext_drop_refs(path); | 
 | 		kfree(path); | 
 | 	} | 
 |  | 
 | out3: | 
 | 	trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated); | 
 |  | 
 | 	return err ? err : allocated; | 
 | } | 
 |  | 
 | void ext4_ext_truncate(struct inode *inode) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	ext4_lblk_t last_block; | 
 | 	handle_t *handle; | 
 | 	loff_t page_len; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * finish any pending end_io work so we won't run the risk of | 
 | 	 * converting any truncated blocks to initialized later | 
 | 	 */ | 
 | 	ext4_flush_unwritten_io(inode); | 
 |  | 
 | 	/* | 
 | 	 * probably first extent we're gonna free will be last in block | 
 | 	 */ | 
 | 	err = ext4_writepage_trans_blocks(inode); | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err); | 
 | 	if (IS_ERR(handle)) | 
 | 		return; | 
 |  | 
 | 	if (inode->i_size % PAGE_CACHE_SIZE != 0) { | 
 | 		page_len = PAGE_CACHE_SIZE - | 
 | 			(inode->i_size & (PAGE_CACHE_SIZE - 1)); | 
 |  | 
 | 		err = ext4_discard_partial_page_buffers(handle, | 
 | 			mapping, inode->i_size, page_len, 0); | 
 |  | 
 | 		if (err) | 
 | 			goto out_stop; | 
 | 	} | 
 |  | 
 | 	if (ext4_orphan_add(handle, inode)) | 
 | 		goto out_stop; | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	/* | 
 | 	 * TODO: optimization is possible here. | 
 | 	 * Probably we need not scan at all, | 
 | 	 * because page truncation is enough. | 
 | 	 */ | 
 |  | 
 | 	/* we have to know where to truncate from in crash case */ | 
 | 	EXT4_I(inode)->i_disksize = inode->i_size; | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 |  | 
 | 	last_block = (inode->i_size + sb->s_blocksize - 1) | 
 | 			>> EXT4_BLOCK_SIZE_BITS(sb); | 
 | 	err = ext4_es_remove_extent(inode, last_block, | 
 | 				    EXT_MAX_BLOCKS - last_block); | 
 | 	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1); | 
 |  | 
 | 	/* In a multi-transaction truncate, we only make the final | 
 | 	 * transaction synchronous. | 
 | 	 */ | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | out_stop: | 
 | 	/* | 
 | 	 * If this was a simple ftruncate() and the file will remain alive, | 
 | 	 * then we need to clear up the orphan record which we created above. | 
 | 	 * However, if this was a real unlink then we were called by | 
 | 	 * ext4_delete_inode(), and we allow that function to clean up the | 
 | 	 * orphan info for us. | 
 | 	 */ | 
 | 	if (inode->i_nlink) | 
 | 		ext4_orphan_del(handle, inode); | 
 |  | 
 | 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | 	ext4_journal_stop(handle); | 
 | } | 
 |  | 
 | static void ext4_falloc_update_inode(struct inode *inode, | 
 | 				int mode, loff_t new_size, int update_ctime) | 
 | { | 
 | 	struct timespec now; | 
 |  | 
 | 	if (update_ctime) { | 
 | 		now = current_fs_time(inode->i_sb); | 
 | 		if (!timespec_equal(&inode->i_ctime, &now)) | 
 | 			inode->i_ctime = now; | 
 | 	} | 
 | 	/* | 
 | 	 * Update only when preallocation was requested beyond | 
 | 	 * the file size. | 
 | 	 */ | 
 | 	if (!(mode & FALLOC_FL_KEEP_SIZE)) { | 
 | 		if (new_size > i_size_read(inode)) | 
 | 			i_size_write(inode, new_size); | 
 | 		if (new_size > EXT4_I(inode)->i_disksize) | 
 | 			ext4_update_i_disksize(inode, new_size); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Mark that we allocate beyond EOF so the subsequent truncate | 
 | 		 * can proceed even if the new size is the same as i_size. | 
 | 		 */ | 
 | 		if (new_size > i_size_read(inode)) | 
 | 			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * preallocate space for a file. This implements ext4's fallocate file | 
 |  * operation, which gets called from sys_fallocate system call. | 
 |  * For block-mapped files, posix_fallocate should fall back to the method | 
