| /* GStreamer |
| * Copyright (C) 1999,2000 Erik Walthinsen <omega@cse.ogi.edu> |
| * 2000 Wim Taymans <wtay@chello.be> |
| * 2004 Wim Taymans <wim@fluendo.com> |
| * |
| * gstclock.c: Clock subsystem for maintaining time sync |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 02111-1307, USA. |
| */ |
| |
| /** |
| * SECTION:gstclock |
| * @short_description: Abstract class for global clocks |
| * @see_also: #GstSystemClock, #GstPipeline |
| * |
| * GStreamer uses a global clock to synchronize the plugins in a pipeline. |
| * Different clock implementations are possible by implementing this abstract |
| * base class or, more conveniently, by subclassing #GstSystemClock. |
| * |
| * The #GstClock returns a monotonically increasing time with the method |
| * gst_clock_get_time(). Its accuracy and base time depend on the specific |
| * clock implementation but time is always expressed in nanoseconds. Since the |
| * baseline of the clock is undefined, the clock time returned is not |
| * meaningful in itself, what matters are the deltas between two clock times. |
| * The time returned by a clock is called the absolute time. |
| * |
| * The pipeline uses the clock to calculate the running time. Usually all |
| * renderers synchronize to the global clock using the buffer timestamps, the |
| * newsegment events and the element's base time, see #GstPipeline. |
| * |
| * A clock implementation can support periodic and single shot clock |
| * notifications both synchronous and asynchronous. |
| * |
| * One first needs to create a #GstClockID for the periodic or single shot |
| * notification using gst_clock_new_single_shot_id() or |
| * gst_clock_new_periodic_id(). |
| * |
| * To perform a blocking wait for the specific time of the #GstClockID use the |
| * gst_clock_id_wait(). To receive a callback when the specific time is reached |
| * in the clock use gst_clock_id_wait_async(). Both these calls can be |
| * interrupted with the gst_clock_id_unschedule() call. If the blocking wait is |
| * unscheduled a return value of #GST_CLOCK_UNSCHEDULED is returned. |
| * |
| * Periodic callbacks scheduled async will be repeatedly called automatically |
| * until it is unscheduled. To schedule a sync periodic callback, |
| * gst_clock_id_wait() should be called repeatedly. |
| * |
| * The async callbacks can happen from any thread, either provided by the core |
| * or from a streaming thread. The application should be prepared for this. |
| * |
| * A #GstClockID that has been unscheduled cannot be used again for any wait |
| * operation, a new #GstClockID should be created and the old unscheduled one |
| * should be destroyed with gst_clock_id_unref(). |
| * |
| * It is possible to perform a blocking wait on the same #GstClockID from |
| * multiple threads. However, registering the same #GstClockID for multiple |
| * async notifications is not possible, the callback will only be called for |
| * the thread registering the entry last. |
| * |
| * None of the wait operations unref the #GstClockID, the owner is responsible |
| * for unreffing the ids itself. This holds for both periodic and single shot |
| * notifications. The reason being that the owner of the #GstClockID has to |
| * keep a handle to the #GstClockID to unblock the wait on FLUSHING events or |
| * state changes and if the entry would be unreffed automatically, the handle |
| * might become invalid without any notification. |
| * |
| * These clock operations do not operate on the running time, so the callbacks |
| * will also occur when not in PLAYING state as if the clock just keeps on |
| * running. Some clocks however do not progress when the element that provided |
| * the clock is not PLAYING. |
| * |
| * When a clock has the #GST_CLOCK_FLAG_CAN_SET_MASTER flag set, it can be |
| * slaved to another #GstClock with the gst_clock_set_master(). The clock will |
| * then automatically be synchronized to this master clock by repeatedly |
| * sampling the master clock and the slave clock and recalibrating the slave |
| * clock with gst_clock_set_calibration(). This feature is mostly useful for |
| * plugins that have an internal clock but must operate with another clock |
| * selected by the #GstPipeline. They can track the offset and rate difference |
| * of their internal clock relative to the master clock by using the |
| * gst_clock_get_calibration() function. |
| * |
| * The master/slave synchronisation can be tuned with the #GstClock:timeout, |
| * #GstClock:window-size and #GstClock:window-threshold properties. |
| * The #GstClock:timeout property defines the interval to sample the master |
| * clock and run the calibration functions. #GstClock:window-size defines the |
| * number of samples to use when calibrating and #GstClock:window-threshold |
| * defines the minimum number of samples before the calibration is performed. |
| * |
| * Last reviewed on 2009-05-21 (0.10.24) |
| */ |
| |
| |
| #include "gst_private.h" |
| #include <time.h> |
| |
| #include "gstclock.h" |
| #include "gstinfo.h" |
| #include "gstutils.h" |
| |
| #ifndef GST_DISABLE_TRACE |
| /* #define GST_WITH_ALLOC_TRACE */ |
| #include "gsttrace.h" |
| static GstAllocTrace *_gst_clock_entry_trace; |
| #endif |
| |
| /* #define DEBUGGING_ENABLED */ |
| |
| #define DEFAULT_STATS FALSE |
| #define DEFAULT_WINDOW_SIZE 32 |
| #define DEFAULT_WINDOW_THRESHOLD 4 |
| #define DEFAULT_TIMEOUT GST_SECOND / 10 |
| |
| enum |
| { |
| PROP_0, |
| PROP_STATS, |
| PROP_WINDOW_SIZE, |
| PROP_WINDOW_THRESHOLD, |
