| /* Xilinx CAN device driver |
| * |
| * Copyright (C) 2012 - 2014 Xilinx, Inc. |
| * Copyright (C) 2009 PetaLogix. All rights reserved. |
| * Copyright (C) 2017 Sandvik Mining and Construction Oy |
| * |
| * Description: |
| * This driver is developed for Axi CAN IP and for Zynq CANPS Controller. |
| * This program is free software: you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/errno.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/can/dev.h> |
| #include <linux/can/error.h> |
| #include <linux/can/led.h> |
| #include <linux/pm_runtime.h> |
| |
| #define DRIVER_NAME "xilinx_can" |
| |
| /* CAN registers set */ |
| enum xcan_reg { |
| XCAN_SRR_OFFSET = 0x00, /* Software reset */ |
| XCAN_MSR_OFFSET = 0x04, /* Mode select */ |
| XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */ |
| XCAN_BTR_OFFSET = 0x0C, /* Bit timing */ |
| XCAN_ECR_OFFSET = 0x10, /* Error counter */ |
| XCAN_ESR_OFFSET = 0x14, /* Error status */ |
| XCAN_SR_OFFSET = 0x18, /* Status */ |
| XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */ |
| XCAN_IER_OFFSET = 0x20, /* Interrupt enable */ |
| XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */ |
| XCAN_TXFIFO_ID_OFFSET = 0x30,/* TX FIFO ID */ |
| XCAN_TXFIFO_DLC_OFFSET = 0x34, /* TX FIFO DLC */ |
| XCAN_TXFIFO_DW1_OFFSET = 0x38, /* TX FIFO Data Word 1 */ |
| XCAN_TXFIFO_DW2_OFFSET = 0x3C, /* TX FIFO Data Word 2 */ |
| XCAN_RXFIFO_ID_OFFSET = 0x50, /* RX FIFO ID */ |
| XCAN_RXFIFO_DLC_OFFSET = 0x54, /* RX FIFO DLC */ |
| XCAN_RXFIFO_DW1_OFFSET = 0x58, /* RX FIFO Data Word 1 */ |
| XCAN_RXFIFO_DW2_OFFSET = 0x5C, /* RX FIFO Data Word 2 */ |
| }; |
| |
| /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */ |
| #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */ |
| #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */ |
| #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */ |
| #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */ |
| #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */ |
| #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */ |
| #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */ |
| #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */ |
| #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */ |
| #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */ |
| #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */ |
| #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */ |
| #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */ |
| #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */ |
| #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */ |
| #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */ |
| #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */ |
| #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */ |
| #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */ |
| #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */ |
| #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */ |
| #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */ |
| #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */ |
| #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */ |
| #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */ |
| #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */ |
| #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */ |
| #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */ |
| #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */ |
| #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */ |
| #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */ |
| #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */ |
| #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */ |
| #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */ |
| #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */ |
| #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */ |
| #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */ |
| #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */ |
| |
| #define XCAN_INTR_ALL (XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |\ |
| XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK | \ |
| XCAN_IXR_RXNEMP_MASK | XCAN_IXR_ERROR_MASK | \ |
| XCAN_IXR_RXOFLW_MASK | XCAN_IXR_ARBLST_MASK) |
| |
| /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */ |
| #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */ |
| #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */ |
| #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */ |
| #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */ |
| #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */ |
| #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */ |
| |
| /* CAN frame length constants */ |
| #define XCAN_FRAME_MAX_DATA_LEN 8 |
| #define XCAN_TIMEOUT (1 * HZ) |
| |
| /** |
| * struct xcan_priv - This definition define CAN driver instance |
| * @can: CAN private data structure. |
| * @tx_lock: Lock for synchronizing TX interrupt handling |
| * @tx_head: Tx CAN packets ready to send on the queue |
| * @tx_tail: Tx CAN packets successfully sended on the queue |
| * @tx_max: Maximum number packets the driver can send |
