blob: 6bbc20f124919437b66d44f245918dafd7c7360c [file] [log] [blame]
/*
* GStreamer
* Copyright (C) 2008 Rov Juvano <rovjuvano@users.sourceforge.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/**
* SECTION:element-scaletempo
*
* Scale tempo while maintaining pitch
* (WSOLA-like technique with cross correlation)
* Inspired by SoundTouch library by Olli Parviainen
*
* Use Sceletempo to apply playback rates without the chipmunk effect.
*
* <refsect2>
* <title>Example pipelines</title>
* <para>
* |[
* filesrc location=media.ext ! decodebin name=d \
* d. ! queue ! audioconvert ! audioresample ! scaletempo ! audioconvert ! audioresample ! autoaudiosink \
* d. ! queue ! videoconvert ! autovideosink
* ]|
* OR
* |[
* playbin uri=... audio_sink="scaletempo ! audioconvert ! audioresample ! autoaudiosink"
* ]|
* When an application sends a seek event with rate != 1.0, Scaletempo applies
* the rate change by scaling the tempo without scaling the pitch.
*
* Scaletempo works by producing audio in constant sized chunks
* (#GstScaletempo:stride) but consuming chunks proportional to the playback
* rate.
*
* Scaletempo then smooths the output by blending the end of one stride with
* the next (#GstScaletempo:overlap).
*
* Scaletempo smooths the overlap further by searching within the input buffer
* for the best overlap position. Scaletempo uses a statistical cross
* correlation (roughly a dot-product). Scaletempo consumes most of its CPU
* cycles here. One can use the #GstScaletempo:search propery to tune how far
* the algoritm looks.
* </para>
* </refsect2>
*/
/*
* Note: frame = audio key unit (i.e. one sample for each channel)
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gst/gst.h>
#include <gst/base/gstbasetransform.h>
#include <gst/audio/audio.h>
#include <string.h> /* for memset */
#include "gstscaletempo.h"
GST_DEBUG_CATEGORY_STATIC (gst_scaletempo_debug);
#define GST_CAT_DEFAULT gst_scaletempo_debug
/* Filter signals and args */
enum
{
LAST_SIGNAL
};
enum
{
PROP_0,
PROP_RATE,
PROP_STRIDE,
PROP_OVERLAP,
PROP_SEARCH,
};
#define SUPPORTED_CAPS \
GST_STATIC_CAPS ( \
GST_AUDIO_CAPS_MAKE (GST_AUDIO_NE (F32)) "; " \
GST_AUDIO_CAPS_MAKE (GST_AUDIO_NE (F64)) "; " \
GST_AUDIO_CAPS_MAKE (GST_AUDIO_NE (S16)) \
)
static GstStaticPadTemplate sink_template = GST_STATIC_PAD_TEMPLATE ("sink",
GST_PAD_SINK,
GST_PAD_ALWAYS,
SUPPORTED_CAPS);
static GstStaticPadTemplate src_template = GST_STATIC_PAD_TEMPLATE ("src",
GST_PAD_SRC,
GST_PAD_ALWAYS,
SUPPORTED_CAPS);
#define DEBUG_INIT(bla) GST_DEBUG_CATEGORY_INIT (gst_scaletempo_debug, "scaletempo", 0, "scaletempo element");
#define gst_scaletempo_parent_class parent_class
G_DEFINE_TYPE_WITH_CODE (GstScaletempo, gst_scaletempo,
GST_TYPE_BASE_TRANSFORM, DEBUG_INIT (0));
#define CREATE_BEST_OVERLAP_OFFSET_FLOAT_FUNC(type) \
static guint \
best_overlap_offset_##type (GstScaletempo * st) \
{ \
g##type *pw, *po, *ppc, *search_start; \
g##type best_corr = G_MININT; \
guint best_off = 0; \
gint i, off; \
\
pw = st->table_window; \
po = st->buf_overlap; \
po += st->samples_per_frame; \
ppc = st->buf_pre_corr; \
for (i = st->samples_per_frame; i < st->samples_overlap; i++) { \
*ppc++ = *pw++ * *po++; \
