| /* |
| * Firmware Assisted dump: A robust mechanism to get reliable kernel crash |
| * dump with assistance from firmware. This approach does not use kexec, |
| * instead firmware assists in booting the kdump kernel while preserving |
| * memory contents. The most of the code implementation has been adapted |
| * from phyp assisted dump implementation written by Linas Vepstas and |
| * Manish Ahuja |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright 2011 IBM Corporation |
| * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> |
| */ |
| |
| #undef DEBUG |
| #define pr_fmt(fmt) "fadump: " fmt |
| |
| #include <linux/string.h> |
| #include <linux/memblock.h> |
| #include <linux/delay.h> |
| #include <linux/seq_file.h> |
| #include <linux/crash_dump.h> |
| #include <linux/kobject.h> |
| #include <linux/sysfs.h> |
| |
| #include <asm/debugfs.h> |
| #include <asm/page.h> |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/fadump.h> |
| #include <asm/setup.h> |
| |
| static struct fw_dump fw_dump; |
| static struct fadump_mem_struct fdm; |
| static const struct fadump_mem_struct *fdm_active; |
| |
| static DEFINE_MUTEX(fadump_mutex); |
| struct fad_crash_memory_ranges *crash_memory_ranges; |
| int crash_memory_ranges_size; |
| int crash_mem_ranges; |
| int max_crash_mem_ranges; |
| |
| /* Scan the Firmware Assisted dump configuration details. */ |
| int __init early_init_dt_scan_fw_dump(unsigned long node, |
| const char *uname, int depth, void *data) |
| { |
| const __be32 *sections; |
| int i, num_sections; |
| int size; |
| const __be32 *token; |
| |
| if (depth != 1 || strcmp(uname, "rtas") != 0) |
| return 0; |
| |
| /* |
| * Check if Firmware Assisted dump is supported. if yes, check |
| * if dump has been initiated on last reboot. |
| */ |
| token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL); |
| if (!token) |
| return 1; |
| |
| fw_dump.fadump_supported = 1; |
| fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token); |
| |
| /* |
| * The 'ibm,kernel-dump' rtas node is present only if there is |
| * dump data waiting for us. |
| */ |
| fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL); |
| if (fdm_active) |
| fw_dump.dump_active = 1; |
| |
| /* Get the sizes required to store dump data for the firmware provided |
| * dump sections. |
| * For each dump section type supported, a 32bit cell which defines |
| * the ID of a supported section followed by two 32 bit cells which |
| * gives teh size of the section in bytes. |
| */ |
| sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes", |
| &size); |
| |
| if (!sections) |
| return 1; |
| |
| num_sections = size / (3 * sizeof(u32)); |
| |
| for (i = 0; i < num_sections; i++, sections += 3) { |
| u32 type = (u32)of_read_number(sections, 1); |
| |
| switch (type) { |
| case FADUMP_CPU_STATE_DATA: |
| fw_dump.cpu_state_data_size = |
| of_read_ulong(§ions[1], 2); |
| break; |
| case FADUMP_HPTE_REGION: |
| fw_dump.hpte_region_size = |
| of_read_ulong(§ions[1], 2); |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * If fadump is registered, check if the memory provided |
| * falls within boot memory area. |
| */ |
| int is_fadump_boot_memory_area(u64 addr, ulong size) |
| { |
| if (!fw_dump.dump_registered) |
| return 0; |
| |
| return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size; |
| } |
| |
| int should_fadump_crash(void) |
| { |
| if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) |
| return 0; |
| return 1; |
| } |
| |
| int is_fadump_active(void) |
| { |
| return fw_dump.dump_active; |
| } |
| |
| /* |
| * Returns 1, if there are no holes in boot memory area, |
| * 0 otherwise. |
| */ |
| static int is_boot_memory_area_contiguous(void) |
| { |
| struct memblock_region *reg; |
| unsigned long tstart, tend; |
| unsigned long start_pfn = PHYS_PFN(RMA_START); |
| unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size); |
| unsigned int ret = 0; |
| |
| for_each_memblock(memory, reg) { |
| tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); |
| tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); |
| if (tstart < tend) { |
| /* Memory hole from start_pfn to tstart */ |
| if (tstart > start_pfn) |
| break; |
| |
| if (tend == end_pfn) { |
| ret = 1; |
| break; |
| } |
| |
| start_pfn = tend + 1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* Print firmware assisted dump configurations for debugging purpose. */ |
| static void fadump_show_config(void) |
| { |
| pr_debug("Support for firmware-assisted dump (fadump): %s\n", |
| (fw_dump.fadump_supported ? "present" : "no support")); |
| |
| if (!fw_dump.fadump_supported) |
| return; |
| |
| pr_debug("Fadump enabled : %s\n", |
| (fw_dump.fadump_enabled ? "yes" : "no")); |
| pr_debug("Dump Active : %s\n", |
| (fw_dump.dump_active ? "yes" : "no")); |
| pr_debug("Dump section sizes:\n"); |
| pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); |
| pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); |
| pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size); |
| } |
| |
| static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm, |
| unsigned long addr) |
| { |
| if (!fdm) |
| return 0; |
| |
| memset(fdm, 0, sizeof(struct fadump_mem_struct)); |
| addr = addr & PAGE_MASK; |
| |
| fdm->header.dump_format_version = cpu_to_be32(0x00000001); |
| fdm->header.dump_num_sections = cpu_to_be16(3); |
| fdm->header.dump_status_flag = 0; |
| fdm->header.offset_first_dump_section = |
| cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data)); |
| |
| /* |
| * Fields for disk dump option. |
| * We are not using disk dump option, hence set these fields to 0. |
| */ |