| PROP_TIMEOUT |
| }; |
| |
| struct _GstClockPrivate |
| { |
| gint pre_count; |
| gint post_count; |
| }; |
| |
| /* seqlocks */ |
| #define read_seqbegin(clock) \ |
| g_atomic_int_get (&clock->ABI.priv->post_count); |
| |
| static inline gboolean |
| read_seqretry (GstClock * clock, gint seq) |
| { |
| /* no retry if the seqnum did not change */ |
| if (G_LIKELY (seq == g_atomic_int_get (&clock->ABI.priv->pre_count))) |
| return FALSE; |
| |
| /* wait for the writer to finish and retry */ |
| GST_OBJECT_LOCK (clock); |
| GST_OBJECT_UNLOCK (clock); |
| return TRUE; |
| } |
| |
| #define write_seqlock(clock) \ |
| G_STMT_START { \ |
| GST_OBJECT_LOCK (clock); \ |
| g_atomic_int_inc (&clock->ABI.priv->pre_count); \ |
| } G_STMT_END; |
| |
| #define write_sequnlock(clock) \ |
| G_STMT_START { \ |
| g_atomic_int_inc (&clock->ABI.priv->post_count); \ |
| GST_OBJECT_UNLOCK (clock); \ |
| } G_STMT_END; |
| |
| static void gst_clock_dispose (GObject * object); |
| static void gst_clock_finalize (GObject * object); |
| |
| static void gst_clock_set_property (GObject * object, guint prop_id, |
| const GValue * value, GParamSpec * pspec); |
| static void gst_clock_get_property (GObject * object, guint prop_id, |
| GValue * value, GParamSpec * pspec); |
| static void gst_clock_update_stats (GstClock * clock); |
| |
| |
| static GstObjectClass *parent_class = NULL; |
| |
| /* static guint gst_clock_signals[LAST_SIGNAL] = { 0 }; */ |
| |
| static GstClockID |
| gst_clock_entry_new (GstClock * clock, GstClockTime time, |
| GstClockTime interval, GstClockEntryType type) |
| { |
| GstClockEntry *entry; |
| |
| entry = g_slice_new (GstClockEntry); |
| #ifndef GST_DISABLE_TRACE |
| gst_alloc_trace_new (_gst_clock_entry_trace, entry); |
| #endif |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "created entry %p, time %" GST_TIME_FORMAT, entry, GST_TIME_ARGS (time)); |
| |
| entry->refcount = 1; |
| entry->clock = clock; |
| entry->type = type; |
| entry->time = time; |
| entry->interval = interval; |
| entry->status = GST_CLOCK_OK; |
| entry->func = NULL; |
| entry->user_data = NULL; |
| |
| return (GstClockID) entry; |
| } |
| |
| /** |
| * gst_clock_id_ref: |
| * @id: The #GstClockID to ref |
| * |
| * Increase the refcount of given @id. |
| * |
| * Returns: The same #GstClockID with increased refcount. |
| * |
| * MT safe. |
| */ |
| GstClockID |
| gst_clock_id_ref (GstClockID id) |
| { |
| g_return_val_if_fail (id != NULL, NULL); |
| |
| g_atomic_int_inc (&((GstClockEntry *) id)->refcount); |
| |
| return id; |
| } |
| |
| static void |
| _gst_clock_id_free (GstClockID id) |
| { |
| g_return_if_fail (id != NULL); |
| |
| GST_CAT_DEBUG (GST_CAT_CLOCK, "freed entry %p", id); |
| |
| #ifndef GST_DISABLE_TRACE |
| gst_alloc_trace_free (_gst_clock_entry_trace, id); |
| #endif |
| g_slice_free (GstClockEntry, id); |
| } |
| |
| /** |
| * gst_clock_id_unref: |
| * @id: The #GstClockID to unref |
| * |
| * Unref given @id. When the refcount reaches 0 the |
| * #GstClockID will be freed. |
| * |
| * MT safe. |
| */ |
| void |
| gst_clock_id_unref (GstClockID id) |
| { |
| gint zero; |
| |
| g_return_if_fail (id != NULL); |
| |
| zero = g_atomic_int_dec_and_test (&((GstClockEntry *) id)->refcount); |
| /* if we ended up with the refcount at zero, free the id */ |
| if (zero) { |
| _gst_clock_id_free (id); |
| } |
| } |
| |
| /** |
| * gst_clock_new_single_shot_id |
| * @clock: The #GstClockID to get a single shot notification from |
| * @time: the requested time |
| * |
| * Get a #GstClockID from @clock to trigger a single shot |
| * notification at the requested time. The single shot id should be |
| * unreffed after usage. |
| * |
| * Returns: A #GstClockID that can be used to request the time notification. |
| * |
| * MT safe. |
| */ |
| GstClockID |
| gst_clock_new_single_shot_id (GstClock * clock, GstClockTime time) |
| { |
| g_return_val_if_fail (GST_IS_CLOCK (clock), NULL); |
| |
| return gst_clock_entry_new (clock, |
| time, GST_CLOCK_TIME_NONE, GST_CLOCK_ENTRY_SINGLE); |
| } |
| |
| /** |
| * gst_clock_new_periodic_id |
| * @clock: The #GstClockID to get a periodic notification id from |
| * @start_time: the requested start time |
| * @interval: the requested interval |
| * |
| * Get an ID from @clock to trigger a periodic notification. |
| * The periodic notifications will start at time @start_time and |
| * will then be fired with the given @interval. @id should be unreffed |
| * after usage. |
| * |
| * Returns: A #GstClockID that can be used to request the time notification. |
| * |
| * MT safe. |
| */ |
| GstClockID |
| gst_clock_new_periodic_id (GstClock * clock, GstClockTime start_time, |
| GstClockTime interval) |
| { |
| g_return_val_if_fail (GST_IS_CLOCK (clock), NULL); |
| g_return_val_if_fail (GST_CLOCK_TIME_IS_VALID (start_time), NULL); |
| g_return_val_if_fail (interval != 0, NULL); |
| g_return_val_if_fail (GST_CLOCK_TIME_IS_VALID (interval), NULL); |
| |
| return gst_clock_entry_new (clock, |
| start_time, interval, GST_CLOCK_ENTRY_PERIODIC); |
| } |
| |
| /** |
| * gst_clock_id_compare_func |
| * @id1: A #GstClockID |
| * @id2: A #GstClockID to compare with |
| * |
| * Compares the two #GstClockID instances. This function can be used |
| * as a GCompareFunc when sorting ids. |
| * |
| * Returns: negative value if a < b; zero if a = b; positive value if a > b |
| * |
| * MT safe. |
| */ |
| gint |
| gst_clock_id_compare_func (gconstpointer id1, gconstpointer id2) |
| { |
| GstClockEntry *entry1, *entry2; |
| |
| entry1 = (GstClockEntry *) id1; |