} \
\
search_start = (g##type *) st->buf_queue + st->samples_per_frame; \
for (off = 0; off < st->frames_search; off++) { \
g##type corr = 0; \
g##type *ps = search_start; \
ppc = st->buf_pre_corr; \
for (i = st->samples_per_frame; i < st->samples_overlap; i++) { \
corr += *ppc++ * *ps++; \
} \
if (corr > best_corr) { \
best_corr = corr; \
best_off = off; \
} \
search_start += st->samples_per_frame; \
} \
\
return best_off * st->bytes_per_frame; \
}
CREATE_BEST_OVERLAP_OFFSET_FLOAT_FUNC (float);
CREATE_BEST_OVERLAP_OFFSET_FLOAT_FUNC (double);
/* buffer padding for loop optimization: sizeof(gint32) * (loop_size - 1) */
#define UNROLL_PADDING (4*3)
static guint
best_overlap_offset_s16 (GstScaletempo * st)
{
gint32 *pw, *ppc;
gint16 *po, *search_start;
gint64 best_corr = G_MININT64;
guint best_off = 0;
guint off;
glong i;
pw = st->table_window;
po = st->buf_overlap;
po += st->samples_per_frame;
ppc = st->buf_pre_corr;
for (i = st->samples_per_frame; i < st->samples_overlap; i++) {
*ppc++ = (*pw++ * *po++) >> 15;
}
search_start = (gint16 *) st->buf_queue + st->samples_per_frame;
for (off = 0; off < st->frames_search; off++) {
gint64 corr = 0;
gint16 *ps = search_start;
ppc = st->buf_pre_corr;
ppc += st->samples_overlap - st->samples_per_frame;
ps += st->samples_overlap - st->samples_per_frame;
i = -((glong) st->samples_overlap - (glong) st->samples_per_frame);
do {
corr += ppc[i + 0] * ps[i + 0];
corr += ppc[i + 1] * ps[i + 1];
corr += ppc[i + 2] * ps[i + 2];
corr += ppc[i + 3] * ps[i + 3];
i += 4;
} while (i < 0);
if (corr > best_corr) {
best_corr = corr;
best_off = off;
}
search_start += st->samples_per_frame;
}
return best_off * st->bytes_per_frame;
}
#define CREATE_OUTPUT_OVERLAP_FLOAT_FUNC(type) \
static void \
output_overlap_##type (GstScaletempo * st, gpointer buf_out, guint bytes_off) \
{ \
g##type *pout = buf_out; \
g##type *pb = st->table_blend; \
g##type *po = st->buf_overlap; \
g##type *pin = (g##type *) (st->buf_queue + bytes_off); \
gint i; \
for (i = 0; i < st->samples_overlap; i++) { \
*pout++ = *po - *pb++ * (*po - *pin++); \
po++; \
} \
}
CREATE_OUTPUT_OVERLAP_FLOAT_FUNC (float);
CREATE_OUTPUT_OVERLAP_FLOAT_FUNC (double);
static void
output_overlap_s16 (GstScaletempo * st, gpointer buf_out, guint bytes_off)
{
gint16 *pout = buf_out;
gint32 *pb = st->table_blend;
gint16 *po = st->buf_overlap;
gint16 *pin = (gint16 *) (st->buf_queue + bytes_off);
gint i;
for (i = 0; i < st->samples_overlap; i++) {
*pout++ = *po - ((*pb++ * (*po - *pin++)) >> 16);
po++;
}
}
static guint
fill_queue (GstScaletempo * st, GstBuffer * buf_in, guint offset)
{
guint bytes_in = gst_buffer_get_size (buf_in) - offset;
guint offset_unchanged = offset;
GstMapInfo map;
gst_buffer_map (buf_in, &map, GST_MAP_READ);
if (st->bytes_to_slide > 0) {
if (st->bytes_to_slide < st->bytes_queued) {
guint bytes_in_move = st->bytes_queued - st->bytes_to_slide;
memmove (st->buf_queue, st->buf_queue + st->bytes_to_slide,
bytes_in_move);
st->bytes_to_slide = 0;
st->bytes_queued = bytes_in_move;
} else {
guint bytes_in_skip;
st->bytes_to_slide -= st->bytes_queued;
bytes_in_skip = MIN (st->bytes_to_slide, bytes_in);
st->bytes_queued = 0;
