| /* xf86drmHash.c -- Small hash table support for integer -> integer mapping |
| * Created: Sun Apr 18 09:35:45 1999 by faith@precisioninsight.com |
| * |
| * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Rickard E. (Rik) Faith <faith@valinux.com> |
| * |
| * DESCRIPTION |
| * |
| * This file contains a straightforward implementation of a fixed-sized |
| * hash table using self-organizing linked lists [Knuth73, pp. 398-399] for |
| * collision resolution. There are two potentially interesting things |
| * about this implementation: |
| * |
| * 1) The table is power-of-two sized. Prime sized tables are more |
| * traditional, but do not have a significant advantage over power-of-two |
| * sized table, especially when double hashing is not used for collision |
| * resolution. |
| * |
| * 2) The hash computation uses a table of random integers [Hanson97, |
| * pp. 39-41]. |
| * |
| * FUTURE ENHANCEMENTS |
| * |
| * With a table size of 512, the current implementation is sufficient for a |
| * few hundred keys. Since this is well above the expected size of the |
| * tables for which this implementation was designed, the implementation of |
| * dynamic hash tables was postponed until the need arises. A common (and |
| * naive) approach to dynamic hash table implementation simply creates a |
| * new hash table when necessary, rehashes all the data into the new table, |
| * and destroys the old table. The approach in [Larson88] is superior in |
| * two ways: 1) only a portion of the table is expanded when needed, |
| * distributing the expansion cost over several insertions, and 2) portions |
| * of the table can be locked, enabling a scalable thread-safe |
| * implementation. |
| * |
| * REFERENCES |
| * |
| * [Hanson97] David R. Hanson. C Interfaces and Implementations: |
| * Techniques for Creating Reusable Software. Reading, Massachusetts: |
| * Addison-Wesley, 1997. |
| * |
| * [Knuth73] Donald E. Knuth. The Art of Computer Programming. Volume 3: |
| * Sorting and Searching. Reading, Massachusetts: Addison-Wesley, 1973. |
| * |
| * [Larson88] Per-Ake Larson. "Dynamic Hash Tables". CACM 31(4), April |
| * 1988, pp. 446-457. |
| * |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "xf86drm.h" |
| #include "xf86drmHash.h" |
| |
| #define DIST_LIMIT 10 |
| static int dist[DIST_LIMIT]; |
| |
| static void clear_dist(void) { |
| int i; |
| |
| for (i = 0; i < DIST_LIMIT; i++) |
| dist[i] = 0; |
| } |
| |
| static int count_entries(HashBucketPtr bucket) |
| { |
| int count = 0; |
| |
| for (; bucket; bucket = bucket->next) |
| ++count; |
| return count; |
| } |
| |
| static void update_dist(int count) |
| { |
| if (count >= DIST_LIMIT) |
| ++dist[DIST_LIMIT-1]; |
| else |
| ++dist[count]; |
| } |
| |
| static void compute_dist(HashTablePtr table) |
| { |
| int i; |
| HashBucketPtr bucket; |
| |
| printf("Entries = %ld, hits = %ld, partials = %ld, misses = %ld\n", |
| table->entries, table->hits, table->partials, table->misses); |
| clear_dist(); |
| for (i = 0; i < HASH_SIZE; i++) { |
| bucket = table->buckets[i]; |
| update_dist(count_entries(bucket)); |
| } |
| for (i = 0; i < DIST_LIMIT; i++) { |
| if (i != DIST_LIMIT-1) |
| printf("%5d %10d\n", i, dist[i]); |
| else |
| printf("other %10d\n", dist[i]); |
| } |
| } |
| |
| static int check_table(HashTablePtr table, |
| unsigned long key, void * value) |
| { |
| void *retval; |
| int retcode = drmHashLookup(table, key, &retval); |
| |
| switch (retcode) { |
| case -1: |
| printf("Bad magic = 0x%08lx:" |
| " key = %lu, expected = %p, returned = %p\n", |
| table->magic, key, value, retval); |
| break; |
| case 1: |
| printf("Not found: key = %lu, expected = %p, returned = %p\n", |
| key, value, retval); |
| break; |
| case 0: |
| if (value != retval) { |
| printf("Bad value: key = %lu, expected = %p, returned = %p\n", |
| key, value, retval); |
| retcode = -1; |
| } |
| break; |
| default: |
| printf("Bad retcode = %d: key = %lu, expected = %p, returned = %p\n", |
| retcode, key, value, retval); |
| break; |
| } |
| return retcode; |
| } |
| |
| int main(void) |
| { |
| HashTablePtr table; |
| unsigned long i; |
| int ret = 0; |
| |
| printf("\n***** 256 consecutive integers ****\n"); |
| table = drmHashCreate(); |
| for (i = 0; i < 256; i++) |
| drmHashInsert(table, i, (void *)(i << 16 | i)); |
| for (i = 0; i < 256; i++) |
| ret |= check_table(table, i, (void *)(i << 16 | i)); |
| compute_dist(table); |
| drmHashDestroy(table); |
| |
| printf("\n***** 1024 consecutive integers ****\n"); |
| table = drmHashCreate(); |
| for (i = 0; i < 1024; i++) |
| drmHashInsert(table, i, (void *)(i << 16 | i)); |
| for (i = 0; i < 1024; i++) |
| ret |= check_table(table, i, (void *)(i << 16 | i)); |
| compute_dist(table); |
| drmHashDestroy(table); |
| |
| printf("\n***** 1024 consecutive page addresses (4k pages) ****\n"); |
| table = drmHashCreate(); |
| for (i = 0; i < 1024; i++) |
| drmHashInsert(table, i*4096, (void *)(i << 16 | i)); |
| for (i = 0; i < 1024; i++) |
| ret |= check_table(table, i*4096, (void *)(i << 16 | i)); |
| compute_dist(table); |
| drmHashDestroy(table); |
| |
| printf("\n***** 1024 random integers ****\n"); |
| table = drmHashCreate(); |
| srandom(0xbeefbeef); |
| for (i = 0; i < 1024; i++) |
| drmHashInsert(table, random(), (void *)(i << 16 | i)); |
| srandom(0xbeefbeef); |
| for (i = 0; i < 1024; i++) |
| ret |= check_table(table, random(), (void *)(i << 16 | i)); |
| srandom(0xbeefbeef); |
| for (i = 0; i < 1024; i++) |
| ret |= check_table(table, random(), (void *)(i << 16 | i)); |
| compute_dist(table); |
| drmHashDestroy(table); |
| |
| printf("\n***** 5000 random integers ****\n"); |
| table = drmHashCreate(); |
| srandom(0xbeefbeef); |
| for (i = 0; i < 5000; i++) |
| drmHashInsert(table, random(), (void *)(i << 16 | i)); |
| srandom(0xbeefbeef); |
| for (i = 0; i < 5000; i++) |
| ret |= check_table(table, random(), (void *)(i << 16 | i)); |
| srandom(0xbeefbeef); |
| for (i = 0; i < 5000; i++) |
| ret |= check_table(table, random(), (void *)(i << 16 | i)); |
| compute_dist(table); |
| drmHashDestroy(table); |
| |
| return ret; |
| } |