| * @napi: NAPI structure |
| * @read_reg: For reading data from CAN registers |
| * @write_reg: For writing data to CAN registers |
| * @dev: Network device data structure |
| * @reg_base: Ioremapped address to registers |
| * @irq_flags: For request_irq() |
| * @bus_clk: Pointer to struct clk |
| * @can_clk: Pointer to struct clk |
| */ |
| struct xcan_priv { |
| struct can_priv can; |
| spinlock_t tx_lock; |
| unsigned int tx_head; |
| unsigned int tx_tail; |
| unsigned int tx_max; |
| struct napi_struct napi; |
| u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg); |
| void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg, |
| u32 val); |
| struct device *dev; |
| void __iomem *reg_base; |
| unsigned long irq_flags; |
| struct clk *bus_clk; |
| struct clk *can_clk; |
| }; |
| |
| /* CAN Bittiming constants as per Xilinx CAN specs */ |
| static const struct can_bittiming_const xcan_bittiming_const = { |
| .name = DRIVER_NAME, |
| .tseg1_min = 1, |
| .tseg1_max = 16, |
| .tseg2_min = 1, |
| .tseg2_max = 8, |
| .sjw_max = 4, |
| .brp_min = 1, |
| .brp_max = 256, |
| .brp_inc = 1, |
| }; |
| |
| #define XCAN_CAP_WATERMARK 0x0001 |
| struct xcan_devtype_data { |
| unsigned int caps; |
| }; |
| |
| /** |
| * xcan_write_reg_le - Write a value to the device register little endian |
| * @priv: Driver private data structure |
| * @reg: Register offset |
| * @val: Value to write at the Register offset |
| * |
| * Write data to the paricular CAN register |
| */ |
| static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg, |
| u32 val) |
| { |
| iowrite32(val, priv->reg_base + reg); |
| } |
| |
| /** |
| * xcan_read_reg_le - Read a value from the device register little endian |
| * @priv: Driver private data structure |
| * @reg: Register offset |
| * |
| * Read data from the particular CAN register |
| * Return: value read from the CAN register |
| */ |
| static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg) |
| { |
| return ioread32(priv->reg_base + reg); |
| } |
| |
| /** |
| * xcan_write_reg_be - Write a value to the device register big endian |
| * @priv: Driver private data structure |
| * @reg: Register offset |
| * @val: Value to write at the Register offset |
| * |
| * Write data to the paricular CAN register |
| */ |
| static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg, |
| u32 val) |
| { |
| iowrite32be(val, priv->reg_base + reg); |
| } |
| |
| /** |
| * xcan_read_reg_be - Read a value from the device register big endian |
| * @priv: Driver private data structure |
| * @reg: Register offset |
| * |
| * Read data from the particular CAN register |
| * Return: value read from the CAN register |
| */ |
| static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg) |
| { |
| return ioread32be(priv->reg_base + reg); |
| } |
| |
| /** |
| * set_reset_mode - Resets the CAN device mode |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the driver reset mode routine.The driver |
| * enters into configuration mode. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int set_reset_mode(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| unsigned long timeout; |
| |
| priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); |
| |
| timeout = jiffies + XCAN_TIMEOUT; |
| while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) { |
| if (time_after(jiffies, timeout)) { |
| netdev_warn(ndev, "timed out for config mode\n"); |
| return -ETIMEDOUT; |
| } |
| usleep_range(500, 10000); |
| } |
| |
| /* reset clears FIFOs */ |
| priv->tx_head = 0; |
| priv->tx_tail = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * xcan_set_bittiming - CAN set bit timing routine |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the driver set bittiming routine. |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_set_bittiming(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| struct can_bittiming *bt = &priv->can.bittiming; |
| u32 btr0, btr1; |
| u32 is_config_mode; |
| |
| /* Check whether Xilinx CAN is in configuration mode. |
| * It cannot set bit timing if Xilinx CAN is not in configuration mode. |
| */ |
| is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) & |
| XCAN_SR_CONFIG_MASK; |
| if (!is_config_mode) { |
| netdev_alert(ndev, |
| "BUG! Cannot set bittiming - CAN is not in config mode\n"); |
| return -EPERM; |
| } |
| |
| /* Setting Baud Rate prescalar value in BRPR Register */ |
| btr0 = (bt->brp - 1); |
| |
| /* Setting Time Segment 1 in BTR Register */ |
| btr1 = (bt->prop_seg + bt->phase_seg1 - 1); |
| |
| /* Setting Time Segment 2 in BTR Register */ |
| btr1 |= (bt->phase_seg2 - 1) << XCAN_BTR_TS2_SHIFT; |
| |
| /* Setting Synchronous jump width in BTR Register */ |
| btr1 |= (bt->sjw - 1) << XCAN_BTR_SJW_SHIFT; |
| |
| priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0); |
| priv->write_reg(priv, XCAN_BTR_OFFSET, btr1); |
| |
| netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n", |
| priv->read_reg(priv, XCAN_BRPR_OFFSET), |
| priv->read_reg(priv, XCAN_BTR_OFFSET)); |
| |
| return 0; |
| } |
| |
| /** |
| * xcan_chip_start - This the drivers start routine |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the drivers start routine. |
