| /* GStreamer |
| * Copyright (C) 2004 Ronald Bultje <rbultje@ronald.bitfreak.net> |
| * Copyright (C) 2008 Sebastian Dröge <slomo@circular-chaos.org> |
| * |
| * audio-channel-mixer.c: setup of channel conversion matrices |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public |
| * License along with this library; if not, write to the |
| * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include "config.h" |
| #endif |
| |
| #include <math.h> |
| #include <string.h> |
| |
| #include "audio-channel-mixer.h" |
| |
| #ifndef GST_DISABLE_GST_DEBUG |
| #define GST_CAT_DEFAULT ensure_debug_category() |
| static GstDebugCategory * |
| ensure_debug_category (void) |
| { |
| static gsize cat_gonce = 0; |
| |
| if (g_once_init_enter (&cat_gonce)) { |
| gsize cat_done; |
| |
| cat_done = (gsize) _gst_debug_category_new ("audio-channel-mixer", 0, |
| "audio-channel-mixer object"); |
| |
| g_once_init_leave (&cat_gonce, cat_done); |
| } |
| |
| return (GstDebugCategory *) cat_gonce; |
| } |
| #else |
| #define ensure_debug_category() /* NOOP */ |
| #endif /* GST_DISABLE_GST_DEBUG */ |
| |
| |
| #define PRECISION_INT 10 |
| |
| typedef void (*MixerFunc) (GstAudioChannelMixer * mix, const gpointer src, |
| gpointer dst, gint samples); |
| |
| struct _GstAudioChannelMixer |
| { |
| gint in_channels; |
| gint out_channels; |
| |
| /* channel conversion matrix, m[in_channels][out_channels]. |
| * If identity matrix, passthrough applies. */ |
| gfloat **matrix; |
| |
| /* channel conversion matrix with int values, m[in_channels][out_channels]. |
| * this is matrix * (2^10) as integers */ |
| gint **matrix_int; |
| |
| MixerFunc func; |
| }; |
| |
| /** |
| * gst_audio_channel_mixer_free: |
| * @mix: a #GstAudioChannelMixer |
| * |
| * Free memory allocated by @mix. |
| */ |
| void |
| gst_audio_channel_mixer_free (GstAudioChannelMixer * mix) |
| { |
| gint i; |
| |
| /* free */ |
| for (i = 0; i < mix->in_channels; i++) |
| g_free (mix->matrix[i]); |
| g_free (mix->matrix); |
| mix->matrix = NULL; |
| |
| for (i = 0; i < mix->in_channels; i++) |
| g_free (mix->matrix_int[i]); |
| g_free (mix->matrix_int); |
| mix->matrix_int = NULL; |
| |
| g_slice_free (GstAudioChannelMixer, mix); |
| } |
| |
| /* |
| * Detect and fill in identical channels. E.g. |
| * forward the left/right front channels in a |
| * 5.1 to 2.0 conversion. |
| */ |
| |
| static void |
| gst_audio_channel_mixer_fill_identical (gfloat ** matrix, |
| gint in_channels, GstAudioChannelPosition * in_position, gint out_channels, |
| GstAudioChannelPosition * out_position, GstAudioChannelMixerFlags flags) |
| { |
| gint ci, co; |
| |
| /* Apart from the compatible channel assignments, we can also have |
| * same channel assignments. This is much simpler, we simply copy |
| * the value from source to dest! */ |
| for (co = 0; co < out_channels; co++) { |
| /* find a channel in input with same position */ |
| for (ci = 0; ci < in_channels; ci++) { |
| /* If the input was unpositioned, we're simply building |
| * an identity matrix */ |
| if (flags & GST_AUDIO_CHANNEL_MIXER_FLAGS_UNPOSITIONED_IN) { |
| matrix[ci][co] = ci == co ? 1.0 : 0.0; |
| } else if (in_position[ci] == out_position[co]) { |
| matrix[ci][co] = 1.0; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Detect and fill in compatible channels. E.g. |
| * forward left/right front to mono (or the other |
| * way around) when going from 2.0 to 1.0. |
| */ |
| |
| static void |
| gst_audio_channel_mixer_fill_compatible (gfloat ** matrix, gint in_channels, |
| GstAudioChannelPosition * in_position, gint out_channels, |
| GstAudioChannelPosition * out_position) |
| { |
| /* Conversions from one-channel to compatible two-channel configs */ |
| struct |
| { |
| GstAudioChannelPosition pos1[2]; |
| GstAudioChannelPosition pos2[1]; |
| } conv[] = { |
| /* front: mono <-> stereo */ |
| { { |
| GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT, |
| GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT}, { |
