| /* GStreamer |
| * |
| * Copyright (C) 2007,2009 Sebastian Dröge <sebastian.droege@collabora.co.uk> |
| * |
| * gstinterpolationcontrolsource.c: Control source that provides several |
| * interpolation methods |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the |
| * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| /** |
| * SECTION:gstinterpolationcontrolsource |
| * @title: GstInterpolationControlSource |
| * @short_description: interpolation control source |
| * |
| * #GstInterpolationControlSource is a #GstControlSource, that interpolates values between user-given |
| * control points. It supports several interpolation modes and property types. |
| * |
| * To use #GstInterpolationControlSource get a new instance by calling |
| * gst_interpolation_control_source_new(), bind it to a #GParamSpec and set some |
| * control points by calling gst_timed_value_control_source_set(). |
| * |
| * All functions are MT-safe. |
| * |
| */ |
| |
| #include <glib-object.h> |
| #include <gst/gst.h> |
| |
| #include "gstinterpolationcontrolsource.h" |
| #include "gst/glib-compat-private.h" |
| #include "gst/math-compat.h" |
| |
| #define GST_CAT_DEFAULT controller_debug |
| GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT); |
| |
| /* helper functions */ |
| |
| static inline gboolean |
| _get_nearest_control_points (GstTimedValueControlSource * self, |
| GstClockTime ts, GstControlPoint ** cp1, GstControlPoint ** cp2) |
| { |
| GSequenceIter *iter; |
| |
| iter = gst_timed_value_control_source_find_control_point_iter (self, ts); |
| if (iter) { |
| *cp1 = g_sequence_get (iter); |
| iter = g_sequence_iter_next (iter); |
| if (iter && !g_sequence_iter_is_end (iter)) { |
| *cp2 = g_sequence_get (iter); |
| } else { |
| *cp2 = NULL; |
| } |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| static inline void |
| _get_nearest_control_points2 (GstTimedValueControlSource * self, |
| GstClockTime ts, GstControlPoint ** cp1, GstControlPoint ** cp2, |
| GstClockTime * next_ts) |
| { |
| GSequenceIter *iter1, *iter2 = NULL; |
| |
| *cp1 = *cp2 = NULL; |
| iter1 = gst_timed_value_control_source_find_control_point_iter (self, ts); |
| if (iter1) { |
| *cp1 = g_sequence_get (iter1); |
| iter2 = g_sequence_iter_next (iter1); |
| } else { |
| if (G_LIKELY (self->values)) { |
| /* all values in the control point list come after the given timestamp */ |
| iter2 = g_sequence_get_begin_iter (self->values); |
| /* why this? if !cp1 we don't interpolate anyway |
| * if we can eliminate this, we can also use _get_nearest_control_points() |
| * here, is this just to set next_ts? */ |
| } else { |
| /* no values */ |
| iter2 = NULL; |
| } |
| } |
| |
| if (iter2 && !g_sequence_iter_is_end (iter2)) { |
| *cp2 = g_sequence_get (iter2); |
| *next_ts = (*cp2)->timestamp; |
| } else { |
| *next_ts = GST_CLOCK_TIME_NONE; |
| } |
| } |
| |
| |
| /* steps-like (no-)interpolation, default */ |
| /* just returns the value for the most recent key-frame */ |
| static inline gdouble |
| _interpolate_none (GstTimedValueControlSource * self, GstControlPoint * cp) |
| { |
| return cp->value; |
| } |
| |
| static gboolean |
| interpolate_none_get (GstTimedValueControlSource * self, GstClockTime timestamp, |
| gdouble * value) |
| { |
| gboolean ret = FALSE; |
| GSequenceIter *iter; |
| GstControlPoint *cp; |
| |
| g_mutex_lock (&self->lock); |
| |
| iter = |
| gst_timed_value_control_source_find_control_point_iter (self, timestamp); |
| if (iter) { |