| entry2 = (GstClockEntry *) id2; |
| |
| if (GST_CLOCK_ENTRY_TIME (entry1) > GST_CLOCK_ENTRY_TIME (entry2)) { |
| return 1; |
| } |
| if (GST_CLOCK_ENTRY_TIME (entry1) < GST_CLOCK_ENTRY_TIME (entry2)) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * gst_clock_id_get_time |
| * @id: The #GstClockID to query |
| * |
| * Get the time of the clock ID |
| * |
| * Returns: the time of the given clock id. |
| * |
| * MT safe. |
| */ |
| GstClockTime |
| gst_clock_id_get_time (GstClockID id) |
| { |
| g_return_val_if_fail (id != NULL, GST_CLOCK_TIME_NONE); |
| |
| return GST_CLOCK_ENTRY_TIME ((GstClockEntry *) id); |
| } |
| |
| /** |
| * gst_clock_id_wait |
| * @id: The #GstClockID to wait on |
| * @jitter: A pointer that will contain the jitter, can be %NULL. |
| * |
| * Perform a blocking wait on @id. |
| * @id should have been created with gst_clock_new_single_shot_id() |
| * or gst_clock_new_periodic_id() and should not have been unscheduled |
| * with a call to gst_clock_id_unschedule(). |
| * |
| * If the @jitter argument is not %NULL and this function returns #GST_CLOCK_OK |
| * or #GST_CLOCK_EARLY, it will contain the difference |
| * against the clock and the time of @id when this method was |
| * called. |
| * Positive values indicate how late @id was relative to the clock |
| * (in which case this function will return #GST_CLOCK_EARLY). |
| * Negative values indicate how much time was spent waiting on the clock |
| * before this function returned. |
| * |
| * Returns: the result of the blocking wait. #GST_CLOCK_EARLY will be returned |
| * if the current clock time is past the time of @id, #GST_CLOCK_OK if |
| * @id was scheduled in time. #GST_CLOCK_UNSCHEDULED if @id was |
| * unscheduled with gst_clock_id_unschedule(). |
| * |
| * MT safe. |
| */ |
| GstClockReturn |
| gst_clock_id_wait (GstClockID id, GstClockTimeDiff * jitter) |
| { |
| GstClockEntry *entry; |
| GstClock *clock; |
| GstClockReturn res; |
| GstClockTime requested; |
| GstClockClass *cclass; |
| |
| g_return_val_if_fail (id != NULL, GST_CLOCK_ERROR); |
| |
| entry = (GstClockEntry *) id; |
| requested = GST_CLOCK_ENTRY_TIME (entry); |
| |
| clock = GST_CLOCK_ENTRY_CLOCK (entry); |
| |
| /* can't sync on invalid times */ |
| if (G_UNLIKELY (!GST_CLOCK_TIME_IS_VALID (requested))) |
| goto invalid_time; |
| |
| cclass = GST_CLOCK_GET_CLASS (clock); |
| |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "waiting on clock entry %p", id); |
| |
| /* if we have a wait_jitter function, use that */ |
| if (G_LIKELY (cclass->wait_jitter)) { |
| res = cclass->wait_jitter (clock, entry, jitter); |
| } else { |
| /* check if we have a simple _wait function otherwise. The function without |
| * the jitter arg is less optimal as we need to do an additional _get_time() |
| * which is not atomic with the _wait() and a typical _wait() function does |
| * yet another _get_time() anyway. */ |
| if (G_UNLIKELY (cclass->wait == NULL)) |
| goto not_supported; |
| |
| if (jitter) { |
| GstClockTime now = gst_clock_get_time (clock); |
| |
| /* jitter is the diff against the clock when this entry is scheduled. Negative |
| * values mean that the entry was in time, a positive value means that the |
| * entry was too late. */ |
| *jitter = GST_CLOCK_DIFF (requested, now); |
| } |
| res = cclass->wait (clock, entry); |
| } |
| |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "done waiting entry %p, res: %d", id, res); |
| |
| if (entry->type == GST_CLOCK_ENTRY_PERIODIC) |
| entry->time = requested + entry->interval; |
| |
| if (G_UNLIKELY (clock->stats)) |
| gst_clock_update_stats (clock); |
| |
| return res; |
| |
| /* ERRORS */ |
| invalid_time: |
| { |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "invalid time requested, returning _BADTIME"); |
| return GST_CLOCK_BADTIME; |
| } |
| not_supported: |
| { |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "clock wait is not supported"); |
| return GST_CLOCK_UNSUPPORTED; |
| } |
| } |
| |
| /** |
| * gst_clock_id_wait_async: |
| * @id: a #GstClockID to wait on |
| * @func: The callback function |
| * @user_data: User data passed in the callback |
| * |
| * Register a callback on the given #GstClockID @id with the given |
| * function and user_data. When passing a #GstClockID with an invalid |
| * time to this function, the callback will be called immediately |
| * with a time set to GST_CLOCK_TIME_NONE. The callback will |
| * be called when the time of @id has been reached. |
| * |
| * The callback @func can be invoked from any thread, either provided by the |
| * core or from a streaming thread. The application should be prepared for this. |
| * |
| * Returns: the result of the non blocking wait. |
| * |
| * MT safe. |
| */ |
| GstClockReturn |
| gst_clock_id_wait_async (GstClockID id, |
| GstClockCallback func, gpointer user_data) |
| { |
| GstClockEntry *entry; |
| GstClock *clock; |
| GstClockReturn res; |
| GstClockClass *cclass; |
| GstClockTime requested; |
| |
| g_return_val_if_fail (id != NULL, GST_CLOCK_ERROR); |
| g_return_val_if_fail (func != NULL, GST_CLOCK_ERROR); |
| |
| entry = (GstClockEntry *) id; |
| requested = GST_CLOCK_ENTRY_TIME (entry); |
| clock = GST_CLOCK_ENTRY_CLOCK (entry); |
| |
| /* can't sync on invalid times */ |
| if (G_UNLIKELY (!GST_CLOCK_TIME_IS_VALID (requested))) |
| goto invalid_time; |
| |
| cclass = GST_CLOCK_GET_CLASS (clock); |
| |
| if (G_UNLIKELY (cclass->wait_async == NULL)) |
| goto not_supported; |
| |
| entry->func = func; |
| entry->user_data = user_data; |