| fdm->header.dd_block_size = 0; |
| fdm->header.dd_block_offset = 0; |
| fdm->header.dd_num_blocks = 0; |
| fdm->header.dd_offset_disk_path = 0; |
| |
| /* set 0 to disable an automatic dump-reboot. */ |
| fdm->header.max_time_auto = 0; |
| |
| /* Kernel dump sections */ |
| /* cpu state data section. */ |
| fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); |
| fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA); |
| fdm->cpu_state_data.source_address = 0; |
| fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size); |
| fdm->cpu_state_data.destination_address = cpu_to_be64(addr); |
| addr += fw_dump.cpu_state_data_size; |
| |
| /* hpte region section */ |
| fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); |
| fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION); |
| fdm->hpte_region.source_address = 0; |
| fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size); |
| fdm->hpte_region.destination_address = cpu_to_be64(addr); |
| addr += fw_dump.hpte_region_size; |
| |
| /* RMA region section */ |
| fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); |
| fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION); |
| fdm->rmr_region.source_address = cpu_to_be64(RMA_START); |
| fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size); |
| fdm->rmr_region.destination_address = cpu_to_be64(addr); |
| addr += fw_dump.boot_memory_size; |
| |
| return addr; |
| } |
| |
| /** |
| * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM |
| * |
| * Function to find the largest memory size we need to reserve during early |
| * boot process. This will be the size of the memory that is required for a |
| * kernel to boot successfully. |
| * |
| * This function has been taken from phyp-assisted dump feature implementation. |
| * |
| * returns larger of 256MB or 5% rounded down to multiples of 256MB. |
| * |
| * TODO: Come up with better approach to find out more accurate memory size |
| * that is required for a kernel to boot successfully. |
| * |
| */ |
| static inline unsigned long fadump_calculate_reserve_size(void) |
| { |
| int ret; |
| unsigned long long base, size; |
| |
| if (fw_dump.reserve_bootvar) |
| pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); |
| |
| /* |
| * Check if the size is specified through crashkernel= cmdline |
| * option. If yes, then use that but ignore base as fadump reserves |
| * memory at a predefined offset. |
| */ |
| ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), |
| &size, &base); |
| if (ret == 0 && size > 0) { |
| unsigned long max_size; |
| |
| if (fw_dump.reserve_bootvar) |
| pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); |
| |
| fw_dump.reserve_bootvar = (unsigned long)size; |
| |
| /* |
| * Adjust if the boot memory size specified is above |
| * the upper limit. |
| */ |
| max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; |
| if (fw_dump.reserve_bootvar > max_size) { |
| fw_dump.reserve_bootvar = max_size; |
| pr_info("Adjusted boot memory size to %luMB\n", |
| (fw_dump.reserve_bootvar >> 20)); |
| } |
| |
| return fw_dump.reserve_bootvar; |
| } else if (fw_dump.reserve_bootvar) { |
| /* |
| * 'fadump_reserve_mem=' is being used to reserve memory |
| * for firmware-assisted dump. |
| */ |
| return fw_dump.reserve_bootvar; |
| } |
| |
| /* divide by 20 to get 5% of value */ |
| size = memblock_phys_mem_size() / 20; |
| |
| /* round it down in multiples of 256 */ |
| size = size & ~0x0FFFFFFFUL; |
| |
| /* Truncate to memory_limit. We don't want to over reserve the memory.*/ |
| if (memory_limit && size > memory_limit) |
| size = memory_limit; |
| |
| return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM); |
| } |
| |
| /* |
| * Calculate the total memory size required to be reserved for |
| * firmware-assisted dump registration. |
| */ |
| static unsigned long get_fadump_area_size(void) |
| { |
| unsigned long size = 0; |
| |
| size += fw_dump.cpu_state_data_size; |
| size += fw_dump.hpte_region_size; |
| size += fw_dump.boot_memory_size; |
| size += sizeof(struct fadump_crash_info_header); |
| size += sizeof(struct elfhdr); /* ELF core header.*/ |
| size += sizeof(struct elf_phdr); /* place holder for cpu notes */ |
| /* Program headers for crash memory regions. */ |
| size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); |
| |
| size = PAGE_ALIGN(size); |
| return size; |
| } |
| |
| int __init fadump_reserve_mem(void) |
| { |
| unsigned long base, size, memory_boundary; |
| |
| if (!fw_dump.fadump_enabled) |
| return 0; |
| |
| if (!fw_dump.fadump_supported) { |
| printk(KERN_INFO "Firmware-assisted dump is not supported on" |
| " this hardware\n"); |
| fw_dump.fadump_enabled = 0; |
| return 0; |
| } |
| /* |
| * Initialize boot memory size |
| * If dump is active then we have already calculated the size during |
| * first kernel. |
| */ |
| if (fdm_active) |
| fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len); |
| else |
| fw_dump.boot_memory_size = fadump_calculate_reserve_size(); |
| |
| /* |
| * Calculate the memory boundary. |
| * If memory_limit is less than actual memory boundary then reserve |
| * the memory for fadump beyond the memory_limit and adjust the |
| * memory_limit accordingly, so that the running kernel can run with |
| * specified memory_limit. |
| */ |
| if (memory_limit && memory_limit < memblock_end_of_DRAM()) { |
| size = get_fadump_area_size(); |
| if ((memory_limit + size) < memblock_end_of_DRAM()) |
| memory_limit += size; |
| else |
| memory_limit = memblock_end_of_DRAM(); |
| printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" |
| " dump, now %#016llx\n", memory_limit); |
| } |