 |  * of writing zeroes to the required new blocks (the same behavior which is | 
 |  * expected for file systems which do not support fallocate() system call). | 
 |  */ | 
 | long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	handle_t *handle; | 
 | 	loff_t new_size; | 
 | 	unsigned int max_blocks; | 
 | 	int ret = 0; | 
 | 	int ret2 = 0; | 
 | 	int retries = 0; | 
 | 	int flags; | 
 | 	struct ext4_map_blocks map; | 
 | 	unsigned int credits, blkbits = inode->i_blkbits; | 
 |  | 
 | 	/* Return error if mode is not supported */ | 
 | 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (mode & FALLOC_FL_PUNCH_HOLE) | 
 | 		return ext4_punch_hole(file, offset, len); | 
 |  | 
 | 	ret = ext4_convert_inline_data(inode); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * currently supporting (pre)allocate mode for extent-based | 
 | 	 * files _only_ | 
 | 	 */ | 
 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	trace_ext4_fallocate_enter(inode, offset, len, mode); | 
 | 	map.m_lblk = offset >> blkbits; | 
 | 	/* | 
 | 	 * We can't just convert len to max_blocks because | 
 | 	 * If blocksize = 4096 offset = 3072 and len = 2048 | 
 | 	 */ | 
 | 	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) | 
 | 		- map.m_lblk; | 
 | 	/* | 
 | 	 * credits to insert 1 extent into extent tree | 
 | 	 */ | 
 | 	credits = ext4_chunk_trans_blocks(inode, max_blocks); | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	ret = inode_newsize_ok(inode, (len + offset)); | 
 | 	if (ret) { | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 		trace_ext4_fallocate_exit(inode, offset, max_blocks, ret); | 
 | 		return ret; | 
 | 	} | 
 | 	flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT; | 
 | 	if (mode & FALLOC_FL_KEEP_SIZE) | 
 | 		flags |= EXT4_GET_BLOCKS_KEEP_SIZE; | 
 | 	/* | 
 | 	 * Don't normalize the request if it can fit in one extent so | 
 | 	 * that it doesn't get unnecessarily split into multiple | 
 | 	 * extents. | 
 | 	 */ | 
 | 	if (len <= EXT_UNINIT_MAX_LEN << blkbits) | 
 | 		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE; | 
 |  | 
 | 	/* Prevent race condition between unwritten */ | 
 | 	ext4_flush_unwritten_io(inode); | 
 | retry: | 
 | 	while (ret >= 0 && ret < max_blocks) { | 
 | 		map.m_lblk = map.m_lblk + ret; | 
 | 		map.m_len = max_blocks = max_blocks - ret; | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, | 
 | 					    credits); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			break; | 
 | 		} | 
 | 		ret = ext4_map_blocks(handle, inode, &map, flags); | 
 | 		if (ret <= 0) { | 
 | #ifdef EXT4FS_DEBUG | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "inode #%lu: block %u: len %u: " | 
 | 				     "ext4_ext_map_blocks returned %d", | 
 | 				     inode->i_ino, map.m_lblk, | 
 | 				     map.m_len, ret); | 
 | #endif | 
 | 			ext4_mark_inode_dirty(handle, inode); | 
 | 			ret2 = ext4_journal_stop(handle); | 
 | 			break; | 
 | 		} | 
 | 		if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len, | 
 | 						blkbits) >> blkbits)) | 
 | 			new_size = offset + len; | 
 | 		else | 
 | 			new_size = ((loff_t) map.m_lblk + ret) << blkbits; | 
 |  | 
 | 		ext4_falloc_update_inode(inode, mode, new_size, | 
 | 					 (map.m_flags & EXT4_MAP_NEW)); | 
 | 		ext4_mark_inode_dirty(handle, inode); | 
 | 		if ((file->f_flags & O_SYNC) && ret >= max_blocks) | 
 | 			ext4_handle_sync(handle); | 
 | 		ret2 = ext4_journal_stop(handle); | 
 | 		if (ret2) | 
 | 			break; | 
 | 	} | 
 | 	if (ret == -ENOSPC && | 
 | 			ext4_should_retry_alloc(inode->i_sb, &retries)) { | 
 | 		ret = 0; | 
 | 		goto retry; | 
 | 	} | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	trace_ext4_fallocate_exit(inode, offset, max_blocks, | 
 | 				ret > 0 ? ret2 : ret); | 