| |
| res = cclass->wait_async (clock, entry); |
| |
| return res; |
| |
| /* ERRORS */ |
| invalid_time: |
| { |
| (func) (clock, GST_CLOCK_TIME_NONE, id, user_data); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "invalid time requested, returning _BADTIME"); |
| return GST_CLOCK_BADTIME; |
| } |
| not_supported: |
| { |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "clock wait is not supported"); |
| return GST_CLOCK_UNSUPPORTED; |
| } |
| } |
| |
| /** |
| * gst_clock_id_unschedule: |
| * @id: The id to unschedule |
| * |
| * Cancel an outstanding request with @id. This can either |
| * be an outstanding async notification or a pending sync notification. |
| * After this call, @id cannot be used anymore to receive sync or |
| * async notifications, you need to create a new #GstClockID. |
| * |
| * MT safe. |
| */ |
| void |
| gst_clock_id_unschedule (GstClockID id) |
| { |
| GstClockEntry *entry; |
| GstClock *clock; |
| GstClockClass *cclass; |
| |
| g_return_if_fail (id != NULL); |
| |
| entry = (GstClockEntry *) id; |
| clock = entry->clock; |
| |
| cclass = GST_CLOCK_GET_CLASS (clock); |
| |
| if (G_LIKELY (cclass->unschedule)) |
| cclass->unschedule (clock, entry); |
| } |
| |
| |
| /* |
| * GstClock abstract base class implementation |
| */ |
| G_DEFINE_TYPE (GstClock, gst_clock, GST_TYPE_OBJECT); |
| |
| static void |
| gst_clock_class_init (GstClockClass * klass) |
| { |
| GObjectClass *gobject_class = G_OBJECT_CLASS (klass); |
| |
| parent_class = g_type_class_peek_parent (klass); |
| |
| #ifndef GST_DISABLE_TRACE |
| _gst_clock_entry_trace = |
| gst_alloc_trace_register (GST_CLOCK_ENTRY_TRACE_NAME); |
| #endif |
| |
| gobject_class->dispose = gst_clock_dispose; |
| gobject_class->finalize = gst_clock_finalize; |
| gobject_class->set_property = gst_clock_set_property; |
| gobject_class->get_property = gst_clock_get_property; |
| |
| g_object_class_install_property (gobject_class, PROP_STATS, |
| g_param_spec_boolean ("stats", "Stats", |
| "Enable clock stats (unimplemented)", DEFAULT_STATS, |
| G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); |
| g_object_class_install_property (gobject_class, PROP_WINDOW_SIZE, |
| g_param_spec_int ("window-size", "Window size", |
| "The size of the window used to calculate rate and offset", 2, 1024, |
| DEFAULT_WINDOW_SIZE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); |
| g_object_class_install_property (gobject_class, PROP_WINDOW_THRESHOLD, |
| g_param_spec_int ("window-threshold", "Window threshold", |
| "The threshold to start calculating rate and offset", 2, 1024, |
| DEFAULT_WINDOW_THRESHOLD, |
| G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); |
| g_object_class_install_property (gobject_class, PROP_TIMEOUT, |
| g_param_spec_uint64 ("timeout", "Timeout", |
| "The amount of time, in nanoseconds, to sample master and slave clocks", |
| 0, G_MAXUINT64, DEFAULT_TIMEOUT, |
| G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); |
| |
| g_type_class_add_private (klass, sizeof (GstClockPrivate)); |
| } |
| |
| static void |
| gst_clock_init (GstClock * clock) |
| { |
| clock->last_time = 0; |
| clock->entries = NULL; |
| clock->entries_changed = g_cond_new (); |
| clock->stats = FALSE; |
| |
| clock->ABI.priv = |
| G_TYPE_INSTANCE_GET_PRIVATE (clock, GST_TYPE_CLOCK, GstClockPrivate); |
| |
| clock->internal_calibration = 0; |
| clock->external_calibration = 0; |
| clock->rate_numerator = 1; |
| clock->rate_denominator = 1; |
| |
| clock->slave_lock = g_mutex_new (); |
| clock->window_size = DEFAULT_WINDOW_SIZE; |
| clock->window_threshold = DEFAULT_WINDOW_THRESHOLD; |
| clock->filling = TRUE; |
| clock->time_index = 0; |
| clock->timeout = DEFAULT_TIMEOUT; |
| clock->times = g_new0 (GstClockTime, 4 * clock->window_size); |
| } |
| |
| static void |
| gst_clock_dispose (GObject * object) |
| { |
| GstClock *clock = GST_CLOCK (object); |
| GstClock **master_p; |
| |
| GST_OBJECT_LOCK (clock); |
| master_p = &clock->master; |
| gst_object_replace ((GstObject **) master_p, NULL); |
| GST_OBJECT_UNLOCK (clock); |
| |
| G_OBJECT_CLASS (parent_class)->dispose (object); |
| } |
| |
| static void |
| gst_clock_finalize (GObject * object) |
| { |
| GstClock *clock = GST_CLOCK (object); |
| |
| GST_CLOCK_SLAVE_LOCK (clock); |
| if (clock->clockid) { |
| gst_clock_id_unschedule (clock->clockid); |
| gst_clock_id_unref (clock->clockid); |
| clock->clockid = NULL; |
| } |
| g_free (clock->times); |
| clock->times = NULL; |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| |
| g_cond_free (clock->entries_changed); |
| g_mutex_free (clock->slave_lock); |
| |
| G_OBJECT_CLASS (parent_class)->finalize (object); |
| } |
| |
| /** |
| * gst_clock_set_resolution |
| * @clock: a #GstClock |
| * @resolution: The resolution to set |
| * |
| * Set the accuracy of the clock. Some clocks have the possibility to operate |
| * with different accuracy at the expense of more resource usage. There is |
| * normally no need to change the default resolution of a clock. The resolution |
| * of a clock can only be changed if the clock has the |
| * #GST_CLOCK_FLAG_CAN_SET_RESOLUTION flag set. |
| * |
| * Returns: the new resolution of the clock. |
| */ |
| GstClockTime |
| gst_clock_set_resolution (GstClock * clock, GstClockTime resolution) |
| { |
| GstClockClass *cclass; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), 0); |
| g_return_val_if_fail (resolution != 0, 0); |
| |
| cclass = GST_CLOCK_GET_CLASS (clock); |
| |
| if (cclass->change_resolution) |