| * Based on the State of the CAN device it puts |
| * the CAN device into a proper mode. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_chip_start(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| u32 reg_msr, reg_sr_mask; |
| int err; |
| unsigned long timeout; |
| |
| /* Check if it is in reset mode */ |
| err = set_reset_mode(ndev); |
| if (err < 0) |
| return err; |
| |
| err = xcan_set_bittiming(ndev); |
| if (err < 0) |
| return err; |
| |
| /* Enable interrupts */ |
| priv->write_reg(priv, XCAN_IER_OFFSET, XCAN_INTR_ALL); |
| |
| /* Check whether it is loopback mode or normal mode */ |
| if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { |
| reg_msr = XCAN_MSR_LBACK_MASK; |
| reg_sr_mask = XCAN_SR_LBACK_MASK; |
| } else { |
| reg_msr = 0x0; |
| reg_sr_mask = XCAN_SR_NORMAL_MASK; |
| } |
| |
| priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr); |
| priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK); |
| |
| timeout = jiffies + XCAN_TIMEOUT; |
| while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & reg_sr_mask)) { |
| if (time_after(jiffies, timeout)) { |
| netdev_warn(ndev, |
| "timed out for correct mode\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| netdev_dbg(ndev, "status:#x%08x\n", |
| priv->read_reg(priv, XCAN_SR_OFFSET)); |
| |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| return 0; |
| } |
| |
| /** |
| * xcan_do_set_mode - This sets the mode of the driver |
| * @ndev: Pointer to net_device structure |
| * @mode: Tells the mode of the driver |
| * |
| * This check the drivers state and calls the |
| * the corresponding modes to set. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode) |
| { |
| int ret; |
| |
| switch (mode) { |
| case CAN_MODE_START: |
| ret = xcan_chip_start(ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "xcan_chip_start failed!\n"); |
| return ret; |
| } |
| netif_wake_queue(ndev); |
| break; |
| default: |
| ret = -EOPNOTSUPP; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * xcan_start_xmit - Starts the transmission |
| * @skb: sk_buff pointer that contains data to be Txed |
| * @ndev: Pointer to net_device structure |
| * |
| * This function is invoked from upper layers to initiate transmission. This |
| * function uses the next available free txbuff and populates their fields to |
| * start the transmission. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| struct can_frame *cf = (struct can_frame *)skb->data; |
| u32 id, dlc, data[2] = {0, 0}; |
| unsigned long flags; |
| |
| if (can_dropped_invalid_skb(ndev, skb)) |
| return NETDEV_TX_OK; |
| |
| /* Check if the TX buffer is full */ |
| if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) & |
| XCAN_SR_TXFLL_MASK)) { |
| netif_stop_queue(ndev); |
| netdev_err(ndev, "BUG!, TX FIFO full when queue awake!\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* Watch carefully on the bit sequence */ |
| if (cf->can_id & CAN_EFF_FLAG) { |
| /* Extended CAN ID format */ |
| id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) & |
| XCAN_IDR_ID2_MASK; |
| id |= (((cf->can_id & CAN_EFF_MASK) >> |
| (CAN_EFF_ID_BITS-CAN_SFF_ID_BITS)) << |
| XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK; |
| |
| /* The substibute remote TX request bit should be "1" |
| * for extended frames as in the Xilinx CAN datasheet |
| */ |
| id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK; |
| |
| if (cf->can_id & CAN_RTR_FLAG) |
| /* Extended frames remote TX request */ |
| id |= XCAN_IDR_RTR_MASK; |
| } else { |
| /* Standard CAN ID format */ |
| id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) & |
| XCAN_IDR_ID1_MASK; |
| |
| if (cf->can_id & CAN_RTR_FLAG) |
| /* Standard frames remote TX request */ |
| id |= XCAN_IDR_SRR_MASK; |
| } |
| |
| dlc = cf->can_dlc << XCAN_DLCR_DLC_SHIFT; |
| |
| if (cf->can_dlc > 0) |
| data[0] = be32_to_cpup((__be32 *)(cf->data + 0)); |
| if (cf->can_dlc > 4) |
| data[1] = be32_to_cpup((__be32 *)(cf->data + 4)); |
| |
| can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max); |
| |
| spin_lock_irqsave(&priv->tx_lock, flags); |
| |
| priv->tx_head++; |
| |
| /* Write the Frame to Xilinx CAN TX FIFO */ |
| priv->write_reg(priv, XCAN_TXFIFO_ID_OFFSET, id); |
| /* If the CAN frame is RTR frame this write triggers tranmission */ |
| priv->write_reg(priv, XCAN_TXFIFO_DLC_OFFSET, dlc); |
| if (!(cf->can_id & CAN_RTR_FLAG)) { |
| priv->write_reg(priv, XCAN_TXFIFO_DW1_OFFSET, data[0]); |
| /* If the CAN frame is Standard/Extended frame this |
| * write triggers tranmission |
| */ |
| priv->write_reg(priv, XCAN_TXFIFO_DW2_OFFSET, data[1]); |
| stats->tx_bytes += cf->can_dlc; |
| } |
| |
| /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */ |
| if (priv->tx_max > 1) |
| priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK); |
| |
| /* Check if the TX buffer is full */ |
| if ((priv->tx_head - priv->tx_tail) == priv->tx_max) |
| netif_stop_queue(ndev); |
| |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * xcan_rx - Is called from CAN isr to complete the received |
| * frame processing |
| * @ndev: Pointer to net_device structure |
| * |