 | 	return ret > 0 ? ret2 : ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function convert a range of blocks to written extents | 
 |  * The caller of this function will pass the start offset and the size. | 
 |  * all unwritten extents within this range will be converted to | 
 |  * written extents. | 
 |  * | 
 |  * This function is called from the direct IO end io call back | 
 |  * function, to convert the fallocated extents after IO is completed. | 
 |  * Returns 0 on success. | 
 |  */ | 
 | int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset, | 
 | 				    ssize_t len) | 
 | { | 
 | 	handle_t *handle; | 
 | 	unsigned int max_blocks; | 
 | 	int ret = 0; | 
 | 	int ret2 = 0; | 
 | 	struct ext4_map_blocks map; | 
 | 	unsigned int credits, blkbits = inode->i_blkbits; | 
 |  | 
 | 	map.m_lblk = offset >> blkbits; | 
 | 	/* | 
 | 	 * We can't just convert len to max_blocks because | 
 | 	 * If blocksize = 4096 offset = 3072 and len = 2048 | 
 | 	 */ | 
 | 	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) - | 
 | 		      map.m_lblk); | 
 | 	/* | 
 | 	 * credits to insert 1 extent into extent tree | 
 | 	 */ | 
 | 	credits = ext4_chunk_trans_blocks(inode, max_blocks); | 
 | 	while (ret >= 0 && ret < max_blocks) { | 
 | 		map.m_lblk += ret; | 
 | 		map.m_len = (max_blocks -= ret); | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			break; | 
 | 		} | 
 | 		ret = ext4_map_blocks(handle, inode, &map, | 
 | 				      EXT4_GET_BLOCKS_IO_CONVERT_EXT); | 
 | 		if (ret <= 0) | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "inode #%lu: block %u: len %u: " | 
 | 				     "ext4_ext_map_blocks returned %d", | 
 | 				     inode->i_ino, map.m_lblk, | 
 | 				     map.m_len, ret); | 
 | 		ext4_mark_inode_dirty(handle, inode); | 
 | 		ret2 = ext4_journal_stop(handle); | 
 | 		if (ret <= 0 || ret2 ) | 
 | 			break; | 
 | 	} | 
 | 	return ret > 0 ? ret2 : ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If newes is not existing extent (newes->ec_pblk equals zero) find | 
 |  * delayed extent at start of newes and update newes accordingly and | 
 |  * return start of the next delayed extent. | 
 |  * | 
 |  * If newes is existing extent (newes->ec_pblk is not equal zero) | 
 |  * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed | 
 |  * extent found. Leave newes unmodified. | 
 |  */ | 
 | static int ext4_find_delayed_extent(struct inode *inode, | 
 | 				    struct extent_status *newes) | 
 | { | 
 | 	struct extent_status es; | 
 | 	ext4_lblk_t block, next_del; | 
 |  | 
 | 	ext4_es_find_delayed_extent(inode, newes->es_lblk, &es); | 
 |  | 
 | 	if (newes->es_pblk == 0) { | 
 | 		/* | 
 | 		 * No extent in extent-tree contains block @newes->es_pblk, | 
 | 		 * then the block may stay in 1)a hole or 2)delayed-extent. | 
 | 		 */ | 
 | 		if (es.es_len == 0) | 
 | 			/* A hole found. */ | 
 | 			return 0; | 
 |  | 
 | 		if (es.es_lblk > newes->es_lblk) { | 
 | 			/* A hole found. */ | 
 | 			newes->es_len = min(es.es_lblk - newes->es_lblk, | 
 | 					    newes->es_len); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk; | 
 | 	} | 
 |  | 
 | 	block = newes->es_lblk + newes->es_len; | 
 | 	ext4_es_find_delayed_extent(inode, block, &es); | 
 | 	if (es.es_len == 0) | 
 | 		next_del = EXT_MAX_BLOCKS; | 
 | 	else | 
 | 		next_del = es.es_lblk; | 
 |  | 
 | 	return next_del; | 
 | } | 
 | /* fiemap flags we can handle specified here */ | 
 | #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR) | 
 |  | 
 | static int ext4_xattr_fiemap(struct inode *inode, | 
 | 				struct fiemap_extent_info *fieinfo) | 
 | { | 
 | 	__u64 physical = 0; | 
 | 	__u64 length; | 
 | 	__u32 flags = FIEMAP_EXTENT_LAST; | 
 | 	int blockbits = inode->i_sb->s_blocksize_bits; | 
 | 	int error = 0; | 
 |  | 