| clock->resolution = |
| cclass->change_resolution (clock, clock->resolution, resolution); |
| |
| return clock->resolution; |
| } |
| |
| /** |
| * gst_clock_get_resolution |
| * @clock: a #GstClock |
| * |
| * Get the accuracy of the clock. The accuracy of the clock is the granularity |
| * of the values returned by gst_clock_get_time(). |
| * |
| * Returns: the resolution of the clock in units of #GstClockTime. |
| * |
| * MT safe. |
| */ |
| GstClockTime |
| gst_clock_get_resolution (GstClock * clock) |
| { |
| GstClockClass *cclass; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), 0); |
| |
| cclass = GST_CLOCK_GET_CLASS (clock); |
| |
| if (cclass->get_resolution) |
| return cclass->get_resolution (clock); |
| |
| return 1; |
| } |
| |
| /** |
| * gst_clock_adjust_unlocked |
| * @clock: a #GstClock to use |
| * @internal: a clock time |
| * |
| * Converts the given @internal clock time to the external time, adjusting for the |
| * rate and reference time set with gst_clock_set_calibration() and making sure |
| * that the returned time is increasing. This function should be called with the |
| * clock's OBJECT_LOCK held and is mainly used by clock subclasses. |
| * |
| * This function is the reverse of gst_clock_unadjust_unlocked(). |
| * |
| * Returns: the converted time of the clock. |
| */ |
| GstClockTime |
| gst_clock_adjust_unlocked (GstClock * clock, GstClockTime internal) |
| { |
| GstClockTime ret, cinternal, cexternal, cnum, cdenom; |
| |
| /* get calibration values for readability */ |
| cinternal = clock->internal_calibration; |
| cexternal = clock->external_calibration; |
| cnum = clock->rate_numerator; |
| cdenom = clock->rate_denominator; |
| |
| /* avoid divide by 0 */ |
| if (G_UNLIKELY (cdenom == 0)) |
| cnum = cdenom = 1; |
| |
| /* The formula is (internal - cinternal) * cnum / cdenom + cexternal |
| * |
| * Since we do math on unsigned 64-bit ints we have to special case for |
| * internal < cinternal to get the sign right. this case is not very common, |
| * though. |
| */ |
| if (G_LIKELY (internal >= cinternal)) { |
| ret = internal - cinternal; |
| ret = gst_util_uint64_scale (ret, cnum, cdenom); |
| ret += cexternal; |
| } else { |
| ret = cinternal - internal; |
| ret = gst_util_uint64_scale (ret, cnum, cdenom); |
| /* clamp to 0 */ |
| if (G_LIKELY (cexternal > ret)) |
| ret = cexternal - ret; |
| else |
| ret = 0; |
| } |
| |
| /* make sure the time is increasing */ |
| clock->last_time = MAX (ret, clock->last_time); |
| |
| return clock->last_time; |
| } |
| |
| /** |
| * gst_clock_unadjust_unlocked |
| * @clock: a #GstClock to use |
| * @external: an external clock time |
| * |
| * Converts the given @external clock time to the internal time of @clock, |
| * using the rate and reference time set with gst_clock_set_calibration(). |
| * This function should be called with the clock's OBJECT_LOCK held and |
| * is mainly used by clock subclasses. |
| * |
| * This function is the reverse of gst_clock_adjust_unlocked(). |
| * |
| * Returns: the internal time of the clock corresponding to @external. |
| * |
| * Since: 0.10.13 |
| */ |
| GstClockTime |
| gst_clock_unadjust_unlocked (GstClock * clock, GstClockTime external) |
| { |
| GstClockTime ret, cinternal, cexternal, cnum, cdenom; |
| |
| /* get calibration values for readability */ |
| cinternal = clock->internal_calibration; |
| cexternal = clock->external_calibration; |
| cnum = clock->rate_numerator; |
| cdenom = clock->rate_denominator; |
| |
| /* avoid divide by 0 */ |
| if (G_UNLIKELY (cnum == 0)) |
| cnum = cdenom = 1; |
| |
| /* The formula is (external - cexternal) * cdenom / cnum + cinternal */ |
| if (G_LIKELY (external >= cexternal)) { |
| ret = external - cexternal; |
| ret = gst_util_uint64_scale (ret, cdenom, cnum); |
| ret += cinternal; |
| } else { |
| ret = cexternal - external; |
| ret = gst_util_uint64_scale (ret, cdenom, cnum); |
| if (G_LIKELY (cinternal > ret)) |
| ret = cinternal - ret; |
| else |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| /** |
| * gst_clock_get_internal_time |
| * @clock: a #GstClock to query |
| * |
| * Gets the current internal time of the given clock. The time is returned |
| * unadjusted for the offset and the rate. |
| * |
| * Returns: the internal time of the clock. Or GST_CLOCK_TIME_NONE when |
| * given invalid input. |
| * |
| * MT safe. |
| */ |
| GstClockTime |
| gst_clock_get_internal_time (GstClock * clock) |
| { |
| GstClockTime ret; |
| GstClockClass *cclass; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), GST_CLOCK_TIME_NONE); |
| |
| cclass = GST_CLOCK_GET_CLASS (clock); |
| |
| if (G_UNLIKELY (cclass->get_internal_time == NULL)) |
| goto not_supported; |
| |
| ret = cclass->get_internal_time (clock); |
| |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "internal time %" GST_TIME_FORMAT, |
| GST_TIME_ARGS (ret)); |
| |
| return ret; |
| |
| /* ERRORS */ |
| not_supported: |
| { |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "internal time not supported, return 0"); |
| return G_GINT64_CONSTANT (0); |
| } |
| } |
| |
| /** |
| * gst_clock_get_time |
| * @clock: a #GstClock to query |
| * |
| * Gets the current time of the given clock. The time is always |
| * monotonically increasing and adjusted according to the current |
| * offset and rate. |
| * |
| * Returns: the time of the clock. Or GST_CLOCK_TIME_NONE when |
| * given invalid input. |
| * |
| * MT safe. |
| */ |
| GstClockTime |
| gst_clock_get_time (GstClock * clock) |
| { |
| GstClockTime ret; |