| * This function is invoked from the CAN isr(poll) to process the Rx frames. It |
| * does minimal processing and invokes "netif_receive_skb" to complete further |
| * processing. |
| * Return: 1 on success and 0 on failure. |
| */ |
| static int xcan_rx(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| u32 id_xcan, dlc, data[2] = {0, 0}; |
| |
| skb = alloc_can_skb(ndev, &cf); |
| if (unlikely(!skb)) { |
| stats->rx_dropped++; |
| return 0; |
| } |
| |
| /* Read a frame from Xilinx zynq CANPS */ |
| id_xcan = priv->read_reg(priv, XCAN_RXFIFO_ID_OFFSET); |
| dlc = priv->read_reg(priv, XCAN_RXFIFO_DLC_OFFSET) >> |
| XCAN_DLCR_DLC_SHIFT; |
| |
| /* Change Xilinx CAN data length format to socketCAN data format */ |
| cf->can_dlc = get_can_dlc(dlc); |
| |
| /* Change Xilinx CAN ID format to socketCAN ID format */ |
| if (id_xcan & XCAN_IDR_IDE_MASK) { |
| /* The received frame is an Extended format frame */ |
| cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3; |
| cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >> |
| XCAN_IDR_ID2_SHIFT; |
| cf->can_id |= CAN_EFF_FLAG; |
| if (id_xcan & XCAN_IDR_RTR_MASK) |
| cf->can_id |= CAN_RTR_FLAG; |
| } else { |
| /* The received frame is a standard format frame */ |
| cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> |
| XCAN_IDR_ID1_SHIFT; |
| if (id_xcan & XCAN_IDR_SRR_MASK) |
| cf->can_id |= CAN_RTR_FLAG; |
| } |
| |
| /* DW1/DW2 must always be read to remove message from RXFIFO */ |
| data[0] = priv->read_reg(priv, XCAN_RXFIFO_DW1_OFFSET); |
| data[1] = priv->read_reg(priv, XCAN_RXFIFO_DW2_OFFSET); |
| |
| if (!(cf->can_id & CAN_RTR_FLAG)) { |
| /* Change Xilinx CAN data format to socketCAN data format */ |
| if (cf->can_dlc > 0) |
| *(__be32 *)(cf->data) = cpu_to_be32(data[0]); |
| if (cf->can_dlc > 4) |
| *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]); |
| } |
| |
| stats->rx_bytes += cf->can_dlc; |
| stats->rx_packets++; |
| netif_receive_skb(skb); |
| |
| return 1; |
| } |
| |
| /** |
| * xcan_current_error_state - Get current error state from HW |
| * @ndev: Pointer to net_device structure |
| * |
| * Checks the current CAN error state from the HW. Note that this |
| * only checks for ERROR_PASSIVE and ERROR_WARNING. |
| * |
| * Return: |
| * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE |
| * otherwise. |
| */ |
| static enum can_state xcan_current_error_state(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| u32 status = priv->read_reg(priv, XCAN_SR_OFFSET); |
| |
| if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK) |
| return CAN_STATE_ERROR_PASSIVE; |
| else if (status & XCAN_SR_ERRWRN_MASK) |
| return CAN_STATE_ERROR_WARNING; |
| else |
| return CAN_STATE_ERROR_ACTIVE; |
| } |
| |
| /** |
| * xcan_set_error_state - Set new CAN error state |
| * @ndev: Pointer to net_device structure |
| * @new_state: The new CAN state to be set |
| * @cf: Error frame to be populated or NULL |
| * |
| * Set new CAN error state for the device, updating statistics and |
| * populating the error frame if given. |
| */ |
| static void xcan_set_error_state(struct net_device *ndev, |
| enum can_state new_state, |
| struct can_frame *cf) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET); |
| u32 txerr = ecr & XCAN_ECR_TEC_MASK; |
| u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT; |
| |
| priv->can.state = new_state; |
| |
| if (cf) { |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[6] = txerr; |
| cf->data[7] = rxerr; |
| } |
| |
| switch (new_state) { |
| case CAN_STATE_ERROR_PASSIVE: |
| priv->can.can_stats.error_passive++; |
| if (cf) |
| cf->data[1] = (rxerr > 127) ? |
| CAN_ERR_CRTL_RX_PASSIVE : |
| CAN_ERR_CRTL_TX_PASSIVE; |
| break; |
| case CAN_STATE_ERROR_WARNING: |
| priv->can.can_stats.error_warning++; |
| if (cf) |
| cf->data[1] |= (txerr > rxerr) ? |
| CAN_ERR_CRTL_TX_WARNING : |
| CAN_ERR_CRTL_RX_WARNING; |
| break; |
| case CAN_STATE_ERROR_ACTIVE: |
| if (cf) |
| cf->data[1] |= CAN_ERR_CRTL_ACTIVE; |
| break; |
| default: |
| /* non-ERROR states are handled elsewhere */ |
| WARN_ON(1); |
| break; |
| } |
| } |
| |
| /** |
| * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX |
| * @ndev: Pointer to net_device structure |
| * |
| * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if |
| * the performed RX/TX has caused it to drop to a lesser state and set |
| * the interface state accordingly. |
| */ |
| static void xcan_update_error_state_after_rxtx(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| enum can_state old_state = priv->can.state; |
| enum can_state new_state; |
| |
| /* changing error state due to successful frame RX/TX can only |
| * occur from these states |
| */ |
| if (old_state != CAN_STATE_ERROR_WARNING && |
| old_state != CAN_STATE_ERROR_PASSIVE) |
| return; |
| |
| new_state = xcan_current_error_state(ndev); |
| |
| if (new_state != old_state) { |
| struct sk_buff *skb; |
| struct can_frame *cf; |
| |
| skb = alloc_can_err_skb(ndev, &cf); |
| |
| xcan_set_error_state(ndev, new_state, skb ? cf : NULL); |
| |
| if (skb) { |
| struct net_device_stats *stats = &ndev->stats; |
| |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_rx(skb); |
| } |
| } |
| } |
| |
| /** |