 | 	/* in-inode? */ | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { | 
 | 		struct ext4_iloc iloc; | 
 | 		int offset;	/* offset of xattr in inode */ | 
 |  | 
 | 		error = ext4_get_inode_loc(inode, &iloc); | 
 | 		if (error) | 
 | 			return error; | 
 | 		physical = iloc.bh->b_blocknr << blockbits; | 
 | 		offset = EXT4_GOOD_OLD_INODE_SIZE + | 
 | 				EXT4_I(inode)->i_extra_isize; | 
 | 		physical += offset; | 
 | 		length = EXT4_SB(inode->i_sb)->s_inode_size - offset; | 
 | 		flags |= FIEMAP_EXTENT_DATA_INLINE; | 
 | 		brelse(iloc.bh); | 
 | 	} else { /* external block */ | 
 | 		physical = EXT4_I(inode)->i_file_acl << blockbits; | 
 | 		length = inode->i_sb->s_blocksize; | 
 | 	} | 
 |  | 
 | 	if (physical) | 
 | 		error = fiemap_fill_next_extent(fieinfo, 0, physical, | 
 | 						length, flags); | 
 | 	return (error < 0 ? error : 0); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_ext_punch_hole | 
 |  * | 
 |  * Punches a hole of "length" bytes in a file starting | 
 |  * at byte "offset" | 
 |  * | 
 |  * @inode:  The inode of the file to punch a hole in | 
 |  * @offset: The starting byte offset of the hole | 
 |  * @length: The length of the hole | 
 |  * | 
 |  * Returns the number of blocks removed or negative on err | 
 |  */ | 
 | int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	ext4_lblk_t first_block, stop_block; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	handle_t *handle; | 
 | 	loff_t first_page, last_page, page_len; | 
 | 	loff_t first_page_offset, last_page_offset; | 
 | 	int credits, err = 0; | 
 |  | 
 | 	/* | 
 | 	 * Write out all dirty pages to avoid race conditions | 
 | 	 * Then release them. | 
 | 	 */ | 
 | 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { | 
 | 		err = filemap_write_and_wait_range(mapping, | 
 | 			offset, offset + length - 1); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 | 	/* It's not possible punch hole on append only file */ | 
 | 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { | 
 | 		err = -EPERM; | 
 | 		goto out_mutex; | 
 | 	} | 
 | 	if (IS_SWAPFILE(inode)) { | 
 | 		err = -ETXTBSY; | 
 | 		goto out_mutex; | 
 | 	} | 
 |  | 
 | 	/* No need to punch hole beyond i_size */ | 
 | 	if (offset >= inode->i_size) | 
 | 		goto out_mutex; | 
 |  | 
 | 	/* | 
 | 	 * If the hole extends beyond i_size, set the hole | 
 | 	 * to end after the page that contains i_size | 
 | 	 */ | 
 | 	if (offset + length > inode->i_size) { | 
 | 		length = inode->i_size + | 
 | 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - | 
 | 		   offset; | 
 | 	} | 
 |  | 
 | 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
 | 	last_page = (offset + length) >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	first_page_offset = first_page << PAGE_CACHE_SHIFT; | 
 | 	last_page_offset = last_page << PAGE_CACHE_SHIFT; | 
 |  | 
 | 	/* Now release the pages */ | 
 | 	if (last_page_offset > first_page_offset) { | 
 | 		truncate_pagecache_range(inode, first_page_offset, | 
 | 					 last_page_offset - 1); | 
 | 	} | 
 |  | 
 | 	/* Wait all existing dio workers, newcomers will block on i_mutex */ | 
 | 	ext4_inode_block_unlocked_dio(inode); | 
 | 	err = ext4_flush_unwritten_io(inode); | 
 | 	if (err) | 
 | 		goto out_dio; | 
 | 	inode_dio_wait(inode); | 
 |  | 
 | 	credits = ext4_writepage_trans_blocks(inode); | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
 | 	if (IS_ERR(handle)) { | 
 | 		err = PTR_ERR(handle); | 
 | 		goto out_dio; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Now we need to zero out the non-page-aligned data in the | 
 | 	 * pages at the start and tail of the hole, and unmap the buffer | 
 | 	 * heads for the block aligned regions of the page that were | 
 | 	 * completely zeroed. | 
 | 	 */ | 
 | 	if (first_page > last_page) { | 
 | 		/* | 
