| /* |
| * Copyright (C) 2012 Intel Corporation |
| * Copyright (C) 2017 Linaro Ltd. <ard.biesheuvel@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| */ |
| |
| #include <linux/raid/pq.h> |
| |
| #ifdef __KERNEL__ |
| #include <asm/neon.h> |
| #else |
| #define kernel_neon_begin() |
| #define kernel_neon_end() |
| #define cpu_has_neon() (1) |
| #endif |
| |
| static int raid6_has_neon(void) |
| { |
| return cpu_has_neon(); |
| } |
| |
| void __raid6_2data_recov_neon(int bytes, uint8_t *p, uint8_t *q, uint8_t *dp, |
| uint8_t *dq, const uint8_t *pbmul, |
| const uint8_t *qmul); |
| |
| void __raid6_datap_recov_neon(int bytes, uint8_t *p, uint8_t *q, uint8_t *dq, |
| const uint8_t *qmul); |
| |
| static void raid6_2data_recov_neon(int disks, size_t bytes, int faila, |
| int failb, void **ptrs) |
| { |
| u8 *p, *q, *dp, *dq; |
| const u8 *pbmul; /* P multiplier table for B data */ |
| const u8 *qmul; /* Q multiplier table (for both) */ |
| |
| p = (u8 *)ptrs[disks - 2]; |
| q = (u8 *)ptrs[disks - 1]; |
| |
| /* |
| * Compute syndrome with zero for the missing data pages |
| * Use the dead data pages as temporary storage for |
| * delta p and delta q |
| */ |
| dp = (u8 *)ptrs[faila]; |
| ptrs[faila] = (void *)raid6_empty_zero_page; |
| ptrs[disks - 2] = dp; |
| dq = (u8 *)ptrs[failb]; |
| ptrs[failb] = (void *)raid6_empty_zero_page; |
| ptrs[disks - 1] = dq; |
| |
| raid6_call.gen_syndrome(disks, bytes, ptrs); |
| |
| /* Restore pointer table */ |
| ptrs[faila] = dp; |
| ptrs[failb] = dq; |
| ptrs[disks - 2] = p; |
| ptrs[disks - 1] = q; |
| |
| /* Now, pick the proper data tables */ |
| pbmul = raid6_vgfmul[raid6_gfexi[failb-faila]]; |
| qmul = raid6_vgfmul[raid6_gfinv[raid6_gfexp[faila] ^ |
| raid6_gfexp[failb]]]; |
| |
| kernel_neon_begin(); |
| __raid6_2data_recov_neon(bytes, p, q, dp, dq, pbmul, qmul); |
| kernel_neon_end(); |
| } |
| |
| static void raid6_datap_recov_neon(int disks, size_t bytes, int faila, |
| void **ptrs) |
| { |
| u8 *p, *q, *dq; |
| const u8 *qmul; /* Q multiplier table */ |
| |
| p = (u8 *)ptrs[disks - 2]; |
| q = (u8 *)ptrs[disks - 1]; |
| |
| /* |
| * Compute syndrome with zero for the missing data page |
| * Use the dead data page as temporary storage for delta q |
| */ |
| dq = (u8 *)ptrs[faila]; |
| ptrs[faila] = (void *)raid6_empty_zero_page; |
| ptrs[disks - 1] = dq; |
| |
| raid6_call.gen_syndrome(disks, bytes, ptrs); |
| |
| /* Restore pointer table */ |
| ptrs[faila] = dq; |
| ptrs[disks - 1] = q; |
| |
| /* Now, pick the proper data tables */ |
| qmul = raid6_vgfmul[raid6_gfinv[raid6_gfexp[faila]]]; |
| |
| kernel_neon_begin(); |
| __raid6_datap_recov_neon(bytes, p, q, dq, qmul); |
| kernel_neon_end(); |
| } |
| |
| const struct raid6_recov_calls raid6_recov_neon = { |
| .data2 = raid6_2data_recov_neon, |
| .datap = raid6_datap_recov_neon, |
| .valid = raid6_has_neon, |
| .name = "neon", |
| .priority = 10, |
| }; |