| * xcan_err_interrupt - error frame Isr |
| * @ndev: net_device pointer |
| * @isr: interrupt status register value |
| * |
| * This is the CAN error interrupt and it will |
| * check the the type of error and forward the error |
| * frame to upper layers. |
| */ |
| static void xcan_err_interrupt(struct net_device *ndev, u32 isr) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| struct can_frame *cf; |
| struct sk_buff *skb; |
| u32 err_status; |
| |
| skb = alloc_can_err_skb(ndev, &cf); |
| |
| err_status = priv->read_reg(priv, XCAN_ESR_OFFSET); |
| priv->write_reg(priv, XCAN_ESR_OFFSET, err_status); |
| |
| if (isr & XCAN_IXR_BSOFF_MASK) { |
| priv->can.state = CAN_STATE_BUS_OFF; |
| priv->can.can_stats.bus_off++; |
| /* Leave device in Config Mode in bus-off state */ |
| priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK); |
| can_bus_off(ndev); |
| if (skb) |
| cf->can_id |= CAN_ERR_BUSOFF; |
| } else { |
| enum can_state new_state = xcan_current_error_state(ndev); |
| |
| xcan_set_error_state(ndev, new_state, skb ? cf : NULL); |
| } |
| |
| /* Check for Arbitration lost interrupt */ |
| if (isr & XCAN_IXR_ARBLST_MASK) { |
| priv->can.can_stats.arbitration_lost++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_LOSTARB; |
| cf->data[0] = CAN_ERR_LOSTARB_UNSPEC; |
| } |
| } |
| |
| /* Check for RX FIFO Overflow interrupt */ |
| if (isr & XCAN_IXR_RXOFLW_MASK) { |
| stats->rx_over_errors++; |
| stats->rx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_CRTL; |
| cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW; |
| } |
| } |
| |
| /* Check for error interrupt */ |
| if (isr & XCAN_IXR_ERROR_MASK) { |
| if (skb) |
| cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; |
| |
| /* Check for Ack error interrupt */ |
| if (err_status & XCAN_ESR_ACKER_MASK) { |
| stats->tx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_ACK; |
| cf->data[3] = CAN_ERR_PROT_LOC_ACK; |
| } |
| } |
| |
| /* Check for Bit error interrupt */ |
| if (err_status & XCAN_ESR_BERR_MASK) { |
| stats->tx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_PROT; |
| cf->data[2] = CAN_ERR_PROT_BIT; |
| } |
| } |
| |
| /* Check for Stuff error interrupt */ |
| if (err_status & XCAN_ESR_STER_MASK) { |
| stats->rx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_PROT; |
| cf->data[2] = CAN_ERR_PROT_STUFF; |
| } |
| } |
| |
| /* Check for Form error interrupt */ |
| if (err_status & XCAN_ESR_FMER_MASK) { |
| stats->rx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_PROT; |
| cf->data[2] = CAN_ERR_PROT_FORM; |
| } |
| } |
| |
| /* Check for CRC error interrupt */ |
| if (err_status & XCAN_ESR_CRCER_MASK) { |
| stats->rx_errors++; |
| if (skb) { |
| cf->can_id |= CAN_ERR_PROT; |
| cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; |
| } |
| } |
| priv->can.can_stats.bus_error++; |
| } |
| |
| if (skb) { |
| stats->rx_packets++; |
| stats->rx_bytes += cf->can_dlc; |
| netif_rx(skb); |
| } |
| |
| netdev_dbg(ndev, "%s: error status register:0x%x\n", |
| __func__, priv->read_reg(priv, XCAN_ESR_OFFSET)); |
| } |
| |
| /** |
| * xcan_state_interrupt - It will check the state of the CAN device |
| * @ndev: net_device pointer |
| * @isr: interrupt status register value |
| * |
| * This will checks the state of the CAN device |
| * and puts the device into appropriate state. |
| */ |
| static void xcan_state_interrupt(struct net_device *ndev, u32 isr) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| |
| /* Check for Sleep interrupt if set put CAN device in sleep state */ |
| if (isr & XCAN_IXR_SLP_MASK) |
| priv->can.state = CAN_STATE_SLEEPING; |
| |
| /* Check for Wake up interrupt if set put CAN device in Active state */ |
| if (isr & XCAN_IXR_WKUP_MASK) |
| priv->can.state = CAN_STATE_ERROR_ACTIVE; |
| } |
| |
| /** |
| * xcan_rx_poll - Poll routine for rx packets (NAPI) |
| * @napi: napi structure pointer |
| * @quota: Max number of rx packets to be processed. |
| * |
| * This is the poll routine for rx part. |
| * It will process the packets maximux quota value. |
| * |
| * Return: number of packets received |
| */ |
| static int xcan_rx_poll(struct napi_struct *napi, int quota) |
| { |
| struct net_device *ndev = napi->dev; |
| struct xcan_priv *priv = netdev_priv(ndev); |
| u32 isr, ier; |
| int work_done = 0; |
| |
| isr = priv->read_reg(priv, XCAN_ISR_OFFSET); |
| while ((isr & XCAN_IXR_RXNEMP_MASK) && (work_done < quota)) { |
| work_done += xcan_rx(ndev); |
| priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXNEMP_MASK); |
| isr = priv->read_reg(priv, XCAN_ISR_OFFSET); |
| } |
| |
| if (work_done) { |
| can_led_event(ndev, CAN_LED_EVENT_RX); |
| xcan_update_error_state_after_rxtx(ndev); |
| } |
| |
| if (work_done < quota) { |
| napi_complete_done(napi, work_done); |
| ier = priv->read_reg(priv, XCAN_IER_OFFSET); |
| ier |= XCAN_IXR_RXNEMP_MASK; |
| priv->write_reg(priv, XCAN_IER_OFFSET, ier); |
| } |
| return work_done; |
| } |
| |
| /** |
| * xcan_tx_interrupt - Tx Done Isr |
| * @ndev: net_device pointer |
| * @isr: Interrupt status register value |
| */ |
| static void xcan_tx_interrupt(struct net_device *ndev, u32 isr) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| struct net_device_stats *stats = &ndev->stats; |