| GST_AUDIO_CHANNEL_POSITION_MONO}}, |
| /* front center: 2 <-> 1 */ |
| { { |
| GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER, |
| GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER}, { |
| GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER}}, |
| /* rear: 2 <-> 1 */ |
| { { |
| GST_AUDIO_CHANNEL_POSITION_REAR_LEFT, |
| GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT}, { |
| GST_AUDIO_CHANNEL_POSITION_REAR_CENTER}}, { { |
| GST_AUDIO_CHANNEL_POSITION_INVALID}} |
| }; |
| gint c; |
| |
| /* conversions from compatible (but not the same) channel schemes */ |
| for (c = 0; conv[c].pos1[0] != GST_AUDIO_CHANNEL_POSITION_INVALID; c++) { |
| gint pos1_0 = -1, pos1_1 = -1, pos1_2 = -1; |
| gint pos2_0 = -1, pos2_1 = -1, pos2_2 = -1; |
| gint n; |
| |
| for (n = 0; n < in_channels; n++) { |
| if (in_position[n] == conv[c].pos1[0]) |
| pos1_0 = n; |
| else if (in_position[n] == conv[c].pos1[1]) |
| pos1_1 = n; |
| else if (in_position[n] == conv[c].pos2[0]) |
| pos1_2 = n; |
| } |
| for (n = 0; n < out_channels; n++) { |
| if (out_position[n] == conv[c].pos1[0]) |
| pos2_0 = n; |
| else if (out_position[n] == conv[c].pos1[1]) |
| pos2_1 = n; |
| else if (out_position[n] == conv[c].pos2[0]) |
| pos2_2 = n; |
| } |
| |
| /* The general idea here is to fill in channels from the same position |
| * as good as possible. This means mixing left<->center and right<->center. |
| */ |
| |
| /* left -> center */ |
| if (pos1_0 != -1 && pos1_2 == -1 && pos2_0 == -1 && pos2_2 != -1) |
| matrix[pos1_0][pos2_2] = 1.0; |
| else if (pos1_0 != -1 && pos1_2 != -1 && pos2_0 == -1 && pos2_2 != -1) |
| matrix[pos1_0][pos2_2] = 0.5; |
| else if (pos1_0 != -1 && pos1_2 == -1 && pos2_0 != -1 && pos2_2 != -1) |
| matrix[pos1_0][pos2_2] = 1.0; |
| |
| /* right -> center */ |
| if (pos1_1 != -1 && pos1_2 == -1 && pos2_1 == -1 && pos2_2 != -1) |
| matrix[pos1_1][pos2_2] = 1.0; |
| else if (pos1_1 != -1 && pos1_2 != -1 && pos2_1 == -1 && pos2_2 != -1) |
| matrix[pos1_1][pos2_2] = 0.5; |
| else if (pos1_1 != -1 && pos1_2 == -1 && pos2_1 != -1 && pos2_2 != -1) |
| matrix[pos1_1][pos2_2] = 1.0; |
| |
| /* center -> left */ |
| if (pos1_2 != -1 && pos1_0 == -1 && pos2_2 == -1 && pos2_0 != -1) |
| matrix[pos1_2][pos2_0] = 1.0; |
| else if (pos1_2 != -1 && pos1_0 != -1 && pos2_2 == -1 && pos2_0 != -1) |
| matrix[pos1_2][pos2_0] = 0.5; |
| else if (pos1_2 != -1 && pos1_0 == -1 && pos2_2 != -1 && pos2_0 != -1) |
| matrix[pos1_2][pos2_0] = 1.0; |
| |
| /* center -> right */ |
| if (pos1_2 != -1 && pos1_1 == -1 && pos2_2 == -1 && pos2_1 != -1) |
| matrix[pos1_2][pos2_1] = 1.0; |
| else if (pos1_2 != -1 && pos1_1 != -1 && pos2_2 == -1 && pos2_1 != -1) |
| matrix[pos1_2][pos2_1] = 0.5; |
| else if (pos1_2 != -1 && pos1_1 == -1 && pos2_2 != -1 && pos2_1 != -1) |
| matrix[pos1_2][pos2_1] = 1.0; |
| } |
| } |
| |
| /* |
| * Detect and fill in channels not handled by the |
| * above two, e.g. center to left/right front in |
| * 5.1 to 2.0 (or the other way around). |
| * |
| * Unfortunately, limited to static conversions |
| * for now. |
| */ |
| |
| static void |
| gst_audio_channel_mixer_detect_pos (gint channels, |
| GstAudioChannelPosition position[64], gint * f, gboolean * has_f, gint * c, |
| gboolean * has_c, gint * r, gboolean * has_r, gint * s, gboolean * has_s, |
| gint * b, gboolean * has_b) |
| { |
| gint n; |
| |
| for (n = 0; n < channels; n++) { |
| switch (position[n]) { |
| case GST_AUDIO_CHANNEL_POSITION_MONO: |
| f[1] = n; |
| *has_f = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT: |
| f[0] = n; |
| *has_f = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT: |
| f[2] = n; |
| *has_f = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_FRONT_CENTER: |
| c[1] = n; |
| *has_c = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: |
| c[0] = n; |
| *has_c = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: |
| c[2] = n; |
| *has_c = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_REAR_CENTER: |
| r[1] = n; |
