| /* |
| * Interrupt request handling routines. On the |
| * Sparc the IRQs are basically 'cast in stone' |
| * and you are supposed to probe the prom's device |
| * node trees to find out who's got which IRQ. |
| * |
| * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx) |
| * Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com) |
| * Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk) |
| * Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org) |
| */ |
| |
| #include <linux/kernel_stat.h> |
| #include <linux/seq_file.h> |
| #include <linux/export.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/cpudata.h> |
| #include <asm/setup.h> |
| #include <asm/pcic.h> |
| #include <asm/leon.h> |
| |
| #include "kernel.h" |
| #include "irq.h" |
| |
| /* platform specific irq setup */ |
| struct sparc_config sparc_config; |
| |
| unsigned long arch_local_irq_save(void) |
| { |
| unsigned long retval; |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "rd %%psr, %0\n\t" |
| "or %0, %2, %1\n\t" |
| "wr %1, 0, %%psr\n\t" |
| "nop; nop; nop\n" |
| : "=&r" (retval), "=r" (tmp) |
| : "i" (PSR_PIL) |
| : "memory"); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(arch_local_irq_save); |
| |
| void arch_local_irq_enable(void) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "rd %%psr, %0\n\t" |
| "andn %0, %1, %0\n\t" |
| "wr %0, 0, %%psr\n\t" |
| "nop; nop; nop\n" |
| : "=&r" (tmp) |
| : "i" (PSR_PIL) |
| : "memory"); |
| } |
| EXPORT_SYMBOL(arch_local_irq_enable); |
| |
| void arch_local_irq_restore(unsigned long old_psr) |
| { |
| unsigned long tmp; |
| |
| __asm__ __volatile__( |
| "rd %%psr, %0\n\t" |
| "and %2, %1, %2\n\t" |
| "andn %0, %1, %0\n\t" |
| "wr %0, %2, %%psr\n\t" |
| "nop; nop; nop\n" |
| : "=&r" (tmp) |
| : "i" (PSR_PIL), "r" (old_psr) |
| : "memory"); |
| } |
| EXPORT_SYMBOL(arch_local_irq_restore); |
| |
| /* |
| * Dave Redman (djhr@tadpole.co.uk) |
| * |
| * IRQ numbers.. These are no longer restricted to 15.. |
| * |
| * this is done to enable SBUS cards and onboard IO to be masked |
| * correctly. using the interrupt level isn't good enough. |
| * |
| * For example: |
| * A device interrupting at sbus level6 and the Floppy both come in |
| * at IRQ11, but enabling and disabling them requires writing to |
| * different bits in the SLAVIO/SEC. |
| * |
| * As a result of these changes sun4m machines could now support |
| * directed CPU interrupts using the existing enable/disable irq code |
| * with tweaks. |
| * |
| * Sun4d complicates things even further. IRQ numbers are arbitrary |
| * 32-bit values in that case. Since this is similar to sparc64, |
| * we adopt a virtual IRQ numbering scheme as is done there. |
| * Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS |
| * just becomes a limit of how many interrupt sources we can handle in |
| * a single system. Even fully loaded SS2000 machines top off at |
| * about 32 interrupt sources or so, therefore a NR_IRQS value of 64 |
| * is more than enough. |
| * |
| * We keep a map of per-PIL enable interrupts. These get wired |
| * up via the irq_chip->startup() method which gets invoked by |
| * the generic IRQ layer during request_irq(). |
| */ |
| |
| |
| /* Table of allocated irqs. Unused entries has irq == 0 */ |
| static struct irq_bucket irq_table[NR_IRQS]; |
| /* Protect access to irq_table */ |
| static DEFINE_SPINLOCK(irq_table_lock); |
| |
| /* Map between the irq identifier used in hw to the irq_bucket. */ |
| struct irq_bucket *irq_map[SUN4D_MAX_IRQ]; |
| /* Protect access to irq_map */ |
| static DEFINE_SPINLOCK(irq_map_lock); |
| |
| /* Allocate a new irq from the irq_table */ |
| unsigned int irq_alloc(unsigned int real_irq, unsigned int pil) |
| { |
| unsigned long flags; |
| unsigned int i; |
| |
| spin_lock_irqsave(&irq_table_lock, flags); |
| for (i = 1; i < NR_IRQS; i++) { |
| if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil) |
| goto found; |
| } |
| |
| for (i = 1; i < NR_IRQS; i++) { |
| if (!irq_table[i].irq) |
| break; |
| } |
| |
| if (i < NR_IRQS) { |
| irq_table[i].real_irq = real_irq; |
| irq_table[i].irq = i; |
| irq_table[i].pil = pil; |
| } else { |
| printk(KERN_ERR "IRQ: Out of virtual IRQs.\n"); |
| i = 0; |
| } |
| found: |
| spin_unlock_irqrestore(&irq_table_lock, flags); |
| |
| return i; |
| } |
| |
| /* Based on a single pil handler_irq may need to call several |
| * interrupt handlers. Use irq_map as entry to irq_table, |
| * and let each entry in irq_table point to the next entry. |
| */ |
| void irq_link(unsigned int irq) |
| { |
| struct irq_bucket *p; |
| unsigned long flags; |
| unsigned int pil; |
| |
| BUG_ON(irq >= NR_IRQS); |
| |
| spin_lock_irqsave(&irq_map_lock, flags); |
| |
| p = &irq_table[irq]; |
| pil = p->pil; |
| BUG_ON(pil >= SUN4D_MAX_IRQ); |
| p->next = irq_map[pil]; |
| irq_map[pil] = p; |
| |
| spin_unlock_irqrestore(&irq_map_lock, flags); |