| unsigned int frames_in_fifo; |
| int frames_sent = 1; /* TXOK => at least 1 frame was sent */ |
| unsigned long flags; |
| int retries = 0; |
| |
| /* Synchronize with xmit as we need to know the exact number |
| * of frames in the FIFO to stay in sync due to the TXFEMP |
| * handling. |
| * This also prevents a race between netif_wake_queue() and |
| * netif_stop_queue(). |
| */ |
| spin_lock_irqsave(&priv->tx_lock, flags); |
| |
| frames_in_fifo = priv->tx_head - priv->tx_tail; |
| |
| if (WARN_ON_ONCE(frames_in_fifo == 0)) { |
| /* clear TXOK anyway to avoid getting back here */ |
| priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| return; |
| } |
| |
| /* Check if 2 frames were sent (TXOK only means that at least 1 |
| * frame was sent). |
| */ |
| if (frames_in_fifo > 1) { |
| WARN_ON(frames_in_fifo > priv->tx_max); |
| |
| /* Synchronize TXOK and isr so that after the loop: |
| * (1) isr variable is up-to-date at least up to TXOK clear |
| * time. This avoids us clearing a TXOK of a second frame |
| * but not noticing that the FIFO is now empty and thus |
| * marking only a single frame as sent. |
| * (2) No TXOK is left. Having one could mean leaving a |
| * stray TXOK as we might process the associated frame |
| * via TXFEMP handling as we read TXFEMP *after* TXOK |
| * clear to satisfy (1). |
| */ |
| while ((isr & XCAN_IXR_TXOK_MASK) && !WARN_ON(++retries == 100)) { |
| priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); |
| isr = priv->read_reg(priv, XCAN_ISR_OFFSET); |
| } |
| |
| if (isr & XCAN_IXR_TXFEMP_MASK) { |
| /* nothing in FIFO anymore */ |
| frames_sent = frames_in_fifo; |
| } |
| } else { |
| /* single frame in fifo, just clear TXOK */ |
| priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK); |
| } |
| |
| while (frames_sent--) { |
| can_get_echo_skb(ndev, priv->tx_tail % |
| priv->tx_max); |
| priv->tx_tail++; |
| stats->tx_packets++; |
| } |
| |
| netif_wake_queue(ndev); |
| |
| spin_unlock_irqrestore(&priv->tx_lock, flags); |
| |
| can_led_event(ndev, CAN_LED_EVENT_TX); |
| xcan_update_error_state_after_rxtx(ndev); |
| } |
| |
| /** |
| * xcan_interrupt - CAN Isr |
| * @irq: irq number |
| * @dev_id: device id poniter |
| * |
| * This is the xilinx CAN Isr. It checks for the type of interrupt |
| * and invokes the corresponding ISR. |
| * |
| * Return: |
| * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise |
| */ |
| static irqreturn_t xcan_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *ndev = (struct net_device *)dev_id; |
| struct xcan_priv *priv = netdev_priv(ndev); |
| u32 isr, ier; |
| u32 isr_errors; |
| |
| /* Get the interrupt status from Xilinx CAN */ |
| isr = priv->read_reg(priv, XCAN_ISR_OFFSET); |
| if (!isr) |
| return IRQ_NONE; |
| |
| /* Check for the type of interrupt and Processing it */ |
| if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) { |
| priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK | |
| XCAN_IXR_WKUP_MASK)); |
| xcan_state_interrupt(ndev, isr); |
| } |
| |
| /* Check for Tx interrupt and Processing it */ |
| if (isr & XCAN_IXR_TXOK_MASK) |
| xcan_tx_interrupt(ndev, isr); |
| |
| /* Check for the type of error interrupt and Processing it */ |
| isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK | |
| XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK); |
| if (isr_errors) { |
| priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors); |
| xcan_err_interrupt(ndev, isr); |
| } |
| |
| /* Check for the type of receive interrupt and Processing it */ |
| if (isr & XCAN_IXR_RXNEMP_MASK) { |
| ier = priv->read_reg(priv, XCAN_IER_OFFSET); |
| ier &= ~XCAN_IXR_RXNEMP_MASK; |
| priv->write_reg(priv, XCAN_IER_OFFSET, ier); |
| napi_schedule(&priv->napi); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * xcan_chip_stop - Driver stop routine |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the drivers stop routine. It will disable the |
| * interrupts and put the device into configuration mode. |
| */ |
| static void xcan_chip_stop(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| |
| /* Disable interrupts and leave the can in configuration mode */ |
| set_reset_mode(ndev); |
| priv->can.state = CAN_STATE_STOPPED; |
| } |
| |
| /** |
| * xcan_open - Driver open routine |
| * @ndev: Pointer to net_device structure |
| * |
| * This is the driver open routine. |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_open(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| int ret; |
| |
| ret = pm_runtime_get_sync(priv->dev); |
| if (ret < 0) { |
| netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags, |
| ndev->name, ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "irq allocation for CAN failed\n"); |
| goto err; |
| } |
| |
| /* Set chip into reset mode */ |
| ret = set_reset_mode(ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "mode resetting failed!\n"); |
| goto err_irq; |
| } |
| |
| /* Common open */ |
| ret = open_candev(ndev); |
| if (ret) |
| goto err_irq; |
| |
| ret = xcan_chip_start(ndev); |
| if (ret < 0) { |
| netdev_err(ndev, "xcan_chip_start failed!\n"); |
| goto err_candev; |