| gint seq; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), GST_CLOCK_TIME_NONE); |
| |
| do { |
| /* reget the internal time when we retry to get the most current |
| * timevalue */ |
| ret = gst_clock_get_internal_time (clock); |
| |
| seq = read_seqbegin (clock); |
| /* this will scale for rate and offset */ |
| ret = gst_clock_adjust_unlocked (clock, ret); |
| } while (read_seqretry (clock, seq)); |
| |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "adjusted time %" GST_TIME_FORMAT, |
| GST_TIME_ARGS (ret)); |
| |
| return ret; |
| } |
| |
| /** |
| * gst_clock_set_calibration |
| * @clock: a #GstClock to calibrate |
| * @internal: a reference internal time |
| * @external: a reference external time |
| * @rate_num: the numerator of the rate of the clock relative to its |
| * internal time |
| * @rate_denom: the denominator of the rate of the clock |
| * |
| * Adjusts the rate and time of @clock. A rate of 1/1 is the normal speed of |
| * the clock. Values bigger than 1/1 make the clock go faster. |
| * |
| * @internal and @external are calibration parameters that arrange that |
| * gst_clock_get_time() should have been @external at internal time @internal. |
| * This internal time should not be in the future; that is, it should be less |
| * than the value of gst_clock_get_internal_time() when this function is called. |
| * |
| * Subsequent calls to gst_clock_get_time() will return clock times computed as |
| * follows: |
| * |
| * <programlisting> |
| * time = (internal_time - internal) * rate_num / rate_denom + external |
| * </programlisting> |
| * |
| * This formula is implemented in gst_clock_adjust_unlocked(). Of course, it |
| * tries to do the integer arithmetic as precisely as possible. |
| * |
| * Note that gst_clock_get_time() always returns increasing values so when you |
| * move the clock backwards, gst_clock_get_time() will report the previous value |
| * until the clock catches up. |
| * |
| * MT safe. |
| */ |
| void |
| gst_clock_set_calibration (GstClock * clock, GstClockTime internal, GstClockTime |
| external, GstClockTime rate_num, GstClockTime rate_denom) |
| { |
| g_return_if_fail (GST_IS_CLOCK (clock)); |
| g_return_if_fail (rate_num != GST_CLOCK_TIME_NONE); |
| g_return_if_fail (rate_denom > 0 && rate_denom != GST_CLOCK_TIME_NONE); |
| |
| write_seqlock (clock); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "internal %" GST_TIME_FORMAT " external %" GST_TIME_FORMAT " %" |
| G_GUINT64_FORMAT "/%" G_GUINT64_FORMAT " = %f", GST_TIME_ARGS (internal), |
| GST_TIME_ARGS (external), rate_num, rate_denom, |
| gst_guint64_to_gdouble (rate_num) / gst_guint64_to_gdouble (rate_denom)); |
| |
| clock->internal_calibration = internal; |
| clock->external_calibration = external; |
| clock->rate_numerator = rate_num; |
| clock->rate_denominator = rate_denom; |
| write_sequnlock (clock); |
| } |
| |
| /** |
| * gst_clock_get_calibration |
| * @clock: a #GstClock |
| * @internal: a location to store the internal time |
| * @external: a location to store the external time |
| * @rate_num: a location to store the rate numerator |
| * @rate_denom: a location to store the rate denominator |
| * |
| * Gets the internal rate and reference time of @clock. See |
| * gst_clock_set_calibration() for more information. |
| * |
| * @internal, @external, @rate_num, and @rate_denom can be left %NULL if the |
| * caller is not interested in the values. |
| * |
| * MT safe. |
| */ |
| void |
| gst_clock_get_calibration (GstClock * clock, GstClockTime * internal, |
| GstClockTime * external, GstClockTime * rate_num, GstClockTime * rate_denom) |
| { |
| gint seq; |
| |
| g_return_if_fail (GST_IS_CLOCK (clock)); |
| |
| do { |
| seq = read_seqbegin (clock); |
| if (rate_num) |
| *rate_num = clock->rate_numerator; |
| if (rate_denom) |
| *rate_denom = clock->rate_denominator; |
| if (external) |
| *external = clock->external_calibration; |
| if (internal) |
| *internal = clock->internal_calibration; |
| } while (read_seqretry (clock, seq)); |
| } |
| |
| /* will be called repeatedly to sample the master and slave clock |
| * to recalibrate the clock */ |
| static gboolean |
| gst_clock_slave_callback (GstClock * master, GstClockTime time, |
| GstClockID id, GstClock * clock) |
| { |
| GstClockTime stime, mtime; |
| gdouble r_squared; |
| |
| stime = gst_clock_get_internal_time (clock); |
| mtime = gst_clock_get_time (master); |
| |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "master %" GST_TIME_FORMAT ", slave %" GST_TIME_FORMAT, |
| GST_TIME_ARGS (mtime), GST_TIME_ARGS (stime)); |
| |
| gst_clock_add_observation (clock, stime, mtime, &r_squared); |
| |
| /* FIXME, we can use the r_squared value to adjust the timeout |
| * value of the clockid */ |
| |
| return TRUE; |
| } |
| |
| /** |
| * gst_clock_set_master |
| * @clock: a #GstClock |
| * @master: a master #GstClock |
| * |
| * Set @master as the master clock for @clock. @clock will be automatically |
| * calibrated so that gst_clock_get_time() reports the same time as the |
| * master clock. |
| * |
| * A clock provider that slaves its clock to a master can get the current |
| * calibration values with gst_clock_get_calibration(). |
| * |
| * @master can be %NULL in which case @clock will not be slaved anymore. It will |
| * however keep reporting its time adjusted with the last configured rate |
| * and time offsets. |
| * |
| * Returns: %TRUE if the clock is capable of being slaved to a master clock. |
| * Trying to set a master on a clock without the |