| } |
| |
| void irq_unlink(unsigned int irq) |
| { |
| struct irq_bucket *p, **pnext; |
| unsigned long flags; |
| |
| BUG_ON(irq >= NR_IRQS); |
| |
| spin_lock_irqsave(&irq_map_lock, flags); |
| |
| p = &irq_table[irq]; |
| BUG_ON(p->pil >= SUN4D_MAX_IRQ); |
| pnext = &irq_map[p->pil]; |
| while (*pnext != p) |
| pnext = &(*pnext)->next; |
| *pnext = p->next; |
| |
| spin_unlock_irqrestore(&irq_map_lock, flags); |
| } |
| |
| |
| /* /proc/interrupts printing */ |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| int j; |
| |
| #ifdef CONFIG_SMP |
| seq_printf(p, "RES: "); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", cpu_data(j).irq_resched_count); |
| seq_printf(p, " IPI rescheduling interrupts\n"); |
| seq_printf(p, "CAL: "); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", cpu_data(j).irq_call_count); |
| seq_printf(p, " IPI function call interrupts\n"); |
| #endif |
| seq_printf(p, "NMI: "); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", cpu_data(j).counter); |
| seq_printf(p, " Non-maskable interrupts\n"); |
| return 0; |
| } |
| |
| void handler_irq(unsigned int pil, struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| struct irq_bucket *p; |
| |
| BUG_ON(pil > 15); |
| old_regs = set_irq_regs(regs); |
| irq_enter(); |
| |
| p = irq_map[pil]; |
| while (p) { |
| struct irq_bucket *next = p->next; |
| |
| generic_handle_irq(p->irq); |
| p = next; |
| } |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| #if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE) |
| static unsigned int floppy_irq; |
| |
| int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler) |
| { |
| unsigned int cpu_irq; |
| int err; |
| |
| |
| err = request_irq(irq, irq_handler, 0, "floppy", NULL); |
| if (err) |
| return -1; |
| |
| /* Save for later use in floppy interrupt handler */ |
| floppy_irq = irq; |
| |
| cpu_irq = (irq & (NR_IRQS - 1)); |
| |
| /* Dork with trap table if we get this far. */ |
| #define INSTANTIATE(table) \ |
| table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \ |
| table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \ |
| SPARC_BRANCH((unsigned long) floppy_hardint, \ |
| (unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\ |
| table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \ |
| table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP; |
| |
| INSTANTIATE(sparc_ttable) |
| |
| #if defined CONFIG_SMP |
| if (sparc_cpu_model != sparc_leon) { |
| struct tt_entry *trap_table; |
| |
| trap_table = &trapbase_cpu1; |
| INSTANTIATE(trap_table) |
| trap_table = &trapbase_cpu2; |
| INSTANTIATE(trap_table) |
| trap_table = &trapbase_cpu3; |
| INSTANTIATE(trap_table) |
| } |
| #endif |
| #undef INSTANTIATE |
| /* |
| * XXX Correct thing whould be to flush only I- and D-cache lines |
| * which contain the handler in question. But as of time of the |
| * writing we have no CPU-neutral interface to fine-grained flushes. |
| */ |
| flush_cache_all(); |
| return 0; |
| } |
| EXPORT_SYMBOL(sparc_floppy_request_irq); |
| |
| /* |
| * These variables are used to access state from the assembler |
| * interrupt handler, floppy_hardint, so we cannot put these in |
| * the floppy driver image because that would not work in the |
| * modular case. |
| */ |
| volatile unsigned char *fdc_status; |
| EXPORT_SYMBOL(fdc_status); |
| |
| char *pdma_vaddr; |
| EXPORT_SYMBOL(pdma_vaddr); |
| |
| unsigned long pdma_size; |
| EXPORT_SYMBOL(pdma_size); |
| |
| volatile int doing_pdma; |
| EXPORT_SYMBOL(doing_pdma); |
| |
| char *pdma_base; |
| EXPORT_SYMBOL(pdma_base); |
| |
| unsigned long pdma_areasize; |
| EXPORT_SYMBOL(pdma_areasize); |
| |
| /* Use the generic irq support to call floppy_interrupt |
| * which was setup using request_irq() in sparc_floppy_request_irq(). |
| * We only have one floppy interrupt so we do not need to check |
| * for additional handlers being wired up by irq_link() |
| */ |
| void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| |
| old_regs = set_irq_regs(regs); |
| irq_enter(); |
| generic_handle_irq(floppy_irq); |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| #endif |
| |
| /* djhr |
| * This could probably be made indirect too and assigned in the CPU |
| * bits of the code. That would be much nicer I think and would also |
| * fit in with the idea of being able to tune your kernel for your machine |
| * by removing unrequired machine and device support. |
| * |
| */ |
| |
| void __init init_IRQ(void) |
| { |
| switch (sparc_cpu_model) { |
| case sun4m: |
| pcic_probe(); |
| if (pcic_present()) |
| sun4m_pci_init_IRQ(); |
| else |
| sun4m_init_IRQ(); |
| break; |
| |
| case sun4d: |
| sun4d_init_IRQ(); |
| break; |
| |
| case sparc_leon: |
| leon_init_IRQ(); |
| break; |
| |
| default: |
| prom_printf("Cannot initialize IRQs on this Sun machine..."); |
| break; |
| } |
| } |
| |