| } |
| |
| can_led_event(ndev, CAN_LED_EVENT_OPEN); |
| napi_enable(&priv->napi); |
| netif_start_queue(ndev); |
| |
| return 0; |
| |
| err_candev: |
| close_candev(ndev); |
| err_irq: |
| free_irq(ndev->irq, ndev); |
| err: |
| pm_runtime_put(priv->dev); |
| |
| return ret; |
| } |
| |
| /** |
| * xcan_close - Driver close routine |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0 always |
| */ |
| static int xcan_close(struct net_device *ndev) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| |
| netif_stop_queue(ndev); |
| napi_disable(&priv->napi); |
| xcan_chip_stop(ndev); |
| free_irq(ndev->irq, ndev); |
| close_candev(ndev); |
| |
| can_led_event(ndev, CAN_LED_EVENT_STOP); |
| pm_runtime_put(priv->dev); |
| |
| return 0; |
| } |
| |
| /** |
| * xcan_get_berr_counter - error counter routine |
| * @ndev: Pointer to net_device structure |
| * @bec: Pointer to can_berr_counter structure |
| * |
| * This is the driver error counter routine. |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_get_berr_counter(const struct net_device *ndev, |
| struct can_berr_counter *bec) |
| { |
| struct xcan_priv *priv = netdev_priv(ndev); |
| int ret; |
| |
| ret = pm_runtime_get_sync(priv->dev); |
| if (ret < 0) { |
| netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", |
| __func__, ret); |
| return ret; |
| } |
| |
| bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK; |
| bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) & |
| XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT); |
| |
| pm_runtime_put(priv->dev); |
| |
| return 0; |
| } |
| |
| |
| static const struct net_device_ops xcan_netdev_ops = { |
| .ndo_open = xcan_open, |
| .ndo_stop = xcan_close, |
| .ndo_start_xmit = xcan_start_xmit, |
| .ndo_change_mtu = can_change_mtu, |
| }; |
| |
| /** |
| * xcan_suspend - Suspend method for the driver |
| * @dev: Address of the device structure |
| * |
| * Put the driver into low power mode. |
| * Return: 0 on success and failure value on error |
| */ |
| static int __maybe_unused xcan_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| |
| if (netif_running(ndev)) { |
| netif_stop_queue(ndev); |
| netif_device_detach(ndev); |
| xcan_chip_stop(ndev); |
| } |
| |
| return pm_runtime_force_suspend(dev); |
| } |
| |
| /** |
| * xcan_resume - Resume from suspend |
| * @dev: Address of the device structure |
| * |
| * Resume operation after suspend. |
| * Return: 0 on success and failure value on error |
| */ |
| static int __maybe_unused xcan_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pm_runtime_force_resume(dev); |
| if (ret) { |
| dev_err(dev, "pm_runtime_force_resume failed on resume\n"); |
| return ret; |
| } |
| |
| if (netif_running(ndev)) { |
| ret = xcan_chip_start(ndev); |
| if (ret) { |
| dev_err(dev, "xcan_chip_start failed on resume\n"); |
| return ret; |
| } |
| |
| netif_device_attach(ndev); |
| netif_start_queue(ndev); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * xcan_runtime_suspend - Runtime suspend method for the driver |
| * @dev: Address of the device structure |
| * |
| * Put the driver into low power mode. |
| * Return: 0 always |
| */ |
| static int __maybe_unused xcan_runtime_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct xcan_priv *priv = netdev_priv(ndev); |
| |
| clk_disable_unprepare(priv->bus_clk); |
| clk_disable_unprepare(priv->can_clk); |
| |
| return 0; |
| } |
| |
| /** |
| * xcan_runtime_resume - Runtime resume from suspend |
| * @dev: Address of the device structure |
| * |
| * Resume operation after suspend. |
| * Return: 0 on success and failure value on error |
| */ |
| static int __maybe_unused xcan_runtime_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| struct xcan_priv *priv = netdev_priv(ndev); |
| int ret; |
| |
| ret = clk_prepare_enable(priv->bus_clk); |
| if (ret) { |
| dev_err(dev, "Cannot enable clock.\n"); |
| return ret; |
| } |
| ret = clk_prepare_enable(priv->can_clk); |
| if (ret) { |
| dev_err(dev, "Cannot enable clock.\n"); |
| clk_disable_unprepare(priv->bus_clk); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops xcan_dev_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume) |
| SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL) |
| }; |
| |
| static const struct xcan_devtype_data xcan_zynq_data = { |
| .caps = XCAN_CAP_WATERMARK, |
| }; |
| |
| /* Match table for OF platform binding */ |
| static const struct of_device_id xcan_of_match[] = { |
| { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data }, |
| { .compatible = "xlnx,axi-can-1.00.a", }, |
| { /* end of list */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, xcan_of_match); |
| |
| /** |
| * xcan_probe - Platform registration call |
| * @pdev: Handle to the platform device structure |
| * |
| * This function does all the memory allocation and registration for the CAN |
| * device. |
| * |
| * Return: 0 on success and failure value on error |
| */ |
| static int xcan_probe(struct platform_device *pdev) |
| { |
| struct resource *res; /* IO mem resources */ |
| struct net_device *ndev; |
| struct xcan_priv *priv; |
| const struct of_device_id *of_id; |
| int caps = 0; |