 | 		 * If the file space being truncated is contained within a page | 
 | 		 * just zero out and unmap the middle of that page | 
 | 		 */ | 
 | 		err = ext4_discard_partial_page_buffers(handle, | 
 | 			mapping, offset, length, 0); | 
 |  | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} else { | 
 | 		/* | 
 | 		 * zero out and unmap the partial page that contains | 
 | 		 * the start of the hole | 
 | 		 */ | 
 | 		page_len  = first_page_offset - offset; | 
 | 		if (page_len > 0) { | 
 | 			err = ext4_discard_partial_page_buffers(handle, mapping, | 
 | 						   offset, page_len, 0); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * zero out and unmap the partial page that contains | 
 | 		 * the end of the hole | 
 | 		 */ | 
 | 		page_len = offset + length - last_page_offset; | 
 | 		if (page_len > 0) { | 
 | 			err = ext4_discard_partial_page_buffers(handle, mapping, | 
 | 					last_page_offset, page_len, 0); | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If i_size is contained in the last page, we need to | 
 | 	 * unmap and zero the partial page after i_size | 
 | 	 */ | 
 | 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && | 
 | 	   inode->i_size % PAGE_CACHE_SIZE != 0) { | 
 |  | 
 | 		page_len = PAGE_CACHE_SIZE - | 
 | 			(inode->i_size & (PAGE_CACHE_SIZE - 1)); | 
 |  | 
 | 		if (page_len > 0) { | 
 | 			err = ext4_discard_partial_page_buffers(handle, | 
 | 			  mapping, inode->i_size, page_len, 0); | 
 |  | 
 | 			if (err) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	first_block = (offset + sb->s_blocksize - 1) >> | 
 | 		EXT4_BLOCK_SIZE_BITS(sb); | 
 | 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); | 
 |  | 
 | 	/* If there are no blocks to remove, return now */ | 
 | 	if (first_block >= stop_block) | 
 | 		goto out; | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	err = ext4_es_remove_extent(inode, first_block, | 
 | 				    stop_block - first_block); | 
 | 	err = ext4_ext_remove_space(inode, first_block, stop_block - 1); | 
 |  | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | out: | 
 | 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | 	ext4_journal_stop(handle); | 
 | out_dio: | 
 | 	ext4_inode_resume_unlocked_dio(inode); | 
 | out_mutex: | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	return err; | 
 | } | 
 |  | 
 | int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		__u64 start, __u64 len) | 
 | { | 
 | 	ext4_lblk_t start_blk; | 
 | 	int error = 0; | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) { | 
 | 		int has_inline = 1; | 
 |  | 
 | 		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline); | 
 |  | 
 | 		if (has_inline) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	/* fallback to generic here if not in extents fmt */ | 
 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
 | 		return generic_block_fiemap(inode, fieinfo, start, len, | 
 | 			ext4_get_block); | 
 |  | 
 | 	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS)) | 
 | 		return -EBADR; | 
 |  | 
 | 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { | 
 | 		error = ext4_xattr_fiemap(inode, fieinfo); | 
 | 	} else { | 
 | 		ext4_lblk_t len_blks; | 
 | 		__u64 last_blk; | 
 |  | 
 | 		start_blk = start >> inode->i_sb->s_blocksize_bits; | 
 | 		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits; | 
 | 		if (last_blk >= EXT_MAX_BLOCKS) | 
 | 			last_blk = EXT_MAX_BLOCKS-1; | 
 | 		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1; | 
 |  | 
 | 		/* | 
 | 		 * Walk the extent tree gathering extent information | 
 | 		 * and pushing extents back to the user. | 
 | 		 */ | 
 | 		error = ext4_fill_fiemap_extents(inode, start_blk, | 
 | 						 len_blks, fieinfo); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } |