blob: 4e61cefe2342f5d5e0a85b03e441f179b7dd0fe5 [file] [log] [blame]
/**************************************************************************
*
* Copyright © 2007 Red Hat Inc.
* Copyright © 2007 Intel Corporation
* Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*
**************************************************************************/
/*
* Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Keith Whitwell <keithw-at-tungstengraphics-dot-com>
* Eric Anholt <eric@anholt.net>
* Dave Airlie <airlied@linux.ie>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <xf86drm.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "errno.h"
#include "libdrm_lists.h"
#include "intel_atomic.h"
#include "intel_bufmgr.h"
#include "intel_bufmgr_priv.h"
#include "intel_chipset.h"
#include "string.h"
#include "i915_drm.h"
#define DBG(...) do { \
if (bufmgr_gem->bufmgr.debug) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
struct drm_intel_gem_bo_bucket {
drmMMListHead head;
unsigned long size;
};
/* Only cache objects up to 64MB. Bigger than that, and the rounding of the
* size makes many operations fail that wouldn't otherwise.
*/
#define DRM_INTEL_GEM_BO_BUCKETS 14
typedef struct _drm_intel_bufmgr_gem {
drm_intel_bufmgr bufmgr;
int fd;
int max_relocs;
pthread_mutex_t lock;
struct drm_i915_gem_exec_object *exec_objects;
drm_intel_bo **exec_bos;
int exec_size;
int exec_count;
/** Array of lists of cached gem objects of power-of-two sizes */
struct drm_intel_gem_bo_bucket cache_bucket[DRM_INTEL_GEM_BO_BUCKETS];
uint64_t gtt_size;
int available_fences;
int pci_device;
char bo_reuse;
} drm_intel_bufmgr_gem;
struct _drm_intel_bo_gem {
drm_intel_bo bo;
atomic_t refcount;
uint32_t gem_handle;
const char *name;
/**
* Kenel-assigned global name for this object
*/
unsigned int global_name;
/**
* Index of the buffer within the validation list while preparing a
* batchbuffer execution.
*/
int validate_index;
/**
* Current tiling mode
*/
uint32_t tiling_mode;
uint32_t swizzle_mode;
time_t free_time;
/** Array passed to the DRM containing relocation information. */
struct drm_i915_gem_relocation_entry *relocs;
/** Array of bos corresponding to relocs[i].target_handle */
drm_intel_bo **reloc_target_bo;
/** Number of entries in relocs */
int reloc_count;
/** Mapped address for the buffer, saved across map/unmap cycles */
void *mem_virtual;
/** GTT virtual address for the buffer, saved across map/unmap cycles */
void *gtt_virtual;
/** BO cache list */
drmMMListHead head;
/**
* Boolean of whether this BO and its children have been included in
* the current drm_intel_bufmgr_check_aperture_space() total.
*/
char included_in_check_aperture;
/**
* Boolean of whether this buffer has been used as a relocation
* target and had its size accounted for, and thus can't have any
* further relocations added to it.
*/
char used_as_reloc_target;
/**
* Boolean of whether we have encountered an error whilst building the relocation tree.
*/
char has_error;
/**
* Boolean of whether this buffer can be re-used
*/
char reusable;
/**
* Size in bytes of this buffer and its relocation descendents.
*
* Used to avoid costly tree walking in
* drm_intel_bufmgr_check_aperture in the common case.
*/
int reloc_tree_size;
/**
* Number of potential fence registers required by this buffer and its
* relocations.
*/
int reloc_tree_fences;
};
static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
static int
drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode);
static int
drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t stride);
static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
time_t time);
static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
static void drm_intel_gem_bo_free(drm_intel_bo *bo);
static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
uint32_t *tiling_mode)
{
unsigned long min_size, max_size;
unsigned long i;
if (*tiling_mode == I915_TILING_NONE)
return size;
/* 965+ just need multiples of page size for tiling */
if (IS_I965G(bufmgr_gem))
return ROUND_UP_TO(size, 4096);
/* Older chips need powers of two, of at least 512k or 1M */
if (IS_I9XX(bufmgr_gem)) {
min_size = 1024*1024;
max_size = 128*1024*1024;
} else {
min_size = 512*1024;
max_size = 64*1024*1024;
}
if (size > max_size) {
*tiling_mode = I915_TILING_NONE;
return size;
}
for (i = min_size; i < size; i <<= 1)
;
return i;
}
/*
* Round a given pitch up to the minimum required for X tiling on a
* given chip. We use 512 as the minimum to allow for a later tiling
* change.
*/
static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
unsigned long pitch, uint32_t tiling_mode)
{
unsigned long tile_width = 512;
unsigned long i;
if (tiling_mode == I915_TILING_NONE)
return ROUND_UP_TO(pitch, tile_width);
/* 965 is flexible */
if (IS_I965G(bufmgr_gem))
return ROUND_UP_TO(pitch, tile_width);
/* Pre-965 needs power of two tile width */
for (i = tile_width; i < pitch; i <<= 1)
;
return i;
}
static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
unsigned long size)
{
int i;
for (i = 0; i < DRM_INTEL_GEM_BO_BUCKETS; i++) {
struct drm_intel_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
if (bucket->size >= size) {
return bucket;
}
}
return NULL;
}
static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
{
int i, j;
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
if (bo_gem->relocs == NULL) {
DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
bo_gem->name);
continue;
}
for (j = 0; j < bo_gem->reloc_count; j++) {
drm_intel_bo *target_bo = bo_gem->reloc_target_bo[j];
drm_intel_bo_gem *target_gem =
(drm_intel_bo_gem *) target_bo;
DBG("%2d: %d (%s)@0x%08llx -> "
"%d (%s)@0x%08lx + 0x%08x\n",
i,
bo_gem->gem_handle, bo_gem->name,
(unsigned long long)bo_gem->relocs[j].offset,
target_gem->gem_handle,
target_gem->name,
target_bo->offset,
bo_gem->relocs[j].delta);
}
}
}
static inline void
drm_intel_gem_bo_reference(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
assert(atomic_read(&bo_gem->refcount) > 0);
atomic_inc(&bo_gem->refcount);
}
/**
* Adds the given buffer to the list of buffers to be validated (moved into the
* appropriate memory type) with the next batch submission.
*
* If a buffer is validated multiple times in a batch submission, it ends up
* with the intersection of the memory type flags and the union of the
* access flags.
*/
static void
drm_intel_add_validate_buffer(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int index;
if (bo_gem->validate_index != -1)
return;
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
if (new_size == 0)
new_size = 5;
bufmgr_gem->exec_objects =
realloc(bufmgr_gem->exec_objects,
sizeof(*bufmgr_gem->exec_objects) * new_size);
bufmgr_gem->exec_bos =
realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
bufmgr_gem->exec_size = new_size;
}
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
bufmgr_gem->exec_objects[index].alignment = 0;
bufmgr_gem->exec_objects[index].offset = 0;
bufmgr_gem->exec_bos[index] = bo;
bufmgr_gem->exec_count++;
}
#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
sizeof(uint32_t))
static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
drm_intel_bo_gem *bo_gem)
{
int size;
assert(!bo_gem->used_as_reloc_target);
/* The older chipsets are far-less flexible in terms of tiling,
* and require tiled buffer to be size aligned in the aperture.
* This means that in the worst possible case we will need a hole
* twice as large as the object in order for it to fit into the
* aperture. Optimal packing is for wimps.
*/
size = bo_gem->bo.size;
if (!IS_I965G(bufmgr_gem) && bo_gem->tiling_mode != I915_TILING_NONE)
size *= 2;
bo_gem->reloc_tree_size = size;
}
static int
drm_intel_setup_reloc_list(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
unsigned int max_relocs = bufmgr_gem->max_relocs;
if (bo->size / 4 < max_relocs)
max_relocs = bo->size / 4;
bo_gem->relocs = malloc(max_relocs *
sizeof(struct drm_i915_gem_relocation_entry));
bo_gem->reloc_target_bo = malloc(max_relocs * sizeof(drm_intel_bo *));
if (bo_gem->relocs == NULL || bo_gem->reloc_target_bo == NULL) {
bo_gem->has_error = 1;
free (bo_gem->relocs);
bo_gem->relocs = NULL;
free (bo_gem->reloc_target_bo);
bo_gem->reloc_target_bo = NULL;
return 1;
}
return 0;
}
static int
drm_intel_gem_bo_busy(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_busy busy;
int ret;
memset(&busy, 0, sizeof(busy));
busy.handle = bo_gem->gem_handle;
do {
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
} while (ret == -1 && errno == EINTR);
return (ret == 0 && busy.busy);
}
static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
drm_intel_bo_gem *bo_gem, int state)
{
struct drm_i915_gem_madvise madv;
madv.handle = bo_gem->gem_handle;
madv.madv = state;
madv.retained = 1;
ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
static int
drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
{
return drm_intel_gem_bo_madvise_internal
((drm_intel_bufmgr_gem *) bo->bufmgr,
(drm_intel_bo_gem *) bo,
madv);
}
/* drop the oldest entries that have been purged by the kernel */
static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
struct drm_intel_gem_bo_bucket *bucket)
{
while (!DRMLISTEMPTY(&bucket->head)) {
drm_intel_bo_gem *bo_gem;
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
if (drm_intel_gem_bo_madvise_internal
(bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
break;
DRMLISTDEL(&bo_gem->head);
drm_intel_gem_bo_free(&bo_gem->bo);
}
}
static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned long flags)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
drm_intel_bo_gem *bo_gem;
unsigned int page_size = getpagesize();
int ret;
struct drm_intel_gem_bo_bucket *bucket;
int alloc_from_cache;
unsigned long bo_size;
int for_render = 0;
if (flags & BO_ALLOC_FOR_RENDER)
for_render = 1;
/* Round the allocated size up to a power of two number of pages. */
bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
/* If we don't have caching at this size, don't actually round the
* allocation up.
*/
if (bucket == NULL) {
bo_size = size;
if (bo_size < page_size)
bo_size = page_size;
} else {
bo_size = bucket->size;
}
pthread_mutex_lock(&bufmgr_gem->lock);
/* Get a buffer out of the cache if available */
retry:
alloc_from_cache = 0;
if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
if (for_render) {
/* Allocate new render-target BOs from the tail (MRU)
* of the list, as it will likely be hot in the GPU
* cache and in the aperture for us.
*/
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.prev, head);
DRMLISTDEL(&bo_gem->head);
alloc_from_cache = 1;
} else {
/* For non-render-target BOs (where we're probably
* going to map it first thing in order to fill it
* with data), check if the last BO in the cache is
* unbusy, and only reuse in that case. Otherwise,
* allocating a new buffer is probably faster than
* waiting for the GPU to finish.
*/
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
alloc_from_cache = 1;
DRMLISTDEL(&bo_gem->head);
}
}
if (alloc_from_cache) {
if (!drm_intel_gem_bo_madvise_internal
(bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
drm_intel_gem_bo_free(&bo_gem->bo);
drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
bucket);
goto retry;
}
}
}
pthread_mutex_unlock(&bufmgr_gem->lock);
if (!alloc_from_cache) {
struct drm_i915_gem_create create;
bo_gem = calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return NULL;
bo_gem->bo.size = bo_size;
memset(&create, 0, sizeof(create));
create.size = bo_size;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CREATE,
&create);
} while (ret == -1 && errno == EINTR);
bo_gem->gem_handle = create.handle;
bo_gem->bo.handle = bo_gem->gem_handle;
if (ret != 0) {
free(bo_gem);
return NULL;
}
bo_gem->bo.bufmgr = bufmgr;
}
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->reloc_tree_fences = 0;
bo_gem->used_as_reloc_target = 0;
bo_gem->has_error = 0;
bo_gem->tiling_mode = I915_TILING_NONE;
bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
bo_gem->reusable = 1;
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
DBG("bo_create: buf %d (%s) %ldb\n",
bo_gem->gem_handle, bo_gem->name, size);
return &bo_gem->bo;
}
static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment)
{
return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
BO_ALLOC_FOR_RENDER);
}
static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment)
{
return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0);
}
static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
int x, int y, int cpp, uint32_t *tiling_mode,
unsigned long *pitch, unsigned long flags)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
drm_intel_bo *bo;
unsigned long size, stride, aligned_y = y;
int ret;
if (*tiling_mode == I915_TILING_NONE)
aligned_y = ALIGN(y, 2);
else if (*tiling_mode == I915_TILING_X)
aligned_y = ALIGN(y, 8);
else if (*tiling_mode == I915_TILING_Y)
aligned_y = ALIGN(y, 32);
stride = x * cpp;
stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, *tiling_mode);
size = stride * aligned_y;
size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
bo = drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags);
if (!bo)
return NULL;
ret = drm_intel_gem_bo_set_tiling(bo, tiling_mode, stride);
if (ret != 0) {
drm_intel_gem_bo_unreference(bo);
return NULL;
}
*pitch = stride;
return bo;
}
/**
* Returns a drm_intel_bo wrapping the given buffer object handle.
*
* This can be used when one application needs to pass a buffer object
* to another.
*/
drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned int handle)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
drm_intel_bo_gem *bo_gem;
int ret;
struct drm_gem_open open_arg;
struct drm_i915_gem_get_tiling get_tiling;
bo_gem = calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return NULL;
memset(&open_arg, 0, sizeof(open_arg));
open_arg.name = handle;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_GEM_OPEN,
&open_arg);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
fprintf(stderr, "Couldn't reference %s handle 0x%08x: %s\n",
name, handle, strerror(errno));
free(bo_gem);
return NULL;
}
bo_gem->bo.size = open_arg.size;
bo_gem->bo.offset = 0;
bo_gem->bo.virtual = NULL;
bo_gem->bo.bufmgr = bufmgr;
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->gem_handle = open_arg.handle;
bo_gem->global_name = handle;
bo_gem->reusable = 0;
memset(&get_tiling, 0, sizeof(get_tiling));
get_tiling.handle = bo_gem->gem_handle;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
if (ret != 0) {
drm_intel_gem_bo_unreference(&bo_gem->bo);
return NULL;
}
bo_gem->tiling_mode = get_tiling.tiling_mode;
bo_gem->swizzle_mode = get_tiling.swizzle_mode;
if (bo_gem->tiling_mode == I915_TILING_NONE)
bo_gem->reloc_tree_fences = 0;
else
bo_gem->reloc_tree_fences = 1;
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
return &bo_gem->bo;
}
static void
drm_intel_gem_bo_free(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_gem_close close;
int ret;
if (bo_gem->mem_virtual)
munmap(bo_gem->mem_virtual, bo_gem->bo.size);
if (bo_gem->gtt_virtual)
munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
/* Close this object */
memset(&close, 0, sizeof(close));
close.handle = bo_gem->gem_handle;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
if (ret != 0) {
fprintf(stderr,
"DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
bo_gem->gem_handle, bo_gem->name, strerror(errno));
}
free(bo);
}
/** Frees all cached buffers significantly older than @time. */
static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
{
int i;
for (i = 0; i < DRM_INTEL_GEM_BO_BUCKETS; i++) {
struct drm_intel_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
while (!DRMLISTEMPTY(&bucket->head)) {
drm_intel_bo_gem *bo_gem;
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
if (time - bo_gem->free_time <= 1)
break;
DRMLISTDEL(&bo_gem->head);
drm_intel_gem_bo_free(&bo_gem->bo);
}
}
}
static void
drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_intel_gem_bo_bucket *bucket;
uint32_t tiling_mode;
int i;
/* Unreference all the target buffers */
for (i = 0; i < bo_gem->reloc_count; i++) {
drm_intel_gem_bo_unreference_locked_timed(bo_gem->
reloc_target_bo[i],
time);
}
bo_gem->reloc_count = 0;
bo_gem->used_as_reloc_target = 0;
DBG("bo_unreference final: %d (%s)\n",
bo_gem->gem_handle, bo_gem->name);
/* release memory associated with this object */
if (bo_gem->reloc_target_bo) {
free(bo_gem->reloc_target_bo);
bo_gem->reloc_target_bo = NULL;
}
if (bo_gem->relocs) {
free(bo_gem->relocs);
bo_gem->relocs = NULL;
}
bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
/* Put the buffer into our internal cache for reuse if we can. */
tiling_mode = I915_TILING_NONE;
if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
drm_intel_gem_bo_set_tiling(bo, &tiling_mode, 0) == 0 &&
drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
I915_MADV_DONTNEED)) {
bo_gem->free_time = time;
bo_gem->name = NULL;
bo_gem->validate_index = -1;
DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time);
} else {
drm_intel_gem_bo_free(bo);
}
}
static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
time_t time)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
assert(atomic_read(&bo_gem->refcount) > 0);
if (atomic_dec_and_test(&bo_gem->refcount))
drm_intel_gem_bo_unreference_final(bo, time);
}
static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
assert(atomic_read(&bo_gem->refcount) > 0);
if (atomic_dec_and_test(&bo_gem->refcount)) {
drm_intel_bufmgr_gem *bufmgr_gem =
(drm_intel_bufmgr_gem *) bo->bufmgr;
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
pthread_mutex_lock(&bufmgr_gem->lock);
drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
pthread_mutex_unlock(&bufmgr_gem->lock);
}
}
static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
pthread_mutex_lock(&bufmgr_gem->lock);
/* Allow recursive mapping. Mesa may recursively map buffers with
* nested display loops.
*/
if (!bo_gem->mem_virtual) {
struct drm_i915_gem_mmap mmap_arg;
DBG("bo_map: %d (%s)\n", bo_gem->gem_handle, bo_gem->name);
memset(&mmap_arg, 0, sizeof(mmap_arg));
mmap_arg.handle = bo_gem->gem_handle;
mmap_arg.offset = 0;
mmap_arg.size = bo->size;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP,
&mmap_arg);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
ret = -errno;
fprintf(stderr,
"%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
bo_gem->name, strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
}
DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->mem_virtual);
bo->virtual = bo_gem->mem_virtual;
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_CPU;
if (write_enable)
set_domain.write_domain = I915_GEM_DOMAIN_CPU;
else
set_domain.write_domain = 0;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
ret = -errno;
fprintf(stderr, "%s:%d: Error setting to CPU domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
pthread_mutex_unlock(&bufmgr_gem->lock);
return 0;
}
int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
pthread_mutex_lock(&bufmgr_gem->lock);
/* Get a mapping of the buffer if we haven't before. */
if (bo_gem->gtt_virtual == NULL) {
struct drm_i915_gem_mmap_gtt mmap_arg;
DBG("bo_map_gtt: mmap %d (%s)\n", bo_gem->gem_handle,
bo_gem->name);
memset(&mmap_arg, 0, sizeof(mmap_arg));
mmap_arg.handle = bo_gem->gem_handle;
/* Get the fake offset back... */
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP_GTT,
&mmap_arg);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
ret = -errno;
fprintf(stderr,
"%s:%d: Error preparing buffer map %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
/* and mmap it */
bo_gem->gtt_virtual = mmap(0, bo->size, PROT_READ | PROT_WRITE,
MAP_SHARED, bufmgr_gem->fd,
mmap_arg.offset);
if (bo_gem->gtt_virtual == MAP_FAILED) {
bo_gem->gtt_virtual = NULL;
ret = -errno;
fprintf(stderr,
"%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
}
bo->virtual = bo_gem->gtt_virtual;
DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->gtt_virtual);
/* Now move it to the GTT domain so that the CPU caches are flushed */
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = I915_GEM_DOMAIN_GTT;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
ret = -errno;
fprintf(stderr, "%s:%d: Error setting domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
}
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int ret = 0;
if (bo == NULL)
return 0;
assert(bo_gem->gtt_virtual != NULL);
pthread_mutex_lock(&bufmgr_gem->lock);
bo->virtual = NULL;
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_sw_finish sw_finish;
int ret;
if (bo == NULL)
return 0;
assert(bo_gem->mem_virtual != NULL);
pthread_mutex_lock(&bufmgr_gem->lock);
/* Cause a flush to happen if the buffer's pinned for scanout, so the
* results show up in a timely manner.
*/
sw_finish.handle = bo_gem->gem_handle;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SW_FINISH,
&sw_finish);
} while (ret == -1 && errno == EINTR);
bo->virtual = NULL;
pthread_mutex_unlock(&bufmgr_gem->lock);
return 0;
}
static int
drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, const void *data)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_pwrite pwrite;
int ret;
memset(&pwrite, 0, sizeof(pwrite));
pwrite.handle = bo_gem->gem_handle;
pwrite.offset = offset;
pwrite.size = size;
pwrite.data_ptr = (uint64_t) (uintptr_t) data;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PWRITE,
&pwrite);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
fprintf(stderr,
"%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
(int)size, strerror(errno));
}
return 0;
}
static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
int ret;
get_pipe_from_crtc_id.crtc_id = crtc_id;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
&get_pipe_from_crtc_id);
if (ret != 0) {
/* We return -1 here to signal that we don't
* know which pipe is associated with this crtc.
* This lets the caller know that this information
* isn't available; using the wrong pipe for
* vblank waiting can cause the chipset to lock up
*/
return -1;
}
return get_pipe_from_crtc_id.pipe;
}
static int
drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, void *data)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_pread pread;
int ret;
memset(&pread, 0, sizeof(pread));
pread.handle = bo_gem->gem_handle;
pread.offset = offset;
pread.size = size;
pread.data_ptr = (uint64_t) (uintptr_t) data;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PREAD,
&pread);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
ret = -errno;
fprintf(stderr,
"%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
(int)size, strerror(errno));
}
return ret;
}
/** Waits for all GPU rendering to the object to have completed. */
static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
{
drm_intel_gem_bo_start_gtt_access(bo, 0);
}
/**
* Sets the object to the GTT read and possibly write domain, used by the X
* 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
*
* In combination with drm_intel_gem_bo_pin() and manual fence management, we
* can do tiled pixmaps this way.
*/
void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
} while (ret == -1 && errno == EINTR);
if (ret != 0) {
fprintf(stderr,
"%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
set_domain.read_domains, set_domain.write_domain,
strerror(errno));
}
}
static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
int i;
free(bufmgr_gem->exec_objects);
free(bufmgr_gem->exec_bos);
pthread_mutex_destroy(&bufmgr_gem->lock);
/* Free any cached buffer objects we were going to reuse */
for (i = 0; i < DRM_INTEL_GEM_BO_BUCKETS; i++) {
struct drm_intel_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
drm_intel_bo_gem *bo_gem;
while (!DRMLISTEMPTY(&bucket->head)) {
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
DRMLISTDEL(&bo_gem->head);
drm_intel_gem_bo_free(&bo_gem->bo);
}
}
free(bufmgr);
}
/**
* Adds the target buffer to the validation list and adds the relocation
* to the reloc_buffer's relocation list.
*
* The relocation entry at the given offset must already contain the
* precomputed relocation value, because the kernel will optimize out
* the relocation entry write when the buffer hasn't moved from the
* last known offset in target_bo.
*/
static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
if (bo_gem->has_error)
return -ENOMEM;
if (target_bo_gem->has_error) {
bo_gem->has_error = 1;
return -ENOMEM;
}
/* Create a new relocation list if needed */
if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
return -ENOMEM;
/* Check overflow */
assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
/* Check args */
assert(offset <= bo->size - 4);
assert((write_domain & (write_domain - 1)) == 0);
/* Make sure that we're not adding a reloc to something whose size has
* already been accounted for.
*/
assert(!bo_gem->used_as_reloc_target);
bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
/* Flag the target to disallow further relocations in it. */
target_bo_gem->used_as_reloc_target = 1;
bo_gem->relocs[bo_gem->reloc_count].offset = offset;
bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
bo_gem->relocs[bo_gem->reloc_count].target_handle =
target_bo_gem->gem_handle;
bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset;
bo_gem->reloc_target_bo[bo_gem->reloc_count] = target_bo;
drm_intel_gem_bo_reference(target_bo);
bo_gem->reloc_count++;
return 0;
}
/**
* Walk the tree of relocations rooted at BO and accumulate the list of
* validations to be performed and update the relocation buffers with
* index values into the validation list.
*/
static void
drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
if (bo_gem->relocs == NULL)
return;
for (i = 0; i < bo_gem->reloc_count; i++) {
drm_intel_bo *target_bo = bo_gem->reloc_target_bo[i];
/* Continue walking the tree depth-first. */
drm_intel_gem_bo_process_reloc(target_bo);
/* Add the target to the validate list */
drm_intel_add_validate_buffer(target_bo);
}
}
static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
{
int i;
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
/* Update the buffer offset */
if (bufmgr_gem->exec_objects[i].offset != bo->offset) {
DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
bo_gem->gem_handle, bo_gem->name, bo->offset,
(unsigned long long)bufmgr_gem->exec_objects[i].
offset);
bo->offset = bufmgr_gem->exec_objects[i].offset;
}
}
}
static int
drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_execbuffer execbuf;
int ret, i;
if (bo_gem->has_error)
return -ENOMEM;
pthread_mutex_lock(&bufmgr_gem->lock);
/* Update indices and set up the validate list. */
drm_intel_gem_bo_process_reloc(bo);
/* Add the batch buffer to the validation list. There are no
* relocations pointing to it.
*/
drm_intel_add_validate_buffer(bo);
execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
execbuf.buffer_count = bufmgr_gem->exec_count;
execbuf.batch_start_offset = 0;
execbuf.batch_len = used;
execbuf.cliprects_ptr = (uintptr_t) cliprects;
execbuf.num_cliprects = num_cliprects;
execbuf.DR1 = 0;
execbuf.DR4 = DR4;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_EXECBUFFER,
&execbuf);
} while (ret != 0 && errno == EINTR);
if (ret != 0) {
ret = -errno;
if (errno == ENOSPC) {
fprintf(stderr,
"Execbuffer fails to pin. "
"Estimate: %u. Actual: %u. Available: %u\n",
drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->
exec_count),
drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->
exec_count),
(unsigned int)bufmgr_gem->gtt_size);
}
}
drm_intel_update_buffer_offsets(bufmgr_gem);
if (bufmgr_gem->bufmgr.debug)
drm_intel_gem_dump_validation_list(bufmgr_gem);
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
/* Disconnect the buffer from the validate list */
bo_gem->validate_index = -1;
bufmgr_gem->exec_bos[i] = NULL;
}
bufmgr_gem->exec_count = 0;
pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
static int
drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_pin pin;
int ret;
memset(&pin, 0, sizeof(pin));
pin.handle = bo_gem->gem_handle;
pin.alignment = alignment;
do {
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PIN,
&pin);
} while (ret == -1 && errno == EINTR);
if (ret != 0)
return -errno;
bo->offset = pin.offset;
return 0;
}
static int
drm_intel_gem_bo_unpin(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_unpin unpin;
int ret;
memset(&unpin, 0, sizeof(unpin));
unpin.handle = bo_gem->gem_handle;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
if (ret != 0)
return -errno;
return 0;
}
static int
drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t stride)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_tiling set_tiling;
int ret;
if (bo_gem->global_name == 0 && *tiling_mode == bo_gem->tiling_mode)
return 0;
/* If we're going from non-tiling to tiling, bump fence count */
if (bo_gem->tiling_mode == I915_TILING_NONE)
bo_gem->reloc_tree_fences++;
memset(&set_tiling, 0, sizeof(set_tiling));
set_tiling.handle = bo_gem->gem_handle;
do {
set_tiling.tiling_mode = *tiling_mode;
set_tiling.stride = stride;
ret = ioctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_TILING,
&set_tiling);
} while (ret == -1 && errno == EINTR);
bo_gem->tiling_mode = set_tiling.tiling_mode;
bo_gem->swizzle_mode = set_tiling.swizzle_mode;
/* If we're going from tiling to non-tiling, drop fence count */
if (bo_gem->tiling_mode == I915_TILING_NONE)
bo_gem->reloc_tree_fences--;
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
*tiling_mode = bo_gem->tiling_mode;
return ret == 0 ? 0 : -errno;
}
static int
drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
*tiling_mode = bo_gem->tiling_mode;
*swizzle_mode = bo_gem->swizzle_mode;
return 0;
}
static int
drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_gem_flink flink;
int ret;
if (!bo_gem->global_name) {
memset(&flink, 0, sizeof(flink));
flink.handle = bo_gem->gem_handle;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
if (ret != 0)
return -errno;
bo_gem->global_name = flink.name;
bo_gem->reusable = 0;
}
*name = bo_gem->global_name;
return 0;
}
/**
* Enables unlimited caching of buffer objects for reuse.
*
* This is potentially very memory expensive, as the cache at each bucket
* size is only bounded by how many buffers of that size we've managed to have
* in flight at once.
*/
void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
bufmgr_gem->bo_reuse = 1;
}
/**
* Return the additional aperture space required by the tree of buffer objects
* rooted at bo.
*/
static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
int total = 0;
if (bo == NULL || bo_gem->included_in_check_aperture)
return 0;
total += bo->size;
bo_gem->included_in_check_aperture = 1;
for (i = 0; i < bo_gem->reloc_count; i++)
total +=
drm_intel_gem_bo_get_aperture_space(bo_gem->
reloc_target_bo[i]);
return total;
}
/**
* Count the number of buffers in this list that need a fence reg
*
* If the count is greater than the number of available regs, we'll have
* to ask the caller to resubmit a batch with fewer tiled buffers.
*
* This function over-counts if the same buffer is used multiple times.
*/
static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
{
int i;
unsigned int total = 0;
for (i = 0; i < count; i++) {
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
if (bo_gem == NULL)
continue;
total += bo_gem->reloc_tree_fences;
}
return total;
}
/**
* Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
* for the next drm_intel_bufmgr_check_aperture_space() call.
*/
static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
if (bo == NULL || !bo_gem->included_in_check_aperture)
return;
bo_gem->included_in_check_aperture = 0;
for (i = 0; i < bo_gem->reloc_count; i++)
drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
reloc_target_bo[i]);
}
/**
* Return a conservative estimate for the amount of aperture required
* for a collection of buffers. This may double-count some buffers.
*/
static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
{
int i;
unsigned int total = 0;
for (i = 0; i < count; i++) {
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
if (bo_gem != NULL)
total += bo_gem->reloc_tree_size;
}
return total;
}
/**
* Return the amount of aperture needed for a collection of buffers.
* This avoids double counting any buffers, at the cost of looking
* at every buffer in the set.
*/
static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
{
int i;
unsigned int total = 0;
for (i = 0; i < count; i++) {
total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
/* For the first buffer object in the array, we get an
* accurate count back for its reloc_tree size (since nothing
* had been flagged as being counted yet). We can save that
* value out as a more conservative reloc_tree_size that
* avoids double-counting target buffers. Since the first
* buffer happens to usually be the batch buffer in our
* callers, this can pull us back from doing the tree
* walk on every new batch emit.
*/
if (i == 0) {
drm_intel_bo_gem *bo_gem =
(drm_intel_bo_gem *) bo_array[i];
bo_gem->reloc_tree_size = total;
}
}
for (i = 0; i < count; i++)
drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
return total;
}
/**
* Return -1 if the batchbuffer should be flushed before attempting to
* emit rendering referencing the buffers pointed to by bo_array.
*
* This is required because if we try to emit a batchbuffer with relocations
* to a tree of buffers that won't simultaneously fit in the aperture,
* the rendering will return an error at a point where the software is not
* prepared to recover from it.