st->bytes_to_slide -= bytes_in_skip;
offset += bytes_in_skip;
bytes_in -= bytes_in_skip;
}
}
if (bytes_in > 0) {
guint bytes_in_copy =
MIN (st->bytes_queue_max - st->bytes_queued, bytes_in);
memcpy (st->buf_queue + st->bytes_queued, map.data + offset, bytes_in_copy);
st->bytes_queued += bytes_in_copy;
offset += bytes_in_copy;
}
gst_buffer_unmap (buf_in, &map);
return offset - offset_unchanged;
}
static void
reinit_buffers (GstScaletempo * st)
{
gint i, j;
guint frames_overlap;
guint new_size;
GstClockTime latency;
guint frames_stride = st->ms_stride * st->sample_rate / 1000.0;
st->bytes_stride = frames_stride * st->bytes_per_frame;
/* overlap */
frames_overlap = frames_stride * st->percent_overlap;
if (frames_overlap < 1) { /* if no overlap */
st->bytes_overlap = 0;
st->bytes_standing = st->bytes_stride;
st->samples_standing = st->bytes_standing / st->bytes_per_sample;
st->output_overlap = NULL;
} else {
guint prev_overlap = st->bytes_overlap;
st->bytes_overlap = frames_overlap * st->bytes_per_frame;
st->samples_overlap = frames_overlap * st->samples_per_frame;
st->bytes_standing = st->bytes_stride - st->bytes_overlap;
st->samples_standing = st->bytes_standing / st->bytes_per_sample;
st->buf_overlap = g_realloc (st->buf_overlap, st->bytes_overlap);
/* S16 uses gint32 blend table, floats/doubles use their respective type */
st->table_blend =
g_realloc (st->table_blend,
st->samples_overlap * (st->format ==
GST_AUDIO_FORMAT_S16 ? 4 : st->bytes_per_sample));
if (st->bytes_overlap > prev_overlap) {
memset ((guint8 *) st->buf_overlap + prev_overlap, 0,
st->bytes_overlap - prev_overlap);
}
if (st->format == GST_AUDIO_FORMAT_S16) {
gint32 *pb = st->table_blend;
gint64 blend = 0;
for (i = 0; i < frames_overlap; i++) {
gint32 v = blend / frames_overlap;
for (j = 0; j < st->samples_per_frame; j++) {
*pb++ = v;
}
blend += 65535; /* 2^16 */
}
st->output_overlap = output_overlap_s16;
} else if (st->format == GST_AUDIO_FORMAT_F32) {
gfloat *pb = st->table_blend;
gfloat t = (gfloat) frames_overlap;
for (i = 0; i < frames_overlap; i++) {
gfloat v = i / t;
for (j = 0; j < st->samples_per_frame; j++) {
*pb++ = v;
}
}
st->output_overlap = output_overlap_float;
} else {
gdouble *pb = st->table_blend;
gdouble t = (gdouble) frames_overlap;
for (i = 0; i < frames_overlap; i++) {
gdouble v = i / t;
for (j = 0; j < st->samples_per_frame; j++) {
*pb++ = v;
}
}
st->output_overlap = output_overlap_double;
}
}
/* best overlap */
st->frames_search =
(frames_overlap <= 1) ? 0 : st->ms_search * st->sample_rate / 1000.0;
if (st->frames_search < 1) { /* if no search */
st->best_overlap_offset = NULL;
} else {
/* S16 uses gint32 buffer, floats/doubles use their respective type */
guint bytes_pre_corr =
(st->samples_overlap - st->samples_per_frame) * (st->format ==
GST_AUDIO_FORMAT_S16 ? 4 : st->bytes_per_sample);
st->buf_pre_corr =
g_realloc (st->buf_pre_corr, bytes_pre_corr + UNROLL_PADDING);
st->table_window = g_realloc (st->table_window, bytes_pre_corr);
if (st->format == GST_AUDIO_FORMAT_S16) {
gint64 t = frames_overlap;
gint32 n = 8589934588LL / (t * t); /* 4 * (2^31 - 1) / t^2 */
gint32 *pw;
memset ((guint8 *) st->buf_pre_corr + bytes_pre_corr, 0, UNROLL_PADDING);