| cp = g_sequence_get (iter); |
| *value = _interpolate_none (self, cp); |
| ret = TRUE; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| static gboolean |
| interpolate_none_get_value_array (GstTimedValueControlSource * self, |
| GstClockTime timestamp, GstClockTime interval, guint n_values, |
| gdouble * values) |
| { |
| gboolean ret = FALSE; |
| guint i; |
| GstClockTime ts = timestamp; |
| GstClockTime next_ts = 0; |
| GstControlPoint *cp1 = NULL, *cp2 = NULL; |
| |
| g_mutex_lock (&self->lock); |
| |
| for (i = 0; i < n_values; i++) { |
| GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT, |
| i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts)); |
| if (ts >= next_ts) { |
| _get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts); |
| } |
| if (cp1) { |
| *values = _interpolate_none (self, cp1); |
| ret = TRUE; |
| GST_LOG ("values[%3d]=%lf", i, *values); |
| } else { |
| *values = NAN; |
| GST_LOG ("values[%3d]=-", i); |
| } |
| ts += interval; |
| values++; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| |
| |
| /* linear interpolation */ |
| /* smoothes inbetween values */ |
| static inline gdouble |
| _interpolate_linear (GstClockTime timestamp1, gdouble value1, |
| GstClockTime timestamp2, gdouble value2, GstClockTime timestamp) |
| { |
| if (GST_CLOCK_TIME_IS_VALID (timestamp2)) { |
| gdouble slope; |
| |
| slope = |
| (value2 - value1) / gst_guint64_to_gdouble (timestamp2 - timestamp1); |
| return value1 + (gst_guint64_to_gdouble (timestamp - timestamp1) * slope); |
| } else { |
| return value1; |
| } |
| } |
| |
| static gboolean |
| interpolate_linear_get (GstTimedValueControlSource * self, |
| GstClockTime timestamp, gdouble * value) |
| { |
| gboolean ret = FALSE; |
| GstControlPoint *cp1, *cp2; |
| |
| g_mutex_lock (&self->lock); |
| |
| if (_get_nearest_control_points (self, timestamp, &cp1, &cp2)) { |
| *value = _interpolate_linear (cp1->timestamp, cp1->value, |
| (cp2 ? cp2->timestamp : GST_CLOCK_TIME_NONE), |
| (cp2 ? cp2->value : 0.0), timestamp); |
| ret = TRUE; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| static gboolean |
| interpolate_linear_get_value_array (GstTimedValueControlSource * self, |
| GstClockTime timestamp, GstClockTime interval, guint n_values, |
| gdouble * values) |
| { |
| gboolean ret = FALSE; |
| guint i; |
| GstClockTime ts = timestamp; |
| GstClockTime next_ts = 0; |
| GstControlPoint *cp1 = NULL, *cp2 = NULL; |
| |
| g_mutex_lock (&self->lock); |
| |
| for (i = 0; i < n_values; i++) { |
| GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT, |
| i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts)); |
| if (ts >= next_ts) { |
| _get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts); |
| } |
| if (cp1) { |
| *values = _interpolate_linear (cp1->timestamp, cp1->value, |
| (cp2 ? cp2->timestamp : GST_CLOCK_TIME_NONE), |
| (cp2 ? cp2->value : 0.0), ts); |
| ret = TRUE; |
| GST_LOG ("values[%3d]=%lf", i, *values); |
| } else { |
| *values = NAN; |
| GST_LOG ("values[%3d]=-", i); |
| } |
| ts += interval; |
| values++; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| |
| |
| /* cubic interpolation */ |
| |
| /* The following functions implement a natural cubic spline interpolator. |
| * For details look at http://en.wikipedia.org/wiki/Spline_interpolation |
| * |
| * Instead of using a real matrix with n^2 elements for the linear system |
| * of equations we use three arrays o, p, q to hold the tridiagonal matrix |
| * as following to save memory: |