| if (memory_limit) |
| memory_boundary = memory_limit; |
| else |
| memory_boundary = memblock_end_of_DRAM(); |
| |
| if (fw_dump.dump_active) { |
| printk(KERN_INFO "Firmware-assisted dump is active.\n"); |
| /* |
| * If last boot has crashed then reserve all the memory |
| * above boot_memory_size so that we don't touch it until |
| * dump is written to disk by userspace tool. This memory |
| * will be released for general use once the dump is saved. |
| */ |
| base = fw_dump.boot_memory_size; |
| size = memory_boundary - base; |
| memblock_reserve(base, size); |
| printk(KERN_INFO "Reserved %ldMB of memory at %ldMB " |
| "for saving crash dump\n", |
| (unsigned long)(size >> 20), |
| (unsigned long)(base >> 20)); |
| |
| fw_dump.fadumphdr_addr = |
| be64_to_cpu(fdm_active->rmr_region.destination_address) + |
| be64_to_cpu(fdm_active->rmr_region.source_len); |
| pr_debug("fadumphdr_addr = %p\n", |
| (void *) fw_dump.fadumphdr_addr); |
| } else { |
| size = get_fadump_area_size(); |
| |
| /* |
| * Reserve memory at an offset closer to bottom of the RAM to |
| * minimize the impact of memory hot-remove operation. We can't |
| * use memblock_find_in_range() here since it doesn't allocate |
| * from bottom to top. |
| */ |
| for (base = fw_dump.boot_memory_size; |
| base <= (memory_boundary - size); |
| base += size) { |
| if (memblock_is_region_memory(base, size) && |
| !memblock_is_region_reserved(base, size)) |
| break; |
| } |
| if ((base > (memory_boundary - size)) || |
| memblock_reserve(base, size)) { |
| pr_err("Failed to reserve memory\n"); |
| return 0; |
| } |
| |
| pr_info("Reserved %ldMB of memory at %ldMB for firmware-" |
| "assisted dump (System RAM: %ldMB)\n", |
| (unsigned long)(size >> 20), |
| (unsigned long)(base >> 20), |
| (unsigned long)(memblock_phys_mem_size() >> 20)); |
| } |
| |
| fw_dump.reserve_dump_area_start = base; |
| fw_dump.reserve_dump_area_size = size; |
| return 1; |
| } |
| |
| unsigned long __init arch_reserved_kernel_pages(void) |
| { |
| return memblock_reserved_size() / PAGE_SIZE; |
| } |
| |
| /* Look for fadump= cmdline option. */ |
| static int __init early_fadump_param(char *p) |
| { |
| if (!p) |
| return 1; |
| |
| if (strncmp(p, "on", 2) == 0) |
| fw_dump.fadump_enabled = 1; |
| else if (strncmp(p, "off", 3) == 0) |
| fw_dump.fadump_enabled = 0; |
| |
| return 0; |
| } |
| early_param("fadump", early_fadump_param); |
| |
| /* |
| * Look for fadump_reserve_mem= cmdline option |
| * TODO: Remove references to 'fadump_reserve_mem=' parameter, |
| * the sooner 'crashkernel=' parameter is accustomed to. |
| */ |
| static int __init early_fadump_reserve_mem(char *p) |
| { |
| if (p) |
| fw_dump.reserve_bootvar = memparse(p, &p); |
| return 0; |
| } |
| early_param("fadump_reserve_mem", early_fadump_reserve_mem); |
| |
| static int register_fw_dump(struct fadump_mem_struct *fdm) |
| { |
| int rc, err; |
| unsigned int wait_time; |
| |
| pr_debug("Registering for firmware-assisted kernel dump...\n"); |
| |
| /* TODO: Add upper time limit for the delay */ |
| do { |
| rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, |
| FADUMP_REGISTER, fdm, |
| sizeof(struct fadump_mem_struct)); |
| |
| wait_time = rtas_busy_delay_time(rc); |
| if (wait_time) |
| mdelay(wait_time); |
| |
| } while (wait_time); |
| |
| err = -EIO; |
| switch (rc) { |
| default: |
| pr_err("Failed to register. Unknown Error(%d).\n", rc); |
| break; |
| case -1: |
| printk(KERN_ERR "Failed to register firmware-assisted kernel" |
| " dump. Hardware Error(%d).\n", rc); |
| break; |
| case -3: |
| if (!is_boot_memory_area_contiguous()) |
| pr_err("Can't have holes in boot memory area while " |
| "registering fadump\n"); |
| |
| printk(KERN_ERR "Failed to register firmware-assisted kernel" |
| " dump. Parameter Error(%d).\n", rc); |
| err = -EINVAL; |
| break; |
| case -9: |
| printk(KERN_ERR "firmware-assisted kernel dump is already " |
| " registered."); |
| fw_dump.dump_registered = 1; |
| err = -EEXIST; |
| break; |
| case 0: |
| printk(KERN_INFO "firmware-assisted kernel dump registration" |
| " is successful\n"); |
| fw_dump.dump_registered = 1; |
| err = 0; |
| break; |
| } |
| return err; |
| } |
| |
| void crash_fadump(struct pt_regs *regs, const char *str) |
| { |
| struct fadump_crash_info_header *fdh = NULL; |
| int old_cpu, this_cpu; |
| |
| if (!should_fadump_crash()) |
| return; |
| |
| /* |
| * old_cpu == -1 means this is the first CPU which has come here, |
| * go ahead and trigger fadump. |
| * |
| * old_cpu != -1 means some other CPU has already on it's way |
| * to trigger fadump, just keep looping here. |
| */ |
| this_cpu = smp_processor_id(); |
| old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); |
| |
| if (old_cpu != -1) { |
| /* |
| * We can't loop here indefinitely. Wait as long as fadump |
| * is in force. If we race with fadump un-registration this |
| * loop will break and then we go down to normal panic path |
| * and reboot. If fadump is in force the first crashing |
| * cpu will definitely trigger fadump. |
| */ |
| while (fw_dump.dump_registered) |
| cpu_relax(); |
| return; |
| } |
| |
| fdh = __va(fw_dump.fadumphdr_addr); |
| fdh->crashing_cpu = crashing_cpu; |
| crash_save_vmcoreinfo(); |
| |
| if (regs) |
| fdh->regs = *regs; |
| else |
| ppc_save_regs(&fdh->regs); |
| |
| fdh->online_mask = *cpu_online_mask; |
| |
| /* Call ibm,os-term rtas call to trigger firmware assisted dump */ |
| rtas_os_term((char *)str); |
| } |
| |
| #define GPR_MASK 0xffffff0000000000 |
| static inline int fadump_gpr_index(u64 id) |
| { |
| int i = -1; |
| char str[3]; |
| |
| if ((id & GPR_MASK) == REG_ID("GPR")) { |