| *has_r = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_REAR_LEFT: |
| r[0] = n; |
| *has_r = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_REAR_RIGHT: |
| r[2] = n; |
| *has_r = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_SIDE_LEFT: |
| s[0] = n; |
| *has_s = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_SIDE_RIGHT: |
| s[2] = n; |
| *has_s = TRUE; |
| break; |
| case GST_AUDIO_CHANNEL_POSITION_LFE1: |
| *has_b = TRUE; |
| b[1] = n; |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| |
| static void |
| gst_audio_channel_mixer_fill_one_other (gfloat ** matrix, |
| gint * from_idx, gint * to_idx, gfloat ratio) |
| { |
| |
| /* src & dst have center => passthrough */ |
| if (from_idx[1] != -1 && to_idx[1] != -1) { |
| matrix[from_idx[1]][to_idx[1]] = ratio; |
| } |
| |
| /* src & dst have left => passthrough */ |
| if (from_idx[0] != -1 && to_idx[0] != -1) { |
| matrix[from_idx[0]][to_idx[0]] = ratio; |
| } |
| |
| /* src & dst have right => passthrough */ |
| if (from_idx[2] != -1 && to_idx[2] != -1) { |
| matrix[from_idx[2]][to_idx[2]] = ratio; |
| } |
| |
| /* src has left & dst has center => put into center */ |
| if (from_idx[0] != -1 && to_idx[1] != -1 && from_idx[1] != -1) { |
| matrix[from_idx[0]][to_idx[1]] = 0.5 * ratio; |
| } else if (from_idx[0] != -1 && to_idx[1] != -1 && from_idx[1] == -1) { |
| matrix[from_idx[0]][to_idx[1]] = ratio; |
| } |
| |
| /* src has right & dst has center => put into center */ |
| if (from_idx[2] != -1 && to_idx[1] != -1 && from_idx[1] != -1) { |
| matrix[from_idx[2]][to_idx[1]] = 0.5 * ratio; |
| } else if (from_idx[2] != -1 && to_idx[1] != -1 && from_idx[1] == -1) { |
| matrix[from_idx[2]][to_idx[1]] = ratio; |
| } |
| |
| /* src has center & dst has left => passthrough */ |
| if (from_idx[1] != -1 && to_idx[0] != -1 && from_idx[0] != -1) { |
| matrix[from_idx[1]][to_idx[0]] = 0.5 * ratio; |
| } else if (from_idx[1] != -1 && to_idx[0] != -1 && from_idx[0] == -1) { |
| matrix[from_idx[1]][to_idx[0]] = ratio; |
| } |
| |
| /* src has center & dst has right => passthrough */ |
| if (from_idx[1] != -1 && to_idx[2] != -1 && from_idx[2] != -1) { |
| matrix[from_idx[1]][to_idx[2]] = 0.5 * ratio; |
| } else if (from_idx[1] != -1 && to_idx[2] != -1 && from_idx[2] == -1) { |
| matrix[from_idx[1]][to_idx[2]] = ratio; |
| } |
| } |
| |
| #define RATIO_CENTER_FRONT (1.0 / sqrt (2.0)) |
| #define RATIO_CENTER_SIDE (1.0 / 2.0) |
| #define RATIO_CENTER_REAR (1.0 / sqrt (8.0)) |
| |
| #define RATIO_FRONT_CENTER (1.0 / sqrt (2.0)) |
| #define RATIO_FRONT_SIDE (1.0 / sqrt (2.0)) |
| #define RATIO_FRONT_REAR (1.0 / 2.0) |
| |
| #define RATIO_SIDE_CENTER (1.0 / 2.0) |
| #define RATIO_SIDE_FRONT (1.0 / sqrt (2.0)) |
| #define RATIO_SIDE_REAR (1.0 / sqrt (2.0)) |
| |
| #define RATIO_CENTER_BASS (1.0 / sqrt (2.0)) |
| #define RATIO_FRONT_BASS (1.0) |
| #define RATIO_SIDE_BASS (1.0 / sqrt (2.0)) |
| #define RATIO_REAR_BASS (1.0 / sqrt (2.0)) |
| |
| static void |
| gst_audio_channel_mixer_fill_others (gfloat ** matrix, gint in_channels, |
| GstAudioChannelPosition * in_position, gint out_channels, |
| GstAudioChannelPosition * out_position) |
| { |
| gboolean in_has_front = FALSE, out_has_front = FALSE, |
| in_has_center = FALSE, out_has_center = FALSE, |
| in_has_rear = FALSE, out_has_rear = FALSE, |
| in_has_side = FALSE, out_has_side = FALSE, |
| in_has_bass = FALSE, out_has_bass = FALSE; |
| /* LEFT, RIGHT, MONO */ |
| gint in_f[3] = { -1, -1, -1 }; |
| gint out_f[3] = { -1, -1, -1 }; |
| /* LOC, ROC, CENTER */ |
| gint in_c[3] = { -1, -1, -1 }; |
| gint out_c[3] = { -1, -1, -1 }; |
| /* RLEFT, RRIGHT, RCENTER */ |
| gint in_r[3] = { -1, -1, -1 }; |
| gint out_r[3] = { -1, -1, -1 }; |
| /* SLEFT, INVALID, SRIGHT */ |
| gint in_s[3] = { -1, -1, -1 }; |
| gint out_s[3] = { -1, -1, -1 }; |
| /* INVALID, LFE, INVALID */ |
| gint in_b[3] = { -1, -1, -1 }; |
| gint out_b[3] = { -1, -1, -1 }; |
| |
| /* First see where (if at all) the various channels from/to |
| * which we want to convert are located in our matrix/array. */ |