| * |
| * p[0] q[0] 0 0 0 |
| * o[1] p[1] q[1] 0 0 |
| * 0 o[2] p[2] q[2] . |
| * . . . . . |
| */ |
| |
| static void |
| _interpolate_cubic_update_cache (GstTimedValueControlSource * self) |
| { |
| gint i, n = self->nvalues; |
| gdouble *o = g_new0 (gdouble, n); |
| gdouble *p = g_new0 (gdouble, n); |
| gdouble *q = g_new0 (gdouble, n); |
| |
| gdouble *h = g_new0 (gdouble, n); |
| gdouble *b = g_new0 (gdouble, n); |
| gdouble *z = g_new0 (gdouble, n); |
| |
| GSequenceIter *iter; |
| GstControlPoint *cp; |
| GstClockTime x, x_next; |
| gdouble y_prev, y, y_next; |
| |
| /* Fill linear system of equations */ |
| iter = g_sequence_get_begin_iter (self->values); |
| cp = g_sequence_get (iter); |
| x = cp->timestamp; |
| y = cp->value; |
| |
| p[0] = 1.0; |
| |
| iter = g_sequence_iter_next (iter); |
| cp = g_sequence_get (iter); |
| x_next = cp->timestamp; |
| y_next = cp->value; |
| h[0] = gst_guint64_to_gdouble (x_next - x); |
| |
| for (i = 1; i < n - 1; i++) { |
| /* Shuffle x and y values */ |
| y_prev = y; |
| x = x_next; |
| y = y_next; |
| iter = g_sequence_iter_next (iter); |
| cp = g_sequence_get (iter); |
| x_next = cp->timestamp; |
| y_next = cp->value; |
| |
| h[i] = gst_guint64_to_gdouble (x_next - x); |
| o[i] = h[i - 1]; |
| p[i] = 2.0 * (h[i - 1] + h[i]); |
| q[i] = h[i]; |
| b[i] = (y_next - y) / h[i] - (y - y_prev) / h[i - 1]; |
| } |
| p[n - 1] = 1.0; |
| |
| /* Use Gauss elimination to set everything below the diagonal to zero */ |
| for (i = 1; i < n - 1; i++) { |
| gdouble a = o[i] / p[i - 1]; |
| p[i] -= a * q[i - 1]; |
| b[i] -= a * b[i - 1]; |
| } |
| |
| /* Solve everything else from bottom to top */ |
| for (i = n - 2; i > 0; i--) |
| z[i] = (b[i] - q[i] * z[i + 1]) / p[i]; |
| |
| /* Save cache next in the GstControlPoint */ |
| |
| iter = g_sequence_get_begin_iter (self->values); |
| for (i = 0; i < n; i++) { |
| cp = g_sequence_get (iter); |
| cp->cache.cubic.h = h[i]; |
| cp->cache.cubic.z = z[i]; |
| iter = g_sequence_iter_next (iter); |
| } |
| |
| /* Free our temporary arrays */ |
| g_free (o); |
| g_free (p); |
| g_free (q); |
| g_free (h); |
| g_free (b); |
| g_free (z); |
| } |
| |
| static inline gdouble |
| _interpolate_cubic (GstTimedValueControlSource * self, GstControlPoint * cp1, |
| gdouble value1, GstControlPoint * cp2, gdouble value2, |
| GstClockTime timestamp) |
| { |
| if (!self->valid_cache) { |
| _interpolate_cubic_update_cache (self); |
| self->valid_cache = TRUE; |
| } |
| |
| if (cp2) { |
| gdouble diff1, diff2; |
| gdouble out; |
| |
| diff1 = gst_guint64_to_gdouble (timestamp - cp1->timestamp); |
| diff2 = gst_guint64_to_gdouble (cp2->timestamp - timestamp); |
| |
| out = |
| (cp2->cache.cubic.z * diff1 * diff1 * diff1 + |
| cp1->cache.cubic.z * diff2 * diff2 * diff2) / cp1->cache.cubic.h; |
| out += |
| (value2 / cp1->cache.cubic.h - |
| cp1->cache.cubic.h * cp2->cache.cubic.z) * diff1; |
| out += |
| (value1 / cp1->cache.cubic.h - |
| cp1->cache.cubic.h * cp1->cache.cubic.z) * diff2; |
| return out; |
| } else { |
| return value1; |
| } |
| } |
| |
| static gboolean |
| interpolate_cubic_get (GstTimedValueControlSource * self, |
| GstClockTime timestamp, gdouble * value) |
| { |
| gboolean ret = FALSE; |
| GstControlPoint *cp1, *cp2 = NULL; |
| |
| if (self->nvalues <= 2) |
| return interpolate_linear_get (self, timestamp, value); |
| |
| g_mutex_lock (&self->lock); |
| |
| if (_get_nearest_control_points (self, timestamp, &cp1, &cp2)) { |