| /* get the digits at the end */ |
| id &= ~GPR_MASK; |
| id >>= 24; |
| str[2] = '\0'; |
| str[1] = id & 0xff; |
| str[0] = (id >> 8) & 0xff; |
| sscanf(str, "%d", &i); |
| if (i > 31) |
| i = -1; |
| } |
| return i; |
| } |
| |
| static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id, |
| u64 reg_val) |
| { |
| int i; |
| |
| i = fadump_gpr_index(reg_id); |
| if (i >= 0) |
| regs->gpr[i] = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("NIA")) |
| regs->nip = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("MSR")) |
| regs->msr = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("CTR")) |
| regs->ctr = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("LR")) |
| regs->link = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("XER")) |
| regs->xer = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("CR")) |
| regs->ccr = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("DAR")) |
| regs->dar = (unsigned long)reg_val; |
| else if (reg_id == REG_ID("DSISR")) |
| regs->dsisr = (unsigned long)reg_val; |
| } |
| |
| static struct fadump_reg_entry* |
| fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs) |
| { |
| memset(regs, 0, sizeof(struct pt_regs)); |
| |
| while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) { |
| fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id), |
| be64_to_cpu(reg_entry->reg_value)); |
| reg_entry++; |
| } |
| reg_entry++; |
| return reg_entry; |
| } |
| |
| static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) |
| { |
| struct elf_prstatus prstatus; |
| |
| memset(&prstatus, 0, sizeof(prstatus)); |
| /* |
| * FIXME: How do i get PID? Do I really need it? |
| * prstatus.pr_pid = ???? |
| */ |
| elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
| buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, |
| &prstatus, sizeof(prstatus)); |
| return buf; |
| } |
| |
| static void fadump_update_elfcore_header(char *bufp) |
| { |
| struct elfhdr *elf; |
| struct elf_phdr *phdr; |
| |
| elf = (struct elfhdr *)bufp; |
| bufp += sizeof(struct elfhdr); |
| |
| /* First note is a place holder for cpu notes info. */ |
| phdr = (struct elf_phdr *)bufp; |
| |
| if (phdr->p_type == PT_NOTE) { |
| phdr->p_paddr = fw_dump.cpu_notes_buf; |
| phdr->p_offset = phdr->p_paddr; |
| phdr->p_filesz = fw_dump.cpu_notes_buf_size; |
| phdr->p_memsz = fw_dump.cpu_notes_buf_size; |
| } |
| return; |
| } |
| |
| static void *fadump_cpu_notes_buf_alloc(unsigned long size) |
| { |
| void *vaddr; |
| struct page *page; |
| unsigned long order, count, i; |
| |
| order = get_order(size); |
| vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order); |
| if (!vaddr) |
| return NULL; |
| |
| count = 1 << order; |
| page = virt_to_page(vaddr); |
| for (i = 0; i < count; i++) |
| SetPageReserved(page + i); |
| return vaddr; |
| } |
| |
| static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size) |
| { |
| struct page *page; |
| unsigned long order, count, i; |
| |
| order = get_order(size); |
| count = 1 << order; |
| page = virt_to_page(vaddr); |
| for (i = 0; i < count; i++) |
| ClearPageReserved(page + i); |
| __free_pages(page, order); |
| } |
| |
| /* |
| * Read CPU state dump data and convert it into ELF notes. |
| * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be |
| * used to access the data to allow for additional fields to be added without |
| * affecting compatibility. Each list of registers for a CPU starts with |
| * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes, |
| * 8 Byte ASCII identifier and 8 Byte register value. The register entry |
| * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part |
| * of register value. For more details refer to PAPR document. |
| * |
| * Only for the crashing cpu we ignore the CPU dump data and get exact |
| * state from fadump crash info structure populated by first kernel at the |
| * time of crash. |
| */ |
| static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm) |
| { |
| struct fadump_reg_save_area_header *reg_header; |
| struct fadump_reg_entry *reg_entry; |
| struct fadump_crash_info_header *fdh = NULL; |
| void *vaddr; |
| unsigned long addr; |
| u32 num_cpus, *note_buf; |
| struct pt_regs regs; |
| int i, rc = 0, cpu = 0; |
| |
| if (!fdm->cpu_state_data.bytes_dumped) |
| return -EINVAL; |
| |
| addr = be64_to_cpu(fdm->cpu_state_data.destination_address); |
| vaddr = __va(addr); |
| |
| reg_header = vaddr; |
| if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) { |
| printk(KERN_ERR "Unable to read register save area.\n"); |
| return -ENOENT; |
| } |
| pr_debug("--------CPU State Data------------\n"); |
| pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number)); |
| pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset)); |
| |
| vaddr += be32_to_cpu(reg_header->num_cpu_offset); |
| num_cpus = be32_to_cpu(*((__be32 *)(vaddr))); |
| pr_debug("NumCpus : %u\n", num_cpus); |
| vaddr += sizeof(u32); |
| reg_entry = (struct fadump_reg_entry *)vaddr; |
| |
| /* Allocate buffer to hold cpu crash notes. */ |
| fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); |
| fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); |
| note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size); |
| if (!note_buf) { |
| printk(KERN_ERR "Failed to allocate 0x%lx bytes for " |
| "cpu notes buffer\n", fw_dump.cpu_notes_buf_size); |
| return -ENOMEM; |
| } |
| fw_dump.cpu_notes_buf = __pa(note_buf); |
| |
| pr_debug("Allocated buffer for cpu notes of size %ld at %p\n", |
| (num_cpus * sizeof(note_buf_t)), note_buf); |
| |
| if (fw_dump.fadumphdr_addr) |
| fdh = __va(fw_dump.fadumphdr_addr); |
| |