| gst_audio_channel_mixer_detect_pos (in_channels, in_position, |
| in_f, &in_has_front, |
| in_c, &in_has_center, in_r, &in_has_rear, |
| in_s, &in_has_side, in_b, &in_has_bass); |
| gst_audio_channel_mixer_detect_pos (out_channels, out_position, |
| out_f, &out_has_front, |
| out_c, &out_has_center, out_r, &out_has_rear, |
| out_s, &out_has_side, out_b, &out_has_bass); |
| |
| /* The general idea here is: |
| * - if the source has a channel that the destination doesn't have mix |
| * it into the nearest available destination channel |
| * - if the destination has a channel that the source doesn't have mix |
| * the nearest source channel into the destination channel |
| * |
| * The ratio for the mixing becomes lower as the distance between the |
| * channels gets larger |
| */ |
| |
| /* center <-> front/side/rear */ |
| if (!in_has_center && in_has_front && out_has_center) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_c, |
| RATIO_CENTER_FRONT); |
| } else if (!in_has_center && !in_has_front && in_has_side && out_has_center) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_c, |
| RATIO_CENTER_SIDE); |
| } else if (!in_has_center && !in_has_front && !in_has_side && in_has_rear |
| && out_has_center) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_c, |
| RATIO_CENTER_REAR); |
| } else if (in_has_center && !out_has_center && out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_f, |
| RATIO_CENTER_FRONT); |
| } else if (in_has_center && !out_has_center && !out_has_front && out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_s, |
| RATIO_CENTER_SIDE); |
| } else if (in_has_center && !out_has_center && !out_has_front && !out_has_side |
| && out_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_r, |
| RATIO_CENTER_REAR); |
| } |
| |
| /* front <-> center/side/rear */ |
| if (!in_has_front && in_has_center && !in_has_side && out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_f, |
| RATIO_CENTER_FRONT); |
| } else if (!in_has_front && !in_has_center && in_has_side && out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_f, |
| RATIO_FRONT_SIDE); |
| } else if (!in_has_front && in_has_center && in_has_side && out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_f, |
| 0.5 * RATIO_CENTER_FRONT); |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_f, |
| 0.5 * RATIO_FRONT_SIDE); |
| } else if (!in_has_front && !in_has_center && !in_has_side && in_has_rear |
| && out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_f, |
| RATIO_FRONT_REAR); |
| } else if (in_has_front && out_has_center && !out_has_side && !out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, |
| in_f, out_c, RATIO_CENTER_FRONT); |
| } else if (in_has_front && !out_has_center && out_has_side && !out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_s, |
| RATIO_FRONT_SIDE); |
| } else if (in_has_front && out_has_center && out_has_side && !out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_c, |
| 0.5 * RATIO_CENTER_FRONT); |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_s, |
| 0.5 * RATIO_FRONT_SIDE); |
| } else if (in_has_front && !out_has_center && !out_has_side && !out_has_front |
| && out_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_r, |
| RATIO_FRONT_REAR); |
| } |
| |
| /* side <-> center/front/rear */ |
| if (!in_has_side && in_has_front && !in_has_rear && out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_s, |
| RATIO_FRONT_SIDE); |
| } else if (!in_has_side && !in_has_front && in_has_rear && out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_s, |
| RATIO_SIDE_REAR); |
| } else if (!in_has_side && in_has_front && in_has_rear && out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_s, |
| 0.5 * RATIO_FRONT_SIDE); |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_s, |
| 0.5 * RATIO_SIDE_REAR); |
| } else if (!in_has_side && !in_has_front && !in_has_rear && in_has_center |
| && out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_s, |
| RATIO_CENTER_SIDE); |
| } else if (in_has_side && out_has_front && !out_has_rear && !out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_f, |
| RATIO_FRONT_SIDE); |
| } else if (in_has_side && !out_has_front && out_has_rear && !out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_r, |
| RATIO_SIDE_REAR); |
| } else if (in_has_side && out_has_front && out_has_rear && !out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_f, |
| 0.5 * RATIO_FRONT_SIDE); |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_r, |
| 0.5 * RATIO_SIDE_REAR); |
| } else if (in_has_side && !out_has_front && !out_has_rear && out_has_center |
| && !out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_c, |
| RATIO_CENTER_SIDE); |
| } |
| |
| /* rear <-> center/front/side */ |
| if (!in_has_rear && in_has_side && out_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_r, |
| RATIO_SIDE_REAR); |
| } else if (!in_has_rear && !in_has_side && in_has_front && out_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_r, |
| RATIO_FRONT_REAR); |
| } else if (!in_has_rear && !in_has_side && !in_has_front && in_has_center |
| && out_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_r, |
| RATIO_CENTER_REAR); |
| } else if (in_has_rear && !out_has_rear && out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_s, |
| RATIO_SIDE_REAR); |
| } else if (in_has_rear && !out_has_rear && !out_has_side && out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_f, |
| RATIO_FRONT_REAR); |
| } else if (in_has_rear && !out_has_rear && !out_has_side && !out_has_front |
| && out_has_center) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_c, |
| RATIO_CENTER_REAR); |
| } |
| |
| /* bass <-> any */ |
| if (in_has_bass && !out_has_bass) { |
| if (out_has_center) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_b, out_c, |
| RATIO_CENTER_BASS); |
| } |
| if (out_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_b, out_f, |
| RATIO_FRONT_BASS); |
| } |
| if (out_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_b, out_s, |
| RATIO_SIDE_BASS); |
| } |
| if (out_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_b, out_r, |
| RATIO_REAR_BASS); |
| } |
| } else if (!in_has_bass && out_has_bass) { |
| if (in_has_center) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_c, out_b, |
| RATIO_CENTER_BASS); |
| } |
| if (in_has_front) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_f, out_b, |
| RATIO_FRONT_BASS); |
| } |
| if (in_has_side) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_s, out_b, |
| RATIO_REAR_BASS); |
| } |
| if (in_has_rear) { |
| gst_audio_channel_mixer_fill_one_other (matrix, in_r, out_b, |
| RATIO_REAR_BASS); |
| } |
| } |
| } |
| |
| /* |
| * Normalize output values. |
| */ |
| |
| static void |
| gst_audio_channel_mixer_fill_normalize (gfloat ** matrix, gint in_channels, |
| gint out_channels) |
| { |
| gfloat sum, top = 0; |
| gint i, j; |
| |
| for (j = 0; j < out_channels; j++) { |
| /* calculate sum */ |
| sum = 0.0; |
| for (i = 0; i < in_channels; i++) { |
| sum += fabs (matrix[i][j]); |
| } |
| if (sum > top) { |
| top = sum; |
| } |
| } |
| |
| /* normalize to mix */ |
| if (top == 0.0) |
| return; |
| |
| for (j = 0; j < out_channels; j++) { |
| for (i = 0; i < in_channels; i++) { |
| matrix[i][j] /= top; |
| } |
| } |
| } |
| |
| static gboolean |
| gst_audio_channel_mixer_fill_special (gfloat ** matrix, gint in_channels, |
| GstAudioChannelPosition * in_position, gint out_channels, |
| GstAudioChannelPosition * out_position) |
| { |
| /* Special, standard conversions here */ |
| |
| /* Mono<->Stereo, just a fast-path */ |
| if (in_channels == 2 && out_channels == 1 && |
| ((in_position[0] == GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT && |
| in_position[1] == GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT) || |
| (in_position[0] == GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT && |
| in_position[1] == GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT)) && |