pw = st->table_window;
for (i = 1; i < frames_overlap; i++) {
gint32 v = (i * (t - i) * n) >> 15;
for (j = 0; j < st->samples_per_frame; j++) {
*pw++ = v;
}
}
st->best_overlap_offset = best_overlap_offset_s16;
} else if (st->format == GST_AUDIO_FORMAT_F32) {
gfloat *pw = st->table_window;
for (i = 1; i < frames_overlap; i++) {
gfloat v = i * (frames_overlap - i);
for (j = 0; j < st->samples_per_frame; j++) {
*pw++ = v;
}
}
st->best_overlap_offset = best_overlap_offset_float;
} else {
gdouble *pw = st->table_window;
for (i = 1; i < frames_overlap; i++) {
gdouble v = i * (frames_overlap - i);
for (j = 0; j < st->samples_per_frame; j++) {
*pw++ = v;
}
}
st->best_overlap_offset = best_overlap_offset_double;
}
}
new_size =
(st->frames_search + frames_stride +
frames_overlap) * st->bytes_per_frame;
if (st->bytes_queued > new_size) {
if (st->bytes_to_slide > st->bytes_queued) {
st->bytes_to_slide -= st->bytes_queued;
st->bytes_queued = 0;
} else {
guint new_queued = MIN (st->bytes_queued - st->bytes_to_slide, new_size);
memmove (st->buf_queue,
st->buf_queue + st->bytes_queued - new_queued, new_queued);
st->bytes_to_slide = 0;
st->bytes_queued = new_queued;
}
}
st->bytes_queue_max = new_size;
st->buf_queue = g_realloc (st->buf_queue, st->bytes_queue_max);
latency =
gst_util_uint64_scale (st->bytes_queue_max, GST_SECOND,
st->bytes_per_frame * st->sample_rate);
if (st->latency != latency) {
st->latency = latency;
gst_element_post_message (GST_ELEMENT (st),
gst_message_new_latency (GST_OBJECT (st)));
}
st->bytes_stride_scaled = st->bytes_stride * st->scale;
st->frames_stride_scaled = st->bytes_stride_scaled / st->bytes_per_frame;
GST_DEBUG
("%.3f scale, %.3f stride_in, %i stride_out, %i standing, %i overlap, %i search, %i queue, %s mode",
st->scale, st->frames_stride_scaled,
(gint) (st->bytes_stride / st->bytes_per_frame),
(gint) (st->bytes_standing / st->bytes_per_frame),
(gint) (st->bytes_overlap / st->bytes_per_frame), st->frames_search,
(gint) (st->bytes_queue_max / st->bytes_per_frame),
gst_audio_format_to_string (st->format));
st->reinit_buffers = FALSE;
}
static GstBuffer *
reverse_buffer (GstScaletempo * st, GstBuffer * inbuf)
{
GstBuffer *outbuf;
GstMapInfo imap, omap;
gst_buffer_map (inbuf, &imap, GST_MAP_READ);
outbuf = gst_buffer_new_and_alloc (imap.size);
gst_buffer_map (outbuf, &omap, GST_MAP_WRITE);
if (st->format == GST_AUDIO_FORMAT_F64) {
const gint64 *ip = (const gint64 *) imap.data;
gint64 *op = (gint64 *) (omap.data + omap.size - 8 * st->samples_per_frame);
guint i, n = imap.size / (8 * st->samples_per_frame);
guint j, c = st->samples_per_frame;
for (i = 0; i < n; i++) {
for (j = 0; j < c; j++)
op[j] = ip[j];
op -= c;
ip += c;
}
} else {
const gint32 *ip = (const gint32 *) imap.data;
gint32 *op = (gint32 *) (omap.data + omap.size - 4 * st->samples_per_frame);
guint i, n = imap.size / (4 * st->samples_per_frame);
guint j, c = st->samples_per_frame;
for (i = 0; i < n; i++) {
for (j = 0; j < c; j++)
op[j] = ip[j];
op -= c;
ip += c;
}
}
gst_buffer_unmap (inbuf, &imap);
gst_buffer_unmap (outbuf, &omap);
return outbuf;
}
/* GstBaseTransform vmethod implementations */
static GstFlowReturn