| for (i = 0; i < num_cpus; i++) { |
| if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) { |
| printk(KERN_ERR "Unable to read CPU state data\n"); |
| rc = -ENOENT; |
| goto error_out; |
| } |
| /* Lower 4 bytes of reg_value contains logical cpu id */ |
| cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK; |
| if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) { |
| SKIP_TO_NEXT_CPU(reg_entry); |
| continue; |
| } |
| pr_debug("Reading register data for cpu %d...\n", cpu); |
| if (fdh && fdh->crashing_cpu == cpu) { |
| regs = fdh->regs; |
| note_buf = fadump_regs_to_elf_notes(note_buf, ®s); |
| SKIP_TO_NEXT_CPU(reg_entry); |
| } else { |
| reg_entry++; |
| reg_entry = fadump_read_registers(reg_entry, ®s); |
| note_buf = fadump_regs_to_elf_notes(note_buf, ®s); |
| } |
| } |
| final_note(note_buf); |
| |
| if (fdh) { |
| pr_debug("Updating elfcore header (%llx) with cpu notes\n", |
| fdh->elfcorehdr_addr); |
| fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr)); |
| } |
| return 0; |
| |
| error_out: |
| fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf), |
| fw_dump.cpu_notes_buf_size); |
| fw_dump.cpu_notes_buf = 0; |
| fw_dump.cpu_notes_buf_size = 0; |
| return rc; |
| |
| } |
| |
| /* |
| * Validate and process the dump data stored by firmware before exporting |
| * it through '/proc/vmcore'. |
| */ |
| static int __init process_fadump(const struct fadump_mem_struct *fdm_active) |
| { |
| struct fadump_crash_info_header *fdh; |
| int rc = 0; |
| |
| if (!fdm_active || !fw_dump.fadumphdr_addr) |
| return -EINVAL; |
| |
| /* Check if the dump data is valid. */ |
| if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) || |
| (fdm_active->cpu_state_data.error_flags != 0) || |
| (fdm_active->rmr_region.error_flags != 0)) { |
| printk(KERN_ERR "Dump taken by platform is not valid\n"); |
| return -EINVAL; |
| } |
| if ((fdm_active->rmr_region.bytes_dumped != |
| fdm_active->rmr_region.source_len) || |
| !fdm_active->cpu_state_data.bytes_dumped) { |
| printk(KERN_ERR "Dump taken by platform is incomplete\n"); |
| return -EINVAL; |
| } |
| |
| /* Validate the fadump crash info header */ |
| fdh = __va(fw_dump.fadumphdr_addr); |
| if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) { |
| printk(KERN_ERR "Crash info header is not valid.\n"); |
| return -EINVAL; |
| } |
| |
| rc = fadump_build_cpu_notes(fdm_active); |
| if (rc) |
| return rc; |
| |
| /* |
| * We are done validating dump info and elfcore header is now ready |
| * to be exported. set elfcorehdr_addr so that vmcore module will |
| * export the elfcore header through '/proc/vmcore'. |
| */ |
| elfcorehdr_addr = fdh->elfcorehdr_addr; |
| |
| return 0; |
| } |
| |
| static void free_crash_memory_ranges(void) |
| { |
| kfree(crash_memory_ranges); |
| crash_memory_ranges = NULL; |
| crash_memory_ranges_size = 0; |
| max_crash_mem_ranges = 0; |
| } |
| |
| /* |
| * Allocate or reallocate crash memory ranges array in incremental units |
| * of PAGE_SIZE. |
| */ |
| static int allocate_crash_memory_ranges(void) |
| { |
| struct fad_crash_memory_ranges *new_array; |
| u64 new_size; |
| |
| new_size = crash_memory_ranges_size + PAGE_SIZE; |
| pr_debug("Allocating %llu bytes of memory for crash memory ranges\n", |
| new_size); |
| |
| new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL); |
| if (new_array == NULL) { |
| pr_err("Insufficient memory for setting up crash memory ranges\n"); |
| free_crash_memory_ranges(); |
| return -ENOMEM; |
| } |
| |
| crash_memory_ranges = new_array; |
| crash_memory_ranges_size = new_size; |
| max_crash_mem_ranges = (new_size / |
| sizeof(struct fad_crash_memory_ranges)); |
| return 0; |
| } |
| |
| static inline int fadump_add_crash_memory(unsigned long long base, |
| unsigned long long end) |
| { |
| if (base == end) |
| return 0; |
| |
| if (crash_mem_ranges == max_crash_mem_ranges) { |
| int ret; |
| |
| ret = allocate_crash_memory_ranges(); |
| if (ret) |
| return ret; |
| } |
| |
| pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", |
| crash_mem_ranges, base, end - 1, (end - base)); |
| crash_memory_ranges[crash_mem_ranges].base = base; |
| crash_memory_ranges[crash_mem_ranges].size = end - base; |
| crash_mem_ranges++; |
| return 0; |
| } |
| |
| static int fadump_exclude_reserved_area(unsigned long long start, |
| unsigned long long end) |
| { |
| unsigned long long ra_start, ra_end; |
| int ret = 0; |
| |
| ra_start = fw_dump.reserve_dump_area_start; |
| ra_end = ra_start + fw_dump.reserve_dump_area_size; |
| |
| if ((ra_start < end) && (ra_end > start)) { |
| if ((start < ra_start) && (end > ra_end)) { |
| ret = fadump_add_crash_memory(start, ra_start); |
| if (ret) |
| return ret; |
| |
| ret = fadump_add_crash_memory(ra_end, end); |
| } else if (start < ra_start) { |
| ret = fadump_add_crash_memory(start, ra_start); |
| } else if (ra_end < end) { |
| ret = fadump_add_crash_memory(ra_end, end); |
| } |
| } else |
| ret = fadump_add_crash_memory(start, end); |
| |
| return ret; |
| } |
| |
| static int fadump_init_elfcore_header(char *bufp) |
| { |
| struct elfhdr *elf; |
| |
| elf = (struct elfhdr *) bufp; |
| bufp += sizeof(struct elfhdr); |
| memcpy(elf->e_ident, ELFMAG, SELFMAG); |
| elf->e_ident[EI_CLASS] = ELF_CLASS; |
| elf->e_ident[EI_DATA] = ELF_DATA; |
| elf->e_ident[EI_VERSION] = EV_CURRENT; |
| elf->e_ident[EI_OSABI] = ELF_OSABI; |
| memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); |
| elf->e_type = ET_CORE; |
| elf->e_machine = ELF_ARCH; |
| elf->e_version = EV_CURRENT; |
| elf->e_entry = 0; |
| elf->e_phoff = sizeof(struct elfhdr); |
| elf->e_shoff = 0; |
| #if defined(_CALL_ELF) |