| out_position[0] == GST_AUDIO_CHANNEL_POSITION_MONO) { |
| matrix[0][0] = 0.5; |
| matrix[1][0] = 0.5; |
| return TRUE; |
| } else if (in_channels == 1 && out_channels == 2 && |
| ((out_position[0] == GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT && |
| out_position[1] == GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT) || |
| (out_position[0] == GST_AUDIO_CHANNEL_POSITION_FRONT_RIGHT && |
| out_position[1] == GST_AUDIO_CHANNEL_POSITION_FRONT_LEFT)) && |
| in_position[0] == GST_AUDIO_CHANNEL_POSITION_MONO) { |
| matrix[0][0] = 1.0; |
| matrix[0][1] = 1.0; |
| return TRUE; |
| } |
| |
| /* TODO: 5.1 <-> Stereo and other standard conversions */ |
| |
| return FALSE; |
| } |
| |
| /* |
| * Automagically generate conversion matrix. |
| */ |
| |
| static void |
| gst_audio_channel_mixer_fill_matrix (gfloat ** matrix, |
| GstAudioChannelMixerFlags flags, gint in_channels, |
| GstAudioChannelPosition * in_position, gint out_channels, |
| GstAudioChannelPosition * out_position) |
| { |
| if (gst_audio_channel_mixer_fill_special (matrix, in_channels, in_position, |
| out_channels, out_position)) |
| return; |
| |
| gst_audio_channel_mixer_fill_identical (matrix, in_channels, in_position, |
| out_channels, out_position, flags); |
| |
| if (!(flags & GST_AUDIO_CHANNEL_MIXER_FLAGS_UNPOSITIONED_IN)) { |
| gst_audio_channel_mixer_fill_compatible (matrix, in_channels, in_position, |
| out_channels, out_position); |
| gst_audio_channel_mixer_fill_others (matrix, in_channels, in_position, |
| out_channels, out_position); |
| gst_audio_channel_mixer_fill_normalize (matrix, in_channels, out_channels); |
| } |
| } |
| |
| /* only call mix after mix->matrix is fully set up and normalized */ |
| static void |
| gst_audio_channel_mixer_setup_matrix_int (GstAudioChannelMixer * mix) |
| { |
| gint i, j; |
| gfloat tmp; |
| gfloat factor = (1 << PRECISION_INT); |
| |
| mix->matrix_int = g_new0 (gint *, mix->in_channels); |
| |
| for (i = 0; i < mix->in_channels; i++) { |
| mix->matrix_int[i] = g_new (gint, mix->out_channels); |
| |
| for (j = 0; j < mix->out_channels; j++) { |
| tmp = mix->matrix[i][j] * factor; |
| mix->matrix_int[i][j] = (gint) tmp; |
| } |
| } |
| } |
| |
| static gfloat ** |
| gst_audio_channel_mixer_setup_matrix (GstAudioChannelMixerFlags flags, |
| gint in_channels, GstAudioChannelPosition * in_position, |
| gint out_channels, GstAudioChannelPosition * out_position) |
| { |
| gint i, j; |
| gfloat **matrix = g_new0 (gfloat *, in_channels); |
| |
| for (i = 0; i < in_channels; i++) { |
| matrix[i] = g_new (gfloat, out_channels); |
| for (j = 0; j < out_channels; j++) |
| matrix[i][j] = 0.; |
| } |
| |
| /* setup the matrix' internal values */ |
| gst_audio_channel_mixer_fill_matrix (matrix, flags, in_channels, in_position, |
| out_channels, out_position); |
| |
| return matrix; |
| } |
| |
| static void |
| gst_audio_channel_mixer_mix_int16 (GstAudioChannelMixer * mix, |
| const gint16 * in_data, gint16 * out_data, gint samples) |
| { |
| gint in, out, n; |
| gint32 res; |
| gint inchannels, outchannels; |
| |
| inchannels = mix->in_channels; |
| outchannels = mix->out_channels; |
| |
| for (n = 0; n < samples; n++) { |
| for (out = 0; out < outchannels; out++) { |
| /* convert */ |
| res = 0; |
| for (in = 0; in < inchannels; in++) |
| res += in_data[n * inchannels + in] * mix->matrix_int[in][out]; |
| |
| /* remove factor from int matrix */ |
| res = (res + (1 << (PRECISION_INT - 1))) >> PRECISION_INT; |
| out_data[n * outchannels + out] = CLAMP (res, G_MININT16, G_MAXINT16); |
| } |
| } |
| } |
| |
| static void |
| gst_audio_channel_mixer_mix_int32 (GstAudioChannelMixer * mix, |
| const gint32 * in_data, gint32 * out_data, gint samples) |
| { |
| gint in, out, n; |
| gint64 res; |
| gint inchannels, outchannels; |
| |
| inchannels = mix->in_channels; |
| outchannels = mix->out_channels; |
| |
| for (n = 0; n < samples; n++) { |
| for (out = 0; out < outchannels; out++) { |
| /* convert */ |
| res = 0; |