*
* However, we also want to emit the batchbuffer significantly before we reach
* the limit, as a series of batchbuffers each of which references buffers
* covering almost all of the aperture means that at each emit we end up
* waiting to evict a buffer from the last rendering, and we get synchronous
* performance. By emitting smaller batchbuffers, we eat some CPU overhead to
* get better parallelism.
*/
static int
drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
{
drm_intel_bufmgr_gem *bufmgr_gem =
(drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
unsigned int total = 0;
unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
int total_fences;
/* Check for fence reg constraints if necessary */
if (bufmgr_gem->available_fences) {
total_fences = drm_intel_gem_total_fences(bo_array, count);
if (total_fences > bufmgr_gem->available_fences)
return -ENOSPC;
}
total = drm_intel_gem_estimate_batch_space(bo_array, count);
if (total > threshold)
total = drm_intel_gem_compute_batch_space(bo_array, count);
if (total > threshold) {
DBG("check_space: overflowed available aperture, "
"%dkb vs %dkb\n",
total / 1024, (int)bufmgr_gem->gtt_size / 1024);
return -ENOSPC;
} else {
DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
(int)bufmgr_gem->gtt_size / 1024);
return 0;
}
}
/*
* Disable buffer reuse for objects which are shared with the kernel
* as scanout buffers
*/
static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
bo_gem->reusable = 0;
return 0;
}
static int
_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
for (i = 0; i < bo_gem->reloc_count; i++) {
if (bo_gem->reloc_target_bo[i] == target_bo)
return 1;
if (_drm_intel_gem_bo_references(bo_gem->reloc_target_bo[i],
target_bo))
return 1;
}
return 0;
}
/** Return true if target_bo is referenced by bo's relocation tree. */
static int
drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
{
drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
if (bo == NULL || target_bo == NULL)
return 0;
if (target_bo_gem->used_as_reloc_target)
return _drm_intel_gem_bo_references(bo, target_bo);
return 0;
}
/**
* Initializes the GEM buffer manager, which uses the kernel to allocate, map,
* and manage map buffer objections.
*
* \param fd File descriptor of the opened DRM device.
*/
drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd, int batch_size)
{
drm_intel_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_get_aperture aperture;
drm_i915_getparam_t gp;
int ret, i;
unsigned long size;
bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
if (bufmgr_gem == NULL)
return NULL;
bufmgr_gem->fd = fd;
if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
free(bufmgr_gem);
return NULL;
}
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
if (ret == 0)
bufmgr_gem->gtt_size = aperture.aper_available_size;
else {
fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
strerror(errno));
bufmgr_gem->gtt_size = 128 * 1024 * 1024;
fprintf(stderr, "Assuming %dkB available aperture size.\n"
"May lead to reduced performance or incorrect "
"rendering.\n",
(int)bufmgr_gem->gtt_size / 1024);
}
gp.param = I915_PARAM_CHIPSET_ID;
gp.value = &bufmgr_gem->pci_device;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret) {
fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
}
if (!IS_I965G(bufmgr_gem)) {
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &bufmgr_gem->available_fences;
ret = ioctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret) {
fprintf(stderr, "get fences failed: %d [%d]\n", ret,
errno);
fprintf(stderr, "param: %d, val: %d\n", gp.param,
*gp.value);
bufmgr_gem->available_fences = 0;
} else {
/* XXX The kernel reports the total number of fences,
* including any that may be pinned.
*
* We presume that there will be at least one pinned
* fence for the scanout buffer, but there may be more
* than one scanout and the user may be manually
* pinning buffers. Let's move to execbuffer2 and
* thereby forget the insanity of using fences...
*/
bufmgr_gem->available_fences -= 2;
if (bufmgr_gem->available_fences < 0)
bufmgr_gem->available_fences = 0;
}
}
/* Let's go with one relocation per every 2 dwords (but round down a bit
* since a power of two will mean an extra page allocation for the reloc
* buffer).
*
* Every 4 was too few for the blender benchmark.
*/
bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
bufmgr_gem->bufmgr.bo_alloc_for_render =
drm_intel_gem_bo_alloc_for_render;
bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy;
bufmgr_gem->bufmgr.debug = 0;
bufmgr_gem->bufmgr.check_aperture_space =
drm_intel_gem_check_aperture_space;
bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
drm_intel_gem_get_pipe_from_crtc_id;
bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
/* Initialize the linked lists for BO reuse cache. */
for (i = 0, size = 4096; i < DRM_INTEL_GEM_BO_BUCKETS; i++, size *= 2) {
DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
bufmgr_gem->cache_bucket[i].size = size;
}
return &bufmgr_gem->bufmgr;
}