| elf->e_flags = _CALL_ELF; |
| #else |
| elf->e_flags = 0; |
| #endif |
| elf->e_ehsize = sizeof(struct elfhdr); |
| elf->e_phentsize = sizeof(struct elf_phdr); |
| elf->e_phnum = 0; |
| elf->e_shentsize = 0; |
| elf->e_shnum = 0; |
| elf->e_shstrndx = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * Traverse through memblock structure and setup crash memory ranges. These |
| * ranges will be used create PT_LOAD program headers in elfcore header. |
| */ |
| static int fadump_setup_crash_memory_ranges(void) |
| { |
| struct memblock_region *reg; |
| unsigned long long start, end; |
| int ret; |
| |
| pr_debug("Setup crash memory ranges.\n"); |
| crash_mem_ranges = 0; |
| /* |
| * add the first memory chunk (RMA_START through boot_memory_size) as |
| * a separate memory chunk. The reason is, at the time crash firmware |
| * will move the content of this memory chunk to different location |
| * specified during fadump registration. We need to create a separate |
| * program header for this chunk with the correct offset. |
| */ |
| ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size); |
| if (ret) |
| return ret; |
| |
| for_each_memblock(memory, reg) { |
| start = (unsigned long long)reg->base; |
| end = start + (unsigned long long)reg->size; |
| |
| /* |
| * skip the first memory chunk that is already added (RMA_START |
| * through boot_memory_size). This logic needs a relook if and |
| * when RMA_START changes to a non-zero value. |
| */ |
| BUILD_BUG_ON(RMA_START != 0); |
| if (start < fw_dump.boot_memory_size) { |
| if (end > fw_dump.boot_memory_size) |
| start = fw_dump.boot_memory_size; |
| else |
| continue; |
| } |
| |
| /* add this range excluding the reserved dump area. */ |
| ret = fadump_exclude_reserved_area(start, end); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * If the given physical address falls within the boot memory region then |
| * return the relocated address that points to the dump region reserved |
| * for saving initial boot memory contents. |
| */ |
| static inline unsigned long fadump_relocate(unsigned long paddr) |
| { |
| if (paddr > RMA_START && paddr < fw_dump.boot_memory_size) |
| return be64_to_cpu(fdm.rmr_region.destination_address) + paddr; |
| else |
| return paddr; |
| } |
| |
| static int fadump_create_elfcore_headers(char *bufp) |
| { |
| struct elfhdr *elf; |
| struct elf_phdr *phdr; |
| int i; |
| |
| fadump_init_elfcore_header(bufp); |
| elf = (struct elfhdr *)bufp; |
| bufp += sizeof(struct elfhdr); |
| |
| /* |
| * setup ELF PT_NOTE, place holder for cpu notes info. The notes info |
| * will be populated during second kernel boot after crash. Hence |
| * this PT_NOTE will always be the first elf note. |
| * |
| * NOTE: Any new ELF note addition should be placed after this note. |
| */ |
| phdr = (struct elf_phdr *)bufp; |
| bufp += sizeof(struct elf_phdr); |
| phdr->p_type = PT_NOTE; |
| phdr->p_flags = 0; |
| phdr->p_vaddr = 0; |
| phdr->p_align = 0; |
| |
| phdr->p_offset = 0; |
| phdr->p_paddr = 0; |
| phdr->p_filesz = 0; |
| phdr->p_memsz = 0; |
| |
| (elf->e_phnum)++; |
| |
| /* setup ELF PT_NOTE for vmcoreinfo */ |
| phdr = (struct elf_phdr *)bufp; |
| bufp += sizeof(struct elf_phdr); |
| phdr->p_type = PT_NOTE; |
| phdr->p_flags = 0; |
| phdr->p_vaddr = 0; |
| phdr->p_align = 0; |
| |
| phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); |
| phdr->p_offset = phdr->p_paddr; |
| phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; |
| |
| /* Increment number of program headers. */ |
| (elf->e_phnum)++; |
| |
| /* setup PT_LOAD sections. */ |
| |
| for (i = 0; i < crash_mem_ranges; i++) { |
| unsigned long long mbase, msize; |
| mbase = crash_memory_ranges[i].base; |
| msize = crash_memory_ranges[i].size; |
| |
| if (!msize) |
| continue; |
| |
| phdr = (struct elf_phdr *)bufp; |
| bufp += sizeof(struct elf_phdr); |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_offset = mbase; |
| |
| if (mbase == RMA_START) { |
| /* |
| * The entire RMA region will be moved by firmware |
| * to the specified destination_address. Hence set |
| * the correct offset. |
| */ |
| phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address); |
| } |
| |
| phdr->p_paddr = mbase; |
| phdr->p_vaddr = (unsigned long)__va(mbase); |
| phdr->p_filesz = msize; |
| phdr->p_memsz = msize; |
| phdr->p_align = 0; |
| |
| /* Increment number of program headers. */ |
| (elf->e_phnum)++; |
| } |
| return 0; |
| } |
| |
| static unsigned long init_fadump_header(unsigned long addr) |
| { |
| struct fadump_crash_info_header *fdh; |
| |
| if (!addr) |
| return 0; |
| |
| fw_dump.fadumphdr_addr = addr; |
| fdh = __va(addr); |
| addr += sizeof(struct fadump_crash_info_header); |
| |
| memset(fdh, 0, sizeof(struct fadump_crash_info_header)); |
| fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; |
| fdh->elfcorehdr_addr = addr; |
| /* We will set the crashing cpu id in crash_fadump() during crash. */ |
| fdh->crashing_cpu = CPU_UNKNOWN; |
| |
| return addr; |
| } |
| |
| static int register_fadump(void) |
| { |
| unsigned long addr; |
| void *vaddr; |
| int ret; |
| |
| /* |
| * If no memory is reserved then we can not register for firmware- |
| * assisted dump. |
| */ |
| if (!fw_dump.reserve_dump_area_size) |
| return -ENODEV; |
| |
| ret = fadump_setup_crash_memory_ranges(); |
| if (ret) |
| return ret; |
| |
| addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len); |
| /* Initialize fadump crash info header. */ |
| addr = init_fadump_header(addr); |
| vaddr = __va(addr); |
| |
| pr_debug("Creating ELF core headers at %#016lx\n", addr); |
| fadump_create_elfcore_headers(vaddr); |
| |
