blob: 12ad7437d7be374e170f9edc86b5ee6063e2ca0f [file] [log] [blame]
/*
* Copyright (c) 2005-2014, 2016-2017 The Linux Foundation. All rights reserved.
*
* Previously licensed under the ISC license by Qualcomm Atheros, Inc.
*
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This file was originally distributed by Qualcomm Atheros, Inc.
* under proprietary terms before Copyright ownership was assigned
* to the Linux Foundation.
*/
/*===========================================================================
dfs.h
OVERVIEW:
Source code borrowed from QCA_MAIN DFS module
DEPENDENCIES:
Are listed for each API below.
===========================================================================*/
/*===========================================================================
EDIT HISTORY FOR FILE
This section contains comments describing changes made to the module.
Notice that changes are listed in reverse chronological order.
when who what, where, why
---------- --- --------------------------------------------------------
===========================================================================*/
#ifndef _DFS_H_
#define _DFS_H_
/*
*TO DO DFS- Need to include this file later on
*#include "ath_internal.h"
*/
/*DFS New Include Start*/
#include <adf_net_types.h> /* ADF_NBUF_EXEMPT_NO_EXEMPTION, etc. */
#include <adf_nbuf.h> /* adf_nbuf_t, etc. */
#include <adf_os_util.h> /* adf_os_assert */
#include <adf_os_lock.h> /* adf_os_spinlock */
#include <queue.h> /* TAILQ */
#include <adf_os_time.h>
#include <adf_os_timer.h>
#include <adf_os_mem.h>
#include <osdep.h>
/*DFS Utility Include END*/
/* From wlan_modules/include/ */
#include "ath_dfs_structs.h"
/*DFS - Newly added File to interface cld UMAC and dfs data structures*/
#include <wma_dfs_interface.h>
/*
*TO DO DFS- Need to include this file later on
#include "ah.h"
*/
//#include "ah_desc.h"
#include "dfs_ioctl.h"
#include "dfs_ioctl_private.h"
#include "dfs_interface.h"
#include "_ieee80211_common.h"
#include "vos_api.h"
#include "sirDebug.h"
#define CHANNEL_TURBO 0x00010
#define DFS_PRINTK(_fmt, ...) printk((_fmt), __VA_ARGS__)
#define DFS_DPRINTK(dfs, _m, _fmt, ...) do { \
if (((dfs) == NULL) || \
((dfs) != NULL && \
((_m) & (dfs)->dfs_debug_mask))) { \
VOS_TRACE(VOS_MODULE_ID_SAP, VOS_TRACE_LEVEL_DEBUG, _fmt, __VA_ARGS__);\
} \
} while (0)
#define DFS_MIN(a,b) ((a)<(b)?(a):(b))
#define DFS_MAX(a,b) ((a)>(b)?(a):(b))
#define DFS_DIFF(a,b) (DFS_MAX(a,b) - DFS_MIN(a,b))
/*
* Maximum number of radar events to be processed in a single iteration.
* Allows soft watchdog to run.
*/
#define MAX_EVENTS 100
#define DFS_STATUS_SUCCESS 0
#define DFS_STATUS_FAIL 1
/*
* Constants to use for chirping detection.
*
* All are unconverted as HW reports them.
*
* XXX Are these constants with or without fast clock 5GHz operation?
* XXX Peregrine reports pulses in microseconds, not hardware clocks!
*/
#define MIN_BIN5_DUR 63 /* 50 * 1.25*/
#define MIN_BIN5_DUR_MICROSEC 50
#define MAYBE_BIN5_DUR 35 /* 28 * 1.25*/
#define MAYBE_BIN5_DUR_MICROSEC 28
//#define MAX_BIN5_DUR 131 /* 105 * 1.25*/
#define MAX_BIN5_DUR 145 /* use 145 for osprey */ //conversion is already done using dfs->dur_multiplier//
#define MAX_BIN5_DUR_MICROSEC 105
#define MAX_DFS_RADAR_TABLE_TYPE 256
#define DFS_MARGIN_EQUAL(a, b, margin) ((DFS_DIFF(a,b)) <= margin)
#define DFS_MAX_STAGGERED_BURSTS 3
/* All filter thresholds in the radar filter tables are effective at a 50% channel loading */
#define DFS_CHAN_LOADING_THRESH 50