| * #GST_CLOCK_FLAG_CAN_SET_MASTER flag will make this function return %FALSE. |
| * |
| * MT safe. |
| */ |
| gboolean |
| gst_clock_set_master (GstClock * clock, GstClock * master) |
| { |
| GstClock **master_p; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), FALSE); |
| g_return_val_if_fail (master != clock, FALSE); |
| |
| GST_OBJECT_LOCK (clock); |
| /* we always allow setting the master to NULL */ |
| if (master && !GST_OBJECT_FLAG_IS_SET (clock, GST_CLOCK_FLAG_CAN_SET_MASTER)) |
| goto not_supported; |
| |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "slaving %p to master clock %p", clock, master); |
| master_p = &clock->master; |
| gst_object_replace ((GstObject **) master_p, (GstObject *) master); |
| GST_OBJECT_UNLOCK (clock); |
| |
| GST_CLOCK_SLAVE_LOCK (clock); |
| if (clock->clockid) { |
| gst_clock_id_unschedule (clock->clockid); |
| gst_clock_id_unref (clock->clockid); |
| clock->clockid = NULL; |
| } |
| if (master) { |
| clock->filling = TRUE; |
| clock->time_index = 0; |
| /* use the master periodic id to schedule sampling and |
| * clock calibration. */ |
| clock->clockid = gst_clock_new_periodic_id (master, |
| gst_clock_get_time (master), clock->timeout); |
| gst_clock_id_wait_async (clock->clockid, |
| (GstClockCallback) gst_clock_slave_callback, clock); |
| } |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| |
| return TRUE; |
| |
| /* ERRORS */ |
| not_supported: |
| { |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| "cannot be slaved to a master clock"); |
| GST_OBJECT_UNLOCK (clock); |
| return FALSE; |
| } |
| } |
| |
| /** |
| * gst_clock_get_master |
| * @clock: a #GstClock |
| * |
| * Get the master clock that @clock is slaved to or %NULL when the clock is |
| * not slaved to any master clock. |
| * |
| * Returns: a master #GstClock or %NULL when this clock is not slaved to a |
| * master clock. Unref after usage. |
| * |
| * MT safe. |
| */ |
| GstClock * |
| gst_clock_get_master (GstClock * clock) |
| { |
| GstClock *result = NULL; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), NULL); |
| |
| GST_OBJECT_LOCK (clock); |
| if (clock->master) |
| result = gst_object_ref (clock->master); |
| GST_OBJECT_UNLOCK (clock); |
| |
| return result; |
| } |
| |
| /* http://mathworld.wolfram.com/LeastSquaresFitting.html |
| * with SLAVE_LOCK |
| */ |
| static gboolean |
| do_linear_regression (GstClock * clock, GstClockTime * m_num, |
| GstClockTime * m_denom, GstClockTime * b, GstClockTime * xbase, |
| gdouble * r_squared) |
| { |
| GstClockTime *newx, *newy; |
| GstClockTime xmin, ymin, xbar, ybar, xbar4, ybar4; |
| GstClockTimeDiff sxx, sxy, syy; |
| GstClockTime *x, *y; |
| gint i, j; |
| guint n; |
| |
| xbar = ybar = sxx = syy = sxy = 0; |
| |
| x = clock->times; |
| y = clock->times + 2; |
| n = clock->filling ? clock->time_index : clock->window_size; |
| |
| #ifdef DEBUGGING_ENABLED |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "doing regression on:"); |
| for (i = j = 0; i < n; i++, j += 4) |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| " %" G_GUINT64_FORMAT " %" G_GUINT64_FORMAT, x[j], y[j]); |
| #endif |
| |
| xmin = ymin = G_MAXUINT64; |
| for (i = j = 0; i < n; i++, j += 4) { |
| xmin = MIN (xmin, x[j]); |
| ymin = MIN (ymin, y[j]); |
| } |
| |
| #ifdef DEBUGGING_ENABLED |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "min x: %" G_GUINT64_FORMAT, |
| xmin); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "min y: %" G_GUINT64_FORMAT, |
| ymin); |
| #endif |
| |
| newx = clock->times + 1; |
| newy = clock->times + 3; |
| |
| /* strip off unnecessary bits of precision */ |
| for (i = j = 0; i < n; i++, j += 4) { |
| newx[j] = x[j] - xmin; |
| newy[j] = y[j] - ymin; |
| } |
| |
| #ifdef DEBUGGING_ENABLED |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "reduced numbers:"); |
| for (i = j = 0; i < n; i++, j += 4) |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, |
| " %" G_GUINT64_FORMAT " %" G_GUINT64_FORMAT, newx[j], newy[j]); |
| #endif |
| |
| /* have to do this precisely otherwise the results are pretty much useless. |
| * should guarantee that none of these accumulators can overflow */ |
| |
| /* quantities on the order of 1e10 -> 30 bits; window size a max of 2^10, so |
| this addition could end up around 2^40 or so -- ample headroom */ |
| for (i = j = 0; i < n; i++, j += 4) { |
| xbar += newx[j]; |
| ybar += newy[j]; |
| } |
| xbar /= n; |
| ybar /= n; |
| |
| #ifdef DEBUGGING_ENABLED |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, " xbar = %" G_GUINT64_FORMAT, |
| xbar); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, " ybar = %" G_GUINT64_FORMAT, |
| ybar); |
| #endif |
| |
| /* multiplying directly would give quantities on the order of 1e20 -> 60 bits; |
| times the window size that's 70 which is too much. Instead we (1) subtract |
| off the xbar*ybar in the loop instead of after, to avoid accumulation; (2) |
| shift off 4 bits from each multiplicand, giving an expected ceiling of 52 |
| bits, which should be enough. Need to check the incoming range and domain |
| to ensure this is an appropriate loss of precision though. */ |
| xbar4 = xbar >> 4; |
| ybar4 = ybar >> 4; |
| for (i = j = 0; i < n; i++, j += 4) { |
| GstClockTime newx4, newy4; |
| |
| newx4 = newx[j] >> 4; |
| newy4 = newy[j] >> 4; |
| |
| sxx += newx4 * newx4 - xbar4 * xbar4; |
| syy += newy4 * newy4 - ybar4 * ybar4; |
| sxy += newx4 * newy4 - xbar4 * ybar4; |
| } |
| |
| if (G_UNLIKELY (sxx == 0)) |
| goto invalid; |
| |