| /* register the future kernel dump with firmware. */ |
| return register_fw_dump(&fdm); |
| } |
| |
| static int fadump_unregister_dump(struct fadump_mem_struct *fdm) |
| { |
| int rc = 0; |
| unsigned int wait_time; |
| |
| pr_debug("Un-register firmware-assisted dump\n"); |
| |
| /* TODO: Add upper time limit for the delay */ |
| do { |
| rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, |
| FADUMP_UNREGISTER, fdm, |
| sizeof(struct fadump_mem_struct)); |
| |
| wait_time = rtas_busy_delay_time(rc); |
| if (wait_time) |
| mdelay(wait_time); |
| } while (wait_time); |
| |
| if (rc) { |
| printk(KERN_ERR "Failed to un-register firmware-assisted dump." |
| " unexpected error(%d).\n", rc); |
| return rc; |
| } |
| fw_dump.dump_registered = 0; |
| return 0; |
| } |
| |
| static int fadump_invalidate_dump(struct fadump_mem_struct *fdm) |
| { |
| int rc = 0; |
| unsigned int wait_time; |
| |
| pr_debug("Invalidating firmware-assisted dump registration\n"); |
| |
| /* TODO: Add upper time limit for the delay */ |
| do { |
| rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, |
| FADUMP_INVALIDATE, fdm, |
| sizeof(struct fadump_mem_struct)); |
| |
| wait_time = rtas_busy_delay_time(rc); |
| if (wait_time) |
| mdelay(wait_time); |
| } while (wait_time); |
| |
| if (rc) { |
| pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc); |
| return rc; |
| } |
| fw_dump.dump_active = 0; |
| fdm_active = NULL; |
| return 0; |
| } |
| |
| void fadump_cleanup(void) |
| { |
| /* Invalidate the registration only if dump is active. */ |
| if (fw_dump.dump_active) { |
| init_fadump_mem_struct(&fdm, |
| be64_to_cpu(fdm_active->cpu_state_data.destination_address)); |
| fadump_invalidate_dump(&fdm); |
| } else if (fw_dump.dump_registered) { |
| /* Un-register Firmware-assisted dump if it was registered. */ |
| fadump_unregister_dump(&fdm); |
| free_crash_memory_ranges(); |
| } |
| } |
| |
| static void fadump_free_reserved_memory(unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long pfn; |
| unsigned long time_limit = jiffies + HZ; |
| |
| pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", |
| PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
| free_reserved_page(pfn_to_page(pfn)); |
| |
| if (time_after(jiffies, time_limit)) { |
| cond_resched(); |
| time_limit = jiffies + HZ; |
| } |
| } |
| } |
| |
| /* |
| * Skip memory holes and free memory that was actually reserved. |
| */ |
| static void fadump_release_reserved_area(unsigned long start, unsigned long end) |
| { |
| struct memblock_region *reg; |
| unsigned long tstart, tend; |
| unsigned long start_pfn = PHYS_PFN(start); |
| unsigned long end_pfn = PHYS_PFN(end); |
| |
| for_each_memblock(memory, reg) { |
| tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); |
| tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); |
| if (tstart < tend) { |
| fadump_free_reserved_memory(tstart, tend); |
| |
| if (tend == end_pfn) |
| break; |
| |
| start_pfn = tend + 1; |
| } |
| } |
| } |
| |
| /* |
| * Release the memory that was reserved in early boot to preserve the memory |
| * contents. The released memory will be available for general use. |
| */ |
| static void fadump_release_memory(unsigned long begin, unsigned long end) |
| { |
| unsigned long ra_start, ra_end; |
| |
| ra_start = fw_dump.reserve_dump_area_start; |
| ra_end = ra_start + fw_dump.reserve_dump_area_size; |
| |
| /* |
| * exclude the dump reserve area. Will reuse it for next |
| * fadump registration. |
| */ |
| if (begin < ra_end && end > ra_start) { |
| if (begin < ra_start) |
| fadump_release_reserved_area(begin, ra_start); |
| if (end > ra_end) |
| fadump_release_reserved_area(ra_end, end); |
| } else |
| fadump_release_reserved_area(begin, end); |
| } |
| |
| static void fadump_invalidate_release_mem(void) |
| { |
| unsigned long reserved_area_start, reserved_area_end; |
| unsigned long destination_address; |
| |
| mutex_lock(&fadump_mutex); |
| if (!fw_dump.dump_active) { |
| mutex_unlock(&fadump_mutex); |
| return; |
| } |
| |
| destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address); |
| fadump_cleanup(); |
| mutex_unlock(&fadump_mutex); |
| |
| /* |
| * Save the current reserved memory bounds we will require them |
| * later for releasing the memory for general use. |
| */ |
| reserved_area_start = fw_dump.reserve_dump_area_start; |
| reserved_area_end = reserved_area_start + |
| fw_dump.reserve_dump_area_size; |
| /* |
| * Setup reserve_dump_area_start and its size so that we can |
| * reuse this reserved memory for Re-registration. |
| */ |
| fw_dump.reserve_dump_area_start = destination_address; |
| fw_dump.reserve_dump_area_size = get_fadump_area_size(); |
| |
| fadump_release_memory(reserved_area_start, reserved_area_end); |
| if (fw_dump.cpu_notes_buf) { |
| fadump_cpu_notes_buf_free( |
| (unsigned long)__va(fw_dump.cpu_notes_buf), |
| fw_dump.cpu_notes_buf_size); |
| fw_dump.cpu_notes_buf = 0; |
| fw_dump.cpu_notes_buf_size = 0; |
| } |
| /* Initialize the kernel dump memory structure for FAD registration. */ |
| init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start); |
| } |
| |
| static ssize_t fadump_release_memory_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| if (!fw_dump.dump_active) |
| return -EPERM; |
| |
| if (buf[0] == '1') { |
| /* |
| * Take away the '/proc/vmcore'. We are releasing the dump |
| * memory, hence it will not be valid anymore. |
| */ |
| #ifdef CONFIG_PROC_VMCORE |
| vmcore_cleanup(); |
| #endif |
| fadump_invalidate_release_mem(); |
| |
| } else |
| return -EINVAL; |
| return count; |
| } |
| |