| *value = _interpolate_cubic (self, cp1, cp1->value, cp2, |
| (cp2 ? cp2->value : 0.0), timestamp); |
| ret = TRUE; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| static gboolean |
| interpolate_cubic_get_value_array (GstTimedValueControlSource * self, |
| GstClockTime timestamp, GstClockTime interval, guint n_values, |
| gdouble * values) |
| { |
| gboolean ret = FALSE; |
| guint i; |
| GstClockTime ts = timestamp; |
| GstClockTime next_ts = 0; |
| GstControlPoint *cp1 = NULL, *cp2 = NULL; |
| |
| if (self->nvalues <= 2) |
| return interpolate_linear_get_value_array (self, timestamp, interval, |
| n_values, values); |
| |
| g_mutex_lock (&self->lock); |
| |
| for (i = 0; i < n_values; i++) { |
| GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT, |
| i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts)); |
| if (ts >= next_ts) { |
| _get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts); |
| } |
| if (cp1) { |
| *values = _interpolate_cubic (self, cp1, cp1->value, cp2, |
| (cp2 ? cp2->value : 0.0), ts); |
| ret = TRUE; |
| GST_LOG ("values[%3d]=%lf", i, *values); |
| } else { |
| *values = NAN; |
| GST_LOG ("values[%3d]=-", i); |
| } |
| ts += interval; |
| values++; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| |
| /* monotonic cubic interpolation */ |
| |
| /* the following functions implement monotonic cubic spline interpolation. |
| * For details: http://en.wikipedia.org/wiki/Monotone_cubic_interpolation |
| * |
| * In contrast to the previous cubic mode, the values won't overshoot. |
| */ |
| |
| static void |
| _interpolate_cubic_monotonic_update_cache (GstTimedValueControlSource * self) |
| { |
| gint i, n = self->nvalues; |
| gdouble *dxs = g_new0 (gdouble, n); |
| gdouble *dys = g_new0 (gdouble, n); |
| gdouble *ms = g_new0 (gdouble, n); |
| gdouble *c1s = g_new0 (gdouble, n); |
| |
| GSequenceIter *iter; |
| GstControlPoint *cp; |
| GstClockTime x, x_next, dx; |
| gdouble y, y_next, dy; |
| |
| /* Get consecutive differences and slopes */ |
| iter = g_sequence_get_begin_iter (self->values); |
| cp = g_sequence_get (iter); |
| x_next = cp->timestamp; |
| y_next = cp->value; |
| for (i = 0; i < n - 1; i++) { |
| x = x_next; |
| y = y_next; |
| iter = g_sequence_iter_next (iter); |
| cp = g_sequence_get (iter); |
| x_next = cp->timestamp; |
| y_next = cp->value; |
| |
| dx = gst_guint64_to_gdouble (x_next - x); |
| dy = y_next - y; |
| dxs[i] = dx; |
| dys[i] = dy; |
| ms[i] = dy / dx; |
| } |
| |
| /* Get degree-1 coefficients */ |
| c1s[0] = ms[0]; |
| for (i = 1; i < n; i++) { |
| gdouble m = ms[i - 1]; |
| gdouble m_next = ms[i]; |
| |
| if (m * m_next <= 0) { |
| c1s[i] = 0.0; |
| } else { |
| gdouble dx_next, dx_sum; |
| |
| dx = dxs[i], dx_next = dxs[i + 1], dx_sum = dx + dx_next; |
| c1s[i] = 3.0 * dx_sum / ((dx_sum + dx_next) / m + (dx_sum + dx) / m_next); |
| } |
| } |
| c1s[n - 1] = ms[n - 1]; |
| |
| /* Get degree-2 and degree-3 coefficients */ |
| iter = g_sequence_get_begin_iter (self->values); |
| for (i = 0; i < n - 1; i++) { |
| gdouble c1, m, inv_dx, common; |
| cp = g_sequence_get (iter); |
| |
| c1 = c1s[i]; |
| m = ms[i]; |
| inv_dx = 1.0 / dxs[i]; |
| common = c1 + c1s[i + 1] - m - m; |
| |
| cp->cache.cubic_monotonic.c1s = c1; |
| cp->cache.cubic_monotonic.c2s = (m - c1 - common) * inv_dx; |
| cp->cache.cubic_monotonic.c3s = common * inv_dx * inv_dx; |
| |
| iter = g_sequence_iter_next (iter); |
| } |
| |
| /* Free our temporary arrays */ |
| g_free (dxs); |
| g_free (dys); |