| for (in = 0; in < inchannels; in++) |
| res += in_data[n * inchannels + in] * (gint64) mix->matrix_int[in][out]; |
| |
| /* remove factor from int matrix */ |
| res = (res + (1 << (PRECISION_INT - 1))) >> PRECISION_INT; |
| out_data[n * outchannels + out] = CLAMP (res, G_MININT32, G_MAXINT32); |
| } |
| } |
| } |
| |
| static void |
| gst_audio_channel_mixer_mix_float (GstAudioChannelMixer * mix, |
| const gfloat * in_data, gfloat * out_data, gint samples) |
| { |
| gint in, out, n; |
| gfloat res; |
| gint inchannels, outchannels; |
| |
| inchannels = mix->in_channels; |
| outchannels = mix->out_channels; |
| |
| for (n = 0; n < samples; n++) { |
| for (out = 0; out < outchannels; out++) { |
| /* convert */ |
| res = 0.0; |
| for (in = 0; in < inchannels; in++) |
| res += in_data[n * inchannels + in] * mix->matrix[in][out]; |
| |
| out_data[n * outchannels + out] = res; |
| } |
| } |
| } |
| |
| static void |
| gst_audio_channel_mixer_mix_double (GstAudioChannelMixer * mix, |
| const gdouble * in_data, gdouble * out_data, gint samples) |
| { |
| gint in, out, n; |
| gdouble res; |
| gint inchannels, outchannels; |
| |
| inchannels = mix->in_channels; |
| outchannels = mix->out_channels; |
| |
| for (n = 0; n < samples; n++) { |
| for (out = 0; out < outchannels; out++) { |
| /* convert */ |
| res = 0.0; |
| for (in = 0; in < inchannels; in++) |
| res += in_data[n * inchannels + in] * mix->matrix[in][out]; |
| |
| out_data[n * outchannels + out] = res; |
| } |
| } |
| } |
| |
| /** |
| * gst_audio_channel_mixer_new_with_matrix: (skip): |
| * @flags: #GstAudioChannelMixerFlags |
| * @in_channels: number of input channels |
| * @out_channels: number of output channels |
| * @matrix: (transfer full) (nullable): channel conversion matrix, m[@in_channels][@out_channels]. |
| * If identity matrix, passthrough applies. If %NULL, a (potentially truncated) |
| * identity matrix is generated. |
| * |
| * Create a new channel mixer object for the given parameters. |
| * |
| * Returns: a new #GstAudioChannelMixer object, or %NULL if @format isn't supported, |
| * @matrix is invalid, or @matrix is %NULL and @in_channels != @out_channels. |
| * Free with gst_audio_channel_mixer_free() after usage. |
| * |
| * Since: 1.14 |
| */ |
| GstAudioChannelMixer * |
| gst_audio_channel_mixer_new_with_matrix (GstAudioChannelMixerFlags flags, |
| GstAudioFormat format, |
| gint in_channels, gint out_channels, gfloat ** matrix) |
| { |
| GstAudioChannelMixer *mix; |
| |
| g_return_val_if_fail (format == GST_AUDIO_FORMAT_S16 |
| || format == GST_AUDIO_FORMAT_S32 |
| || format == GST_AUDIO_FORMAT_F32 |
| || format == GST_AUDIO_FORMAT_F64, NULL); |
| g_return_val_if_fail (in_channels > 0 && in_channels < 64, NULL); |
| g_return_val_if_fail (out_channels > 0 && out_channels < 64, NULL); |
| |
| mix = g_slice_new0 (GstAudioChannelMixer); |
| mix->in_channels = in_channels; |
| mix->out_channels = out_channels; |
| |
| if (!matrix) { |
| /* Generate (potentially truncated) identity matrix */ |
| gint i, j; |
| |
| mix->matrix = g_new0 (gfloat *, in_channels); |
| |
| for (i = 0; i < in_channels; i++) { |
| mix->matrix[i] = g_new (gfloat, out_channels); |
| for (j = 0; j < out_channels; j++) { |
| mix->matrix[i][j] = i == j ? 1.0 : 0.0; |
| } |
| } |
| } else { |
| mix->matrix = matrix; |
| } |
| |
| gst_audio_channel_mixer_setup_matrix_int (mix); |
| |
| #ifndef GST_DISABLE_GST_DEBUG |
| /* debug */ |
| { |
| GString *s; |
| gint i, j; |
| |
| s = g_string_new ("Matrix for"); |
| g_string_append_printf (s, " %d -> %d: ", |
| mix->in_channels, mix->out_channels); |
| g_string_append (s, "{"); |
| for (i = 0; i < mix->in_channels; i++) { |
| if (i != 0) |
| g_string_append (s, ","); |
| g_string_append (s, " {"); |
| for (j = 0; j < mix->out_channels; j++) { |
| if (j != 0) |
| g_string_append (s, ","); |
| g_string_append_printf (s, " %f", mix->matrix[i][j]); |
| } |
| g_string_append (s, " }"); |
| } |
| g_string_append (s, " }"); |
| GST_DEBUG ("%s", s->str); |