gst_scaletempo_transform (GstBaseTransform * trans,
GstBuffer * inbuf, GstBuffer * outbuf)
{
GstScaletempo *st = GST_SCALETEMPO (trans);
gint8 *pout;
guint offset_in, bytes_out;
GstMapInfo omap;
GstClockTime timestamp;
GstBuffer *tmpbuf = NULL;
if (st->reverse)
tmpbuf = reverse_buffer (st, inbuf);
gst_buffer_map (outbuf, &omap, GST_MAP_WRITE);
pout = (gint8 *) omap.data;
bytes_out = omap.size;
offset_in = fill_queue (st, tmpbuf ? tmpbuf : inbuf, 0);
bytes_out = 0;
while (st->bytes_queued >= st->bytes_queue_max) {
guint bytes_off = 0;
gdouble frames_to_slide;
guint frames_to_stride_whole;
/* output stride */
if (st->output_overlap) {
if (st->best_overlap_offset) {
bytes_off = st->best_overlap_offset (st);
}
st->output_overlap (st, pout, bytes_off);
}
memcpy (pout + st->bytes_overlap,
st->buf_queue + bytes_off + st->bytes_overlap, st->bytes_standing);
pout += st->bytes_stride;
bytes_out += st->bytes_stride;
/* input stride */
memcpy (st->buf_overlap,
st->buf_queue + bytes_off + st->bytes_stride, st->bytes_overlap);
frames_to_slide = st->frames_stride_scaled + st->frames_stride_error;
frames_to_stride_whole = (gint) frames_to_slide;
st->bytes_to_slide = frames_to_stride_whole * st->bytes_per_frame;
st->frames_stride_error = frames_to_slide - frames_to_stride_whole;
offset_in += fill_queue (st, tmpbuf ? tmpbuf : inbuf, offset_in);
}
gst_buffer_unmap (outbuf, &omap);
if (st->reverse) {
timestamp = st->in_segment.stop - GST_BUFFER_TIMESTAMP (inbuf);
if (timestamp < st->latency)
timestamp = 0;
else
timestamp -= st->latency;
} else {
timestamp = GST_BUFFER_TIMESTAMP (inbuf) - st->in_segment.start;
if (timestamp < st->latency)
timestamp = 0;
else
timestamp -= st->latency;
}
GST_BUFFER_TIMESTAMP (outbuf) = timestamp / st->scale + st->in_segment.start;
GST_BUFFER_DURATION (outbuf) =
gst_util_uint64_scale (bytes_out, GST_SECOND,
st->bytes_per_frame * st->sample_rate);
gst_buffer_set_size (outbuf, bytes_out);
if (tmpbuf)
gst_buffer_unref (tmpbuf);
return GST_FLOW_OK;
}
static GstFlowReturn
gst_scaletempo_submit_input_buffer (GstBaseTransform * trans,
gboolean is_discont, GstBuffer * input)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
if (scaletempo->in_segment.format == GST_FORMAT_TIME) {
input =
gst_audio_buffer_clip (input, &scaletempo->in_segment,
scaletempo->sample_rate, scaletempo->bytes_per_frame);
if (!input)
return GST_FLOW_OK;
}
return GST_BASE_TRANSFORM_CLASS (parent_class)->submit_input_buffer (trans,
is_discont, input);
}
static gboolean
gst_scaletempo_transform_size (GstBaseTransform * trans,
GstPadDirection direction,
GstCaps * caps, gsize size, GstCaps * othercaps, gsize * othersize)
{
if (direction == GST_PAD_SINK) {
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
gint bytes_to_out;
if (scaletempo->reinit_buffers)
reinit_buffers (scaletempo);
bytes_to_out = size + scaletempo->bytes_queued - scaletempo->bytes_to_slide;
if (bytes_to_out < (gint) scaletempo->bytes_queue_max) {
*othersize = 0;
} else {
/* while (total_buffered - stride_length * n >= queue_max) n++ */
*othersize = scaletempo->bytes_stride * ((guint) (
(bytes_to_out - scaletempo->bytes_queue_max +
/* rounding protection */ scaletempo->bytes_per_frame)