| g_free (ms); |
| g_free (c1s); |
| } |
| |
| static inline gdouble |
| _interpolate_cubic_monotonic (GstTimedValueControlSource * self, |
| GstControlPoint * cp1, gdouble value1, GstControlPoint * cp2, |
| gdouble value2, GstClockTime timestamp) |
| { |
| if (!self->valid_cache) { |
| _interpolate_cubic_monotonic_update_cache (self); |
| self->valid_cache = TRUE; |
| } |
| |
| if (cp2) { |
| gdouble diff = gst_guint64_to_gdouble (timestamp - cp1->timestamp); |
| gdouble diff2 = diff * diff; |
| gdouble out; |
| |
| out = value1 + cp1->cache.cubic_monotonic.c1s * diff; |
| out += cp1->cache.cubic_monotonic.c2s * diff2; |
| out += cp1->cache.cubic_monotonic.c3s * diff * diff2; |
| return out; |
| } else { |
| return value1; |
| } |
| } |
| |
| static gboolean |
| interpolate_cubic_monotonic_get (GstTimedValueControlSource * self, |
| GstClockTime timestamp, gdouble * value) |
| { |
| gboolean ret = FALSE; |
| GstControlPoint *cp1, *cp2 = NULL; |
| |
| if (self->nvalues <= 2) |
| return interpolate_linear_get (self, timestamp, value); |
| |
| g_mutex_lock (&self->lock); |
| |
| if (_get_nearest_control_points (self, timestamp, &cp1, &cp2)) { |
| *value = _interpolate_cubic_monotonic (self, cp1, cp1->value, cp2, |
| (cp2 ? cp2->value : 0.0), timestamp); |
| ret = TRUE; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| static gboolean |
| interpolate_cubic_monotonic_get_value_array (GstTimedValueControlSource * self, |
| GstClockTime timestamp, GstClockTime interval, guint n_values, |
| gdouble * values) |
| { |
| gboolean ret = FALSE; |
| guint i; |
| GstClockTime ts = timestamp; |
| GstClockTime next_ts = 0; |
| GstControlPoint *cp1 = NULL, *cp2 = NULL; |
| |
| if (self->nvalues <= 2) |
| return interpolate_linear_get_value_array (self, timestamp, interval, |
| n_values, values); |
| |
| g_mutex_lock (&self->lock); |
| |
| for (i = 0; i < n_values; i++) { |
| GST_LOG ("values[%3d] : ts=%" GST_TIME_FORMAT ", next_ts=%" GST_TIME_FORMAT, |
| i, GST_TIME_ARGS (ts), GST_TIME_ARGS (next_ts)); |
| if (ts >= next_ts) { |
| _get_nearest_control_points2 (self, ts, &cp1, &cp2, &next_ts); |
| } |
| if (cp1) { |
| *values = _interpolate_cubic_monotonic (self, cp1, cp1->value, cp2, |
| (cp2 ? cp2->value : 0.0), ts); |
| ret = TRUE; |
| GST_LOG ("values[%3d]=%lf", i, *values); |
| } else { |
| *values = NAN; |
| GST_LOG ("values[%3d]=-", i); |
| } |
| ts += interval; |
| values++; |
| } |
| g_mutex_unlock (&self->lock); |
| return ret; |
| } |
| |
| |
| static struct |
| { |
| GstControlSourceGetValue get; |
| GstControlSourceGetValueArray get_value_array; |
| } interpolation_modes[] = { |
| { |
| (GstControlSourceGetValue) interpolate_none_get, |
| (GstControlSourceGetValueArray) interpolate_none_get_value_array}, { |
| (GstControlSourceGetValue) interpolate_linear_get, |
| (GstControlSourceGetValueArray) interpolate_linear_get_value_array}, { |
| (GstControlSourceGetValue) interpolate_cubic_get, |
| (GstControlSourceGetValueArray) interpolate_cubic_get_value_array}, { |
| (GstControlSourceGetValue) interpolate_cubic_monotonic_get, |
| (GstControlSourceGetValueArray) |
| interpolate_cubic_monotonic_get_value_array}}; |
| |
| static const guint num_interpolation_modes = G_N_ELEMENTS (interpolation_modes); |
| |
| enum |
| { |
| PROP_MODE = 1 |
| }; |
| |
| #define _do_init \ |
| GST_DEBUG_CATEGORY_INIT (GST_CAT_DEFAULT, "interpolation control source", 0, \ |
| "timeline value interpolating control source") |
| |
| G_DEFINE_TYPE_WITH_CODE (GstInterpolationControlSource, |