| void __iomem *addr; |
| int ret, rx_max, tx_max, tx_fifo_depth; |
| |
| /* Get the virtual base address for the device */ |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| addr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(addr)) { |
| ret = PTR_ERR(addr); |
| goto err; |
| } |
| |
| ret = of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth", |
| &tx_fifo_depth); |
| if (ret < 0) |
| goto err; |
| |
| ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth", &rx_max); |
| if (ret < 0) |
| goto err; |
| |
| of_id = of_match_device(xcan_of_match, &pdev->dev); |
| if (of_id) { |
| const struct xcan_devtype_data *devtype_data = of_id->data; |
| |
| if (devtype_data) |
| caps = devtype_data->caps; |
| } |
| |
| /* There is no way to directly figure out how many frames have been |
| * sent when the TXOK interrupt is processed. If watermark programming |
| * is supported, we can have 2 frames in the FIFO and use TXFEMP |
| * to determine if 1 or 2 frames have been sent. |
| * Theoretically we should be able to use TXFWMEMP to determine up |
| * to 3 frames, but it seems that after putting a second frame in the |
| * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less |
| * than 2 frames in FIFO) is set anyway with no TXOK (a frame was |
| * sent), which is not a sensible state - possibly TXFWMEMP is not |
| * completely synchronized with the rest of the bits? |
| */ |
| if (caps & XCAN_CAP_WATERMARK) |
| tx_max = min(tx_fifo_depth, 2); |
| else |
| tx_max = 1; |
| |
| /* Create a CAN device instance */ |
| ndev = alloc_candev(sizeof(struct xcan_priv), tx_max); |
| if (!ndev) |
| return -ENOMEM; |
| |
| priv = netdev_priv(ndev); |
| priv->dev = &pdev->dev; |
| priv->can.bittiming_const = &xcan_bittiming_const; |
| priv->can.do_set_mode = xcan_do_set_mode; |
| priv->can.do_get_berr_counter = xcan_get_berr_counter; |
| priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | |
| CAN_CTRLMODE_BERR_REPORTING; |
| priv->reg_base = addr; |
| priv->tx_max = tx_max; |
| spin_lock_init(&priv->tx_lock); |
| |
| /* Get IRQ for the device */ |
| ndev->irq = platform_get_irq(pdev, 0); |
| ndev->flags |= IFF_ECHO; /* We support local echo */ |
| |
| platform_set_drvdata(pdev, ndev); |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| ndev->netdev_ops = &xcan_netdev_ops; |
| |
| /* Getting the CAN can_clk info */ |
| priv->can_clk = devm_clk_get(&pdev->dev, "can_clk"); |
| if (IS_ERR(priv->can_clk)) { |
| dev_err(&pdev->dev, "Device clock not found.\n"); |
| ret = PTR_ERR(priv->can_clk); |
| goto err_free; |
| } |
| /* Check for type of CAN device */ |
| if (of_device_is_compatible(pdev->dev.of_node, |
| "xlnx,zynq-can-1.0")) { |
| priv->bus_clk = devm_clk_get(&pdev->dev, "pclk"); |
| if (IS_ERR(priv->bus_clk)) { |
| dev_err(&pdev->dev, "bus clock not found\n"); |
| ret = PTR_ERR(priv->bus_clk); |
| goto err_free; |
| } |
| } else { |
| priv->bus_clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); |
| if (IS_ERR(priv->bus_clk)) { |
| dev_err(&pdev->dev, "bus clock not found\n"); |
| ret = PTR_ERR(priv->bus_clk); |
| goto err_free; |
| } |
| } |
| |
| priv->write_reg = xcan_write_reg_le; |
| priv->read_reg = xcan_read_reg_le; |
| |
| pm_runtime_enable(&pdev->dev); |
| ret = pm_runtime_get_sync(&pdev->dev); |
| if (ret < 0) { |
| netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n", |
| __func__, ret); |
| goto err_pmdisable; |
| } |
| |
| if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) { |
| priv->write_reg = xcan_write_reg_be; |
| priv->read_reg = xcan_read_reg_be; |
| } |
| |
| priv->can.clock.freq = clk_get_rate(priv->can_clk); |
| |
| netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max); |
| |
| ret = register_candev(ndev); |
| if (ret) { |
| dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret); |
| goto err_disableclks; |
| } |
| |
| devm_can_led_init(ndev); |
| |
| pm_runtime_put(&pdev->dev); |
| |
| netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx fifo depth: actual %d, using %d\n", |
| priv->reg_base, ndev->irq, priv->can.clock.freq, |
| tx_fifo_depth, priv->tx_max); |
| |
| return 0; |
| |
| err_disableclks: |
| pm_runtime_put(priv->dev); |
| err_pmdisable: |
| pm_runtime_disable(&pdev->dev); |
| err_free: |
| free_candev(ndev); |
| err: |
| return ret; |
| } |
| |
| /** |
| * xcan_remove - Unregister the device after releasing the resources |
| * @pdev: Handle to the platform device structure |
| * |
| * This function frees all the resources allocated to the device. |
| * Return: 0 always |
| */ |
| static int xcan_remove(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct xcan_priv *priv = netdev_priv(ndev); |
| |
| unregister_candev(ndev); |
| pm_runtime_disable(&pdev->dev); |
| netif_napi_del(&priv->napi); |
| free_candev(ndev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver xcan_driver = { |
| .probe = xcan_probe, |
| .remove = xcan_remove, |
| .driver = { |
| .name = DRIVER_NAME, |
| .pm = &xcan_dev_pm_ops, |
| .of_match_table = xcan_of_match, |
| }, |
| }; |
| |
| module_platform_driver(xcan_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Xilinx Inc"); |
| MODULE_DESCRIPTION("Xilinx CAN interface"); |