/ scaletempo->bytes_stride_scaled) + 1);
}
return TRUE;
}
return FALSE;
}
static gboolean
gst_scaletempo_sink_event (GstBaseTransform * trans, GstEvent * event)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
if (GST_EVENT_TYPE (event) == GST_EVENT_SEGMENT) {
GstSegment segment;
gst_event_copy_segment (event, &segment);
if (segment.format != GST_FORMAT_TIME
|| scaletempo->scale != ABS (segment.rate)
|| ! !scaletempo->reverse != ! !(segment.rate < 0.0)) {
if (segment.format != GST_FORMAT_TIME || ABS (segment.rate - 1.0) < 1e-10) {
scaletempo->scale = 1.0;
gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (scaletempo),
TRUE);
} else {
gst_base_transform_set_passthrough (GST_BASE_TRANSFORM (scaletempo),
FALSE);
scaletempo->scale = ABS (segment.rate);
scaletempo->reverse = segment.rate < 0.0;
scaletempo->bytes_stride_scaled =
scaletempo->bytes_stride * scaletempo->scale;
scaletempo->frames_stride_scaled =
scaletempo->bytes_stride_scaled / scaletempo->bytes_per_frame;
GST_DEBUG ("%.3f scale, %.3f stride_in, %i stride_out",
scaletempo->scale, scaletempo->frames_stride_scaled,
(gint) (scaletempo->bytes_stride / scaletempo->bytes_per_frame));
scaletempo->bytes_to_slide = 0;
}
}
scaletempo->in_segment = segment;
scaletempo->out_segment = segment;
if (scaletempo->scale != 1.0 || scaletempo->reverse) {
guint32 seqnum;
segment.applied_rate = segment.rate;
segment.rate = 1.0;
if (segment.stop != -1) {
segment.stop =
(segment.stop - segment.start) / ABS (segment.applied_rate) +
segment.start;
}
scaletempo->out_segment = segment;
seqnum = gst_event_get_seqnum (event);
gst_event_unref (event);
event = gst_event_new_segment (&segment);
gst_event_set_seqnum (event, seqnum);
return gst_pad_push_event (GST_BASE_TRANSFORM_SRC_PAD (trans), event);
}
} else if (GST_EVENT_TYPE (event) == GST_EVENT_FLUSH_STOP) {
gst_segment_init (&scaletempo->in_segment, GST_FORMAT_UNDEFINED);
gst_segment_init (&scaletempo->out_segment, GST_FORMAT_UNDEFINED);
} else if (GST_EVENT_TYPE (event) == GST_EVENT_GAP) {
if (scaletempo->scale != 1.0) {
GstClockTime gap_ts, gap_duration;
gst_event_parse_gap (event, &gap_ts, &gap_duration);
if (scaletempo->reverse) {
gap_ts = scaletempo->in_segment.stop - gap_ts;
} else {
gap_ts = gap_ts - scaletempo->in_segment.start;
}
gap_ts = gap_ts / scaletempo->scale + scaletempo->in_segment.start;
if (GST_CLOCK_TIME_IS_VALID (gap_duration)) {
gap_duration = gap_duration / ABS (scaletempo->scale);
}
gst_event_unref (event);
event = gst_event_new_gap (gap_ts, gap_duration);
}
}
return GST_BASE_TRANSFORM_CLASS (parent_class)->sink_event (trans, event);
}
static gboolean
gst_scaletempo_set_caps (GstBaseTransform * trans,
GstCaps * incaps, GstCaps * outcaps)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
gint width, bps, nch, rate;
GstAudioInfo info;
GstAudioFormat format;
if (!gst_audio_info_from_caps (&info, incaps))
return FALSE;
nch = GST_AUDIO_INFO_CHANNELS (&info);
rate = GST_AUDIO_INFO_RATE (&info);
width = GST_AUDIO_INFO_WIDTH (&info);
format = GST_AUDIO_INFO_FORMAT (&info);
bps = width / 8;
GST_DEBUG ("caps: %" GST_PTR_FORMAT ", %d bps", incaps, bps);
if (rate != scaletempo->sample_rate
|| nch != scaletempo->samples_per_frame