| gst_interpolation_control_source, GST_TYPE_TIMED_VALUE_CONTROL_SOURCE, |
| _do_init); |
| |
| struct _GstInterpolationControlSourcePrivate |
| { |
| GstInterpolationMode interpolation_mode; |
| }; |
| |
| /** |
| * gst_interpolation_control_source_new: |
| * |
| * This returns a new, unbound #GstInterpolationControlSource. |
| * |
| * Returns: (transfer full): a new, unbound #GstInterpolationControlSource. |
| */ |
| GstControlSource * |
| gst_interpolation_control_source_new (void) |
| { |
| GstControlSource *csource = |
| g_object_new (GST_TYPE_INTERPOLATION_CONTROL_SOURCE, NULL); |
| |
| /* Clear floating flag */ |
| gst_object_ref_sink (csource); |
| |
| return csource; |
| } |
| |
| static gboolean |
| gst_interpolation_control_source_set_interpolation_mode |
| (GstInterpolationControlSource * self, GstInterpolationMode mode) |
| { |
| GstControlSource *csource = GST_CONTROL_SOURCE (self); |
| |
| if (mode >= num_interpolation_modes || (int) mode < 0) { |
| GST_WARNING ("interpolation mode %d invalid or not implemented yet", mode); |
| return FALSE; |
| } |
| |
| GST_TIMED_VALUE_CONTROL_SOURCE_LOCK (self); |
| csource->get_value = interpolation_modes[mode].get; |
| csource->get_value_array = interpolation_modes[mode].get_value_array; |
| |
| gst_timed_value_control_invalidate_cache ((GstTimedValueControlSource *) |
| csource); |
| self->priv->interpolation_mode = mode; |
| |
| GST_TIMED_VALUE_CONTROL_SOURCE_UNLOCK (self); |
| |
| return TRUE; |
| } |
| |
| static void |
| gst_interpolation_control_source_init (GstInterpolationControlSource * self) |
| { |
| self->priv = |
| G_TYPE_INSTANCE_GET_PRIVATE (self, GST_TYPE_INTERPOLATION_CONTROL_SOURCE, |
| GstInterpolationControlSourcePrivate); |
| gst_interpolation_control_source_set_interpolation_mode (self, |
| GST_INTERPOLATION_MODE_NONE); |
| } |
| |
| static void |
| gst_interpolation_control_source_set_property (GObject * object, guint prop_id, |
| const GValue * value, GParamSpec * pspec) |
| { |
| GstInterpolationControlSource *self = |
| GST_INTERPOLATION_CONTROL_SOURCE (object); |
| |
| switch (prop_id) { |
| case PROP_MODE: |
| gst_interpolation_control_source_set_interpolation_mode (self, |
| (GstInterpolationMode) g_value_get_enum (value)); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| static void |
| gst_interpolation_control_source_get_property (GObject * object, guint prop_id, |
| GValue * value, GParamSpec * pspec) |
| { |
| GstInterpolationControlSource *self = |
| GST_INTERPOLATION_CONTROL_SOURCE (object); |
| |
| switch (prop_id) { |
| case PROP_MODE: |
| g_value_set_enum (value, self->priv->interpolation_mode); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| static void |
| gst_interpolation_control_source_class_init (GstInterpolationControlSourceClass |
| * klass) |
| { |
| GObjectClass *gobject_class = G_OBJECT_CLASS (klass); |
| //GstControlSourceClass *csource_class = GST_CONTROL_SOURCE_CLASS (klass); |
| |
| g_type_class_add_private (klass, |
| sizeof (GstInterpolationControlSourcePrivate)); |
| |
| gobject_class->set_property = gst_interpolation_control_source_set_property; |
| gobject_class->get_property = gst_interpolation_control_source_get_property; |
| |
| g_object_class_install_property (gobject_class, PROP_MODE, |
| g_param_spec_enum ("mode", "Mode", "Interpolation mode", |
| GST_TYPE_INTERPOLATION_MODE, GST_INTERPOLATION_MODE_NONE, |
| G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); |
| } |