| static ssize_t fadump_enabled_show(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%d\n", fw_dump.fadump_enabled); |
| } |
| |
| static ssize_t fadump_register_show(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%d\n", fw_dump.dump_registered); |
| } |
| |
| static ssize_t fadump_register_store(struct kobject *kobj, |
| struct kobj_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret = 0; |
| |
| if (!fw_dump.fadump_enabled || fdm_active) |
| return -EPERM; |
| |
| mutex_lock(&fadump_mutex); |
| |
| switch (buf[0]) { |
| case '0': |
| if (fw_dump.dump_registered == 0) { |
| goto unlock_out; |
| } |
| /* Un-register Firmware-assisted dump */ |
| fadump_unregister_dump(&fdm); |
| break; |
| case '1': |
| if (fw_dump.dump_registered == 1) { |
| ret = -EEXIST; |
| goto unlock_out; |
| } |
| /* Register Firmware-assisted dump */ |
| ret = register_fadump(); |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| unlock_out: |
| mutex_unlock(&fadump_mutex); |
| return ret < 0 ? ret : count; |
| } |
| |
| static int fadump_region_show(struct seq_file *m, void *private) |
| { |
| const struct fadump_mem_struct *fdm_ptr; |
| |
| if (!fw_dump.fadump_enabled) |
| return 0; |
| |
| mutex_lock(&fadump_mutex); |
| if (fdm_active) |
| fdm_ptr = fdm_active; |
| else { |
| mutex_unlock(&fadump_mutex); |
| fdm_ptr = &fdm; |
| } |
| |
| seq_printf(m, |
| "CPU : [%#016llx-%#016llx] %#llx bytes, " |
| "Dumped: %#llx\n", |
| be64_to_cpu(fdm_ptr->cpu_state_data.destination_address), |
| be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) + |
| be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1, |
| be64_to_cpu(fdm_ptr->cpu_state_data.source_len), |
| be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped)); |
| seq_printf(m, |
| "HPTE: [%#016llx-%#016llx] %#llx bytes, " |
| "Dumped: %#llx\n", |
| be64_to_cpu(fdm_ptr->hpte_region.destination_address), |
| be64_to_cpu(fdm_ptr->hpte_region.destination_address) + |
| be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1, |
| be64_to_cpu(fdm_ptr->hpte_region.source_len), |
| be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped)); |
| seq_printf(m, |
| "DUMP: [%#016llx-%#016llx] %#llx bytes, " |
| "Dumped: %#llx\n", |
| be64_to_cpu(fdm_ptr->rmr_region.destination_address), |
| be64_to_cpu(fdm_ptr->rmr_region.destination_address) + |
| be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1, |
| be64_to_cpu(fdm_ptr->rmr_region.source_len), |
| be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped)); |
| |
| if (!fdm_active || |
| (fw_dump.reserve_dump_area_start == |
| be64_to_cpu(fdm_ptr->cpu_state_data.destination_address))) |
| goto out; |
| |
| /* Dump is active. Show reserved memory region. */ |
| seq_printf(m, |
| " : [%#016llx-%#016llx] %#llx bytes, " |
| "Dumped: %#llx\n", |
| (unsigned long long)fw_dump.reserve_dump_area_start, |
| be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1, |
| be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - |
| fw_dump.reserve_dump_area_start, |
| be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - |
| fw_dump.reserve_dump_area_start); |
| out: |
| if (fdm_active) |
| mutex_unlock(&fadump_mutex); |
| return 0; |
| } |
| |
| static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem, |
| 0200, NULL, |
| fadump_release_memory_store); |
| static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled, |
| 0444, fadump_enabled_show, |
| NULL); |
| static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered, |
| 0644, fadump_register_show, |
| fadump_register_store); |
| |
| static int fadump_region_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, fadump_region_show, inode->i_private); |
| } |
| |
| static const struct file_operations fadump_region_fops = { |
| .open = fadump_region_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static void fadump_init_files(void) |
| { |
| struct dentry *debugfs_file; |
| int rc = 0; |
| |
| rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr); |
| if (rc) |
| printk(KERN_ERR "fadump: unable to create sysfs file" |
| " fadump_enabled (%d)\n", rc); |
| |
| rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr); |
| if (rc) |
| printk(KERN_ERR "fadump: unable to create sysfs file" |
| " fadump_registered (%d)\n", rc); |
| |
| debugfs_file = debugfs_create_file("fadump_region", 0444, |
| powerpc_debugfs_root, NULL, |
| &fadump_region_fops); |
| if (!debugfs_file) |
| printk(KERN_ERR "fadump: unable to create debugfs file" |
| " fadump_region\n"); |
| |
| if (fw_dump.dump_active) { |
| rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr); |
| if (rc) |
| printk(KERN_ERR "fadump: unable to create sysfs file" |
| " fadump_release_mem (%d)\n", rc); |
| } |
| return; |
| } |
| |
| /* |
| * Prepare for firmware-assisted dump. |
| */ |
| int __init setup_fadump(void) |
| { |
| if (!fw_dump.fadump_enabled) |
| return 0; |
| |
| if (!fw_dump.fadump_supported) { |
| printk(KERN_ERR "Firmware-assisted dump is not supported on" |
| " this hardware\n"); |
| return 0; |
| } |
| |
| fadump_show_config(); |
| /* |
| * If dump data is available then see if it is valid and prepare for |
| * saving it to the disk. |
| */ |
| if (fw_dump.dump_active) { |
| /* |
| * if dump process fails then invalidate the registration |
| * and release memory before proceeding for re-registration. |
| */ |
| if (process_fadump(fdm_active) < 0) |
| fadump_invalidate_release_mem(); |
| } |
| /* Initialize the kernel dump memory structure for FAD registration. */ |
| else if (fw_dump.reserve_dump_area_size) |
| init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start); |
| fadump_init_files(); |
| |
| return 1; |
| } |
| subsys_initcall(setup_fadump); |