|| bps != scaletempo->bytes_per_sample || format != scaletempo->format) {
scaletempo->sample_rate = rate;
scaletempo->samples_per_frame = nch;
scaletempo->bytes_per_sample = bps;
scaletempo->bytes_per_frame = nch * bps;
scaletempo->format = format;
scaletempo->reinit_buffers = TRUE;
}
return TRUE;
}
static gboolean
gst_scaletempo_start (GstBaseTransform * trans)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
gst_segment_init (&scaletempo->in_segment, GST_FORMAT_UNDEFINED);
gst_segment_init (&scaletempo->out_segment, GST_FORMAT_UNDEFINED);
scaletempo->reinit_buffers = TRUE;
return TRUE;
}
static gboolean
gst_scaletempo_stop (GstBaseTransform * trans)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
g_free (scaletempo->buf_queue);
scaletempo->buf_queue = NULL;
g_free (scaletempo->buf_overlap);
scaletempo->buf_overlap = NULL;
g_free (scaletempo->table_blend);
scaletempo->table_blend = NULL;
g_free (scaletempo->buf_pre_corr);
scaletempo->buf_pre_corr = NULL;
g_free (scaletempo->table_window);
scaletempo->table_window = NULL;
scaletempo->reinit_buffers = TRUE;
return TRUE;
}
static gboolean
gst_scaletempo_query (GstBaseTransform * trans, GstPadDirection direction,
GstQuery * query)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (trans);
if (direction == GST_PAD_SRC) {
switch (GST_QUERY_TYPE (query)) {
case GST_QUERY_LATENCY:{
GstPad *peer;
if ((peer = gst_pad_get_peer (GST_BASE_TRANSFORM_SINK_PAD (trans)))) {
if ((gst_pad_query (peer, query))) {
GstClockTime min, max;
gboolean live;
gst_query_parse_latency (query, &live, &min, &max);
GST_DEBUG_OBJECT (scaletempo, "Peer latency: min %"
GST_TIME_FORMAT " max %" GST_TIME_FORMAT,
GST_TIME_ARGS (min), GST_TIME_ARGS (max));
/* add our own latency */
GST_DEBUG_OBJECT (scaletempo, "Our latency: %" GST_TIME_FORMAT,
GST_TIME_ARGS (scaletempo->latency));
min += scaletempo->latency;
if (max != GST_CLOCK_TIME_NONE)
max += scaletempo->latency;
GST_DEBUG_OBJECT (scaletempo, "Calculated total latency : min %"
GST_TIME_FORMAT " max %" GST_TIME_FORMAT,
GST_TIME_ARGS (min), GST_TIME_ARGS (max));
gst_query_set_latency (query, live, min, max);
}
gst_object_unref (peer);
}
return TRUE;
}
default:{
return GST_BASE_TRANSFORM_CLASS (parent_class)->query (trans, direction,
query);
}
}
} else {
return GST_BASE_TRANSFORM_CLASS (parent_class)->query (trans, direction,
query);
}
}
/* GObject vmethod implementations */
static void
gst_scaletempo_get_property (GObject * object,
guint prop_id, GValue * value, GParamSpec * pspec)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (object);
switch (prop_id) {
case PROP_RATE:
g_value_set_double (value, scaletempo->scale);
break;
case PROP_STRIDE:
g_value_set_uint (value, scaletempo->ms_stride);
break;
case PROP_OVERLAP:
g_value_set_double (value, scaletempo->percent_overlap);
break;
case PROP_SEARCH:
g_value_set_uint (value, scaletempo->ms_search);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_scaletempo_set_property (GObject * object,
guint prop_id, const GValue * value, GParamSpec * pspec)
{
GstScaletempo *scaletempo = GST_SCALETEMPO (object);
switch (prop_id) {
case PROP_STRIDE:{
guint new_value = g_value_get_uint (value);