| *m_num = sxy; |
| *m_denom = sxx; |
| *xbase = xmin; |
| *b = (ybar + ymin) - gst_util_uint64_scale (xbar, *m_num, *m_denom); |
| *r_squared = ((double) sxy * (double) sxy) / ((double) sxx * (double) syy); |
| |
| #ifdef DEBUGGING_ENABLED |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, " m = %g", |
| ((double) *m_num) / *m_denom); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, " b = %" G_GUINT64_FORMAT, |
| *b); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, " xbase = %" G_GUINT64_FORMAT, |
| *xbase); |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, " r2 = %g", *r_squared); |
| #endif |
| |
| return TRUE; |
| |
| invalid: |
| { |
| GST_CAT_DEBUG_OBJECT (GST_CAT_CLOCK, clock, "sxx == 0, regression failed"); |
| return FALSE; |
| } |
| } |
| |
| /** |
| * gst_clock_add_observation |
| * @clock: a #GstClock |
| * @slave: a time on the slave |
| * @master: a time on the master |
| * @r_squared: a pointer to hold the result |
| * |
| * The time @master of the master clock and the time @slave of the slave |
| * clock are added to the list of observations. If enough observations |
| * are available, a linear regression algorithm is run on the |
| * observations and @clock is recalibrated. |
| * |
| * If this functions returns %TRUE, @r_squared will contain the |
| * correlation coefficient of the interpolation. A value of 1.0 |
| * means a perfect regression was performed. This value can |
| * be used to control the sampling frequency of the master and slave |
| * clocks. |
| * |
| * Returns: %TRUE if enough observations were added to run the |
| * regression algorithm. |
| * |
| * MT safe. |
| */ |
| gboolean |
| gst_clock_add_observation (GstClock * clock, GstClockTime slave, |
| GstClockTime master, gdouble * r_squared) |
| { |
| GstClockTime m_num, m_denom, b, xbase; |
| |
| g_return_val_if_fail (GST_IS_CLOCK (clock), FALSE); |
| g_return_val_if_fail (r_squared != NULL, FALSE); |
| |
| GST_CLOCK_SLAVE_LOCK (clock); |
| |
| GST_CAT_LOG_OBJECT (GST_CAT_CLOCK, clock, |
| "adding observation slave %" GST_TIME_FORMAT ", master %" GST_TIME_FORMAT, |
| GST_TIME_ARGS (slave), GST_TIME_ARGS (master)); |
| |
| clock->times[(4 * clock->time_index)] = slave; |
| clock->times[(4 * clock->time_index) + 2] = master; |
| |
| clock->time_index++; |
| if (G_UNLIKELY (clock->time_index == clock->window_size)) { |
| clock->filling = FALSE; |
| clock->time_index = 0; |
| } |
| |
| if (G_UNLIKELY (clock->filling |
| && clock->time_index < clock->window_threshold)) |
| goto filling; |
| |
| if (!do_linear_regression (clock, &m_num, &m_denom, &b, &xbase, r_squared)) |
| goto invalid; |
| |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| |
| GST_CAT_LOG_OBJECT (GST_CAT_CLOCK, clock, |
| "adjusting clock to m=%" G_GUINT64_FORMAT "/%" G_GUINT64_FORMAT ", b=%" |
| G_GUINT64_FORMAT " (rsquared=%g)", m_num, m_denom, b, *r_squared); |
| |
| /* if we have a valid regression, adjust the clock */ |
| gst_clock_set_calibration (clock, xbase, b, m_num, m_denom); |
| |
| return TRUE; |
| |
| filling: |
| { |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| return FALSE; |
| } |
| invalid: |
| { |
| /* no valid regression has been done, ignore the result then */ |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| return TRUE; |
| } |
| } |
| |
| static void |
| gst_clock_update_stats (GstClock * clock) |
| { |
| } |
| |
| static void |
| gst_clock_set_property (GObject * object, guint prop_id, |
| const GValue * value, GParamSpec * pspec) |
| { |
| GstClock *clock; |
| |
| clock = GST_CLOCK (object); |
| |
| switch (prop_id) { |
| case PROP_STATS: |
| GST_OBJECT_LOCK (clock); |
| clock->stats = g_value_get_boolean (value); |
| GST_OBJECT_UNLOCK (clock); |
| g_object_notify (object, "stats"); |
| break; |
| case PROP_WINDOW_SIZE: |
| GST_CLOCK_SLAVE_LOCK (clock); |
| clock->window_size = g_value_get_int (value); |
| clock->window_threshold = |
| MIN (clock->window_threshold, clock->window_size); |
| clock->times = |
| g_renew (GstClockTime, clock->times, 4 * clock->window_size); |
| /* restart calibration */ |
| clock->filling = TRUE; |
| clock->time_index = 0; |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| break; |
| case PROP_WINDOW_THRESHOLD: |
| GST_CLOCK_SLAVE_LOCK (clock); |
| clock->window_threshold = |
| MIN (g_value_get_int (value), clock->window_size); |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| break; |
| case PROP_TIMEOUT: |
| GST_CLOCK_SLAVE_LOCK (clock); |
| clock->timeout = g_value_get_uint64 (value); |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |
| |
| static void |
| gst_clock_get_property (GObject * object, guint prop_id, |
| GValue * value, GParamSpec * pspec) |
| { |
| GstClock *clock; |
| |
| clock = GST_CLOCK (object); |
| |
| switch (prop_id) { |
| case PROP_STATS: |
| GST_OBJECT_LOCK (clock); |
| g_value_set_boolean (value, clock->stats); |
| GST_OBJECT_UNLOCK (clock); |
| break; |
| case PROP_WINDOW_SIZE: |
| GST_CLOCK_SLAVE_LOCK (clock); |
| g_value_set_int (value, clock->window_size); |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| break; |
| case PROP_WINDOW_THRESHOLD: |
| GST_CLOCK_SLAVE_LOCK (clock); |
| g_value_set_int (value, clock->window_threshold); |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| break; |
| case PROP_TIMEOUT: |
| GST_CLOCK_SLAVE_LOCK (clock); |
| g_value_set_uint64 (value, clock->timeout); |
| GST_CLOCK_SLAVE_UNLOCK (clock); |
| break; |
| default: |
| G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); |
| break; |
| } |
| } |