| g_string_free (s, TRUE); |
| } |
| #endif |
| |
| switch (format) { |
| case GST_AUDIO_FORMAT_S16: |
| mix->func = (MixerFunc) gst_audio_channel_mixer_mix_int16; |
| break; |
| case GST_AUDIO_FORMAT_S32: |
| mix->func = (MixerFunc) gst_audio_channel_mixer_mix_int32; |
| break; |
| case GST_AUDIO_FORMAT_F32: |
| mix->func = (MixerFunc) gst_audio_channel_mixer_mix_float; |
| break; |
| case GST_AUDIO_FORMAT_F64: |
| mix->func = (MixerFunc) gst_audio_channel_mixer_mix_double; |
| break; |
| default: |
| g_assert_not_reached (); |
| break; |
| } |
| return mix; |
| } |
| |
| /** |
| * gst_audio_channel_mixer_new: (skip): |
| * @flags: #GstAudioChannelMixerFlags |
| * @in_channels: number of input channels |
| * @in_position: positions of input channels |
| * @out_channels: number of output channels |
| * @out_position: positions of output channels |
| * |
| * Create a new channel mixer object for the given parameters. |
| * |
| * Returns: a new #GstAudioChannelMixer object, or %NULL if @format isn't supported. |
| * Free with gst_audio_channel_mixer_free() after usage. |
| */ |
| GstAudioChannelMixer * |
| gst_audio_channel_mixer_new (GstAudioChannelMixerFlags flags, |
| GstAudioFormat format, |
| gint in_channels, |
| GstAudioChannelPosition * in_position, |
| gint out_channels, GstAudioChannelPosition * out_position) |
| { |
| gfloat **matrix; |
| |
| g_return_val_if_fail (format == GST_AUDIO_FORMAT_S16 |
| || format == GST_AUDIO_FORMAT_S32 |
| || format == GST_AUDIO_FORMAT_F32 |
| || format == GST_AUDIO_FORMAT_F64, NULL); |
| g_return_val_if_fail (in_channels > 0 && in_channels < 64, NULL); |
| g_return_val_if_fail (out_channels > 0 && out_channels < 64, NULL); |
| |
| matrix = |
| gst_audio_channel_mixer_setup_matrix (flags, in_channels, in_position, |
| out_channels, out_position); |
| return gst_audio_channel_mixer_new_with_matrix (flags, format, in_channels, |
| out_channels, matrix); |
| } |
| |
| /** |
| * gst_audio_channel_mixer_is_passthrough: |
| * @mix: a #GstAudioChannelMixer |
| * |
| * Check if @mix is in passthrough. |
| * |
| * Only N x N mix identity matrices are considered passthrough, |
| * this is determined by comparing the contents of the matrix |
| * with 0.0 and 1.0. |
| * |
| * As this is floating point comparisons, if the values have been |
| * generated, they should be rounded up or down by explicit |
| * assignment of 0.0 or 1.0 to values within a user-defined |
| * epsilon, this code doesn't make assumptions as to what may |
| * constitute an appropriate epsilon. |
| * |
| * Returns: %TRUE is @mix is passthrough. |
| */ |
| gboolean |
| gst_audio_channel_mixer_is_passthrough (GstAudioChannelMixer * mix) |
| { |
| gint i, j; |
| gboolean res; |
| |
| /* only NxN matrices can be identities */ |
| if (mix->in_channels != mix->out_channels) |
| return FALSE; |
| |
| res = TRUE; |
| |
| for (i = 0; i < mix->in_channels; i++) { |
| for (j = 0; j < mix->out_channels; j++) { |
| if ((i == j && mix->matrix[i][j] != 1.0f) || |
| (i != j && mix->matrix[i][j] != 0.0f)) { |
| res = FALSE; |
| break; |
| } |
| } |
| } |
| |
| return res; |
| } |
| |
| /** |
| * gst_audio_channel_mixer_samples: |
| * @mix: a #GstAudioChannelMixer |
| * @in: input samples |
| * @out: output samples |
| * @samples: number of samples |
| * |
| * In case the samples are interleaved, @in and @out must point to an |
| * array with a single element pointing to a block of interleaved samples. |
| * |
| * If non-interleaved samples are used, @in and @out must point to an |
| * array with pointers to memory blocks, one for each channel. |
| * |
| * Perform channel mixing on @in_data and write the result to @out_data. |
| * @in_data and @out_data need to be in @format and @layout. |
| */ |
| void |
| gst_audio_channel_mixer_samples (GstAudioChannelMixer * mix, |
| const gpointer in[], gpointer out[], gint samples) |
| { |
| g_return_if_fail (mix != NULL); |
| g_return_if_fail (mix->matrix != NULL); |
| |
| mix->func (mix, in[0], out[0], samples); |
| } |