if (scaletempo->ms_stride != new_value) {
scaletempo->ms_stride = new_value;
scaletempo->reinit_buffers = TRUE;
}
break;
}
case PROP_OVERLAP:{
gdouble new_value = g_value_get_double (value);
if (scaletempo->percent_overlap != new_value) {
scaletempo->percent_overlap = new_value;
scaletempo->reinit_buffers = TRUE;
}
break;
}
case PROP_SEARCH:{
guint new_value = g_value_get_uint (value);
if (scaletempo->ms_search != new_value) {
scaletempo->ms_search = new_value;
scaletempo->reinit_buffers = TRUE;
}
break;
}
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
gst_scaletempo_class_init (GstScaletempoClass * klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GstElementClass *gstelement_class = GST_ELEMENT_CLASS (klass);
GstBaseTransformClass *basetransform_class = GST_BASE_TRANSFORM_CLASS (klass);
gobject_class->get_property = GST_DEBUG_FUNCPTR (gst_scaletempo_get_property);
gobject_class->set_property = GST_DEBUG_FUNCPTR (gst_scaletempo_set_property);
g_object_class_install_property (gobject_class, PROP_RATE,
g_param_spec_double ("rate", "Playback Rate", "Current playback rate",
G_MININT, G_MAXINT, 1.0, G_PARAM_READABLE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_STRIDE,
g_param_spec_uint ("stride", "Stride Length",
"Length in milliseconds to output each stride", 1, 5000, 30,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_OVERLAP,
g_param_spec_double ("overlap", "Overlap Length",
"Percentage of stride to overlap", 0, 1, .2,
G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_SEARCH,
g_param_spec_uint ("search", "Search Length",
"Length in milliseconds to search for best overlap position", 0, 500,
14, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS));
gst_element_class_add_static_pad_template (gstelement_class, &src_template);
gst_element_class_add_static_pad_template (gstelement_class, &sink_template);
gst_element_class_set_static_metadata (gstelement_class, "Scaletempo",
"Filter/Effect/Rate",
"Sync audio tempo with playback rate",
"Rov Juvano <rovjuvano@users.sourceforge.net>");
basetransform_class->sink_event =
GST_DEBUG_FUNCPTR (gst_scaletempo_sink_event);
basetransform_class->set_caps = GST_DEBUG_FUNCPTR (gst_scaletempo_set_caps);
basetransform_class->transform_size =
GST_DEBUG_FUNCPTR (gst_scaletempo_transform_size);
basetransform_class->transform = GST_DEBUG_FUNCPTR (gst_scaletempo_transform);
basetransform_class->query = GST_DEBUG_FUNCPTR (gst_scaletempo_query);
basetransform_class->start = GST_DEBUG_FUNCPTR (gst_scaletempo_start);
basetransform_class->stop = GST_DEBUG_FUNCPTR (gst_scaletempo_stop);
basetransform_class->submit_input_buffer =
GST_DEBUG_FUNCPTR (gst_scaletempo_submit_input_buffer);
}
static void
gst_scaletempo_init (GstScaletempo * scaletempo)
{
/* defaults */
scaletempo->ms_stride = 30;
scaletempo->percent_overlap = .2;
scaletempo->ms_search = 14;
/* uninitialized */
scaletempo->scale = 0;
scaletempo->sample_rate = 0;
scaletempo->frames_stride_error = 0;
scaletempo->bytes_stride = 0;
scaletempo->bytes_queued = 0;
scaletempo->bytes_to_slide = 0;
gst_segment_init (&scaletempo->in_segment, GST_FORMAT_UNDEFINED);
gst_segment_init (&scaletempo->out_segment, GST_FORMAT_UNDEFINED);
}