#define DFS_EXT_CHAN_LOADING_THRESH 30
#define DFS_DEFAULT_PRI_MARGIN 6
#define DFS_DEFAULT_FIXEDPATTERN_PRI_MARGIN 4
#define ATH_DFSQ_LOCK(_dfs) spin_lock_dpc((&(_dfs)->dfs_radarqlock))
#define ATH_DFSQ_UNLOCK(_dfs) spin_unlock_dpc((&(_dfs)->dfs_radarqlock))
#define ATH_DFSQ_LOCK_INIT(_dfs) adf_os_spinlock_init(&(_dfs)->dfs_radarqlock)
#define ATH_ARQ_LOCK(_dfs) spin_lock_dpc((&(_dfs)->dfs_arqlock))
#define ATH_ARQ_UNLOCK(_dfs) spin_unlock_dpc((&(_dfs)->dfs_arqlock))
#define ATH_ARQ_LOCK_INIT(_dfs) adf_os_spinlock_init(&(_dfs)->dfs_arqlock)
#define ATH_DFSEVENTQ_LOCK(_dfs) spin_lock_dpc((&(_dfs)->dfs_eventqlock))
#define ATH_DFSEVENTQ_UNLOCK(_dfs) spin_unlock_dpc((&(_dfs)->dfs_eventqlock))
#define ATH_DFSEVENTQ_LOCK_INIT(_dfs) adf_os_spinlock_init((&(_dfs)->dfs_eventqlock));
#define DFS_TSMASK 0xFFFFFFFF /* Mask for time stamp from descriptor */
#define DFS_TSSHIFT 32 /* Shift for time stamp from descriptor */
#define DFS_TSF_WRAP 0xFFFFFFFFFFFFFFFFULL /* 64 bit TSF wrap value */
#define DFS_64BIT_TSFMASK 0x0000000000007FFFULL /* TS mask for 64 bit value */
#define DFS_AR_RADAR_RSSI_THR 5 /* in dB */
#define DFS_AR_RADAR_RESET_INT 1 /* in secs */
#define DFS_AR_RADAR_MAX_HISTORY 500
#define DFS_AR_REGION_WIDTH 128
#define DFS_AR_RSSI_THRESH_STRONG_PKTS 17 /* in dB */
#define DFS_AR_RSSI_DOUBLE_THRESHOLD 15 /* in dB */
#define DFS_AR_MAX_NUM_ACK_REGIONS 9
#define DFS_AR_ACK_DETECT_PAR_THRESH 20
#define DFS_AR_PKT_COUNT_THRESH 20
#define DFS_MAX_DL_SIZE 64
#define DFS_MAX_DL_MASK 0x3F
#define DFS_NOL_TIME DFS_NOL_TIMEOUT_US
/* 30 minutes in usecs */
#define DFS_WAIT_TIME 60*1000000 /* 1 minute in usecs */
#define DFS_DISABLE_TIME 3*60*1000000 /* 3 minutes in usecs */
#define DFS_MAX_B5_SIZE 128
#define DFS_MAX_B5_MASK 0x0000007F /* 128 */
#define DFS_MAX_RADAR_OVERLAP 16 /* Max number of overlapping filters */
#define DFS_MAX_EVENTS 1024 /* Max number of dfs events which can be q'd */
#define DFS_RADAR_EN 0x80000000 /* Radar detect is capable */
#define DFS_AR_EN 0x40000000 /* AR detect is capable */
#define DFS_MAX_RSSI_VALUE 0x7fffffff /* Max rssi value */
#define DFS_BIN_MAX_PULSES 60 /* max num of pulses in a burst */
#define DFS_BIN5_PRI_LOWER_LIMIT 990 /* us */
/* to cover the single pusle burst case, change from 2010 us to 2010000 us */
/*
* this is reverted back to 2010 as larger value causes false
* bin5 detect (EV76432, EV76320)
*/
#define DFS_BIN5_PRI_HIGHER_LIMIT 2010 /* us */
#define DFS_BIN5_WIDTH_MARGIN 4 /* us */
#define DFS_BIN5_RSSI_MARGIN 5 /* dBm */
/*Following threshold is not specified but should be okay statistically*/
#define DFS_BIN5_BRI_LOWER_LIMIT 300000 /* us */
#define DFS_BIN5_BRI_UPPER_LIMIT 12000000 /* us */
#define DFS_MAX_PULSE_BUFFER_SIZE 1024 /* Max number of pulses kept in buffer */
#define DFS_MAX_PULSE_BUFFER_MASK 0x3ff
#define DFS_FAST_CLOCK_MULTIPLIER (800/11)
#define DFS_NO_FAST_CLOCK_MULTIPLIER (80)
#define DFS_WAR_PLUS_30_MHZ_SEPARATION 30
#define DFS_WAR_MINUS_30_MHZ_SEPARATION -30
#define DFS_WAR_PEAK_INDEX_ZERO 0
#define DFS_TYPE4_WAR_PULSE_DURATION_LOWER_LIMIT 11
#define DFS_TYPE4_WAR_PULSE_DURATION_UPPER_LIMIT 33
#define DFS_TYPE4_WAR_PRI_LOWER_LIMIT 200
#define DFS_TYPE4_WAR_PRI_UPPER_LIMIT 500
#define DFS_TYPE4_WAR_VALID_PULSE_DURATION 12
#define DFS_ETSI_TYPE2_TYPE3_WAR_PULSE_DUR_LOWER_LIMIT 15
#define DFS_ETSI_TYPE2_TYPE3_WAR_PULSE_DUR_UPPER_LIMIT 33
#define DFS_ETSI_TYPE2_WAR_PRI_LOWER_LIMIT 625
#define DFS_ETSI_TYPE2_WAR_PRI_UPPER_LIMIT 5000
#define DFS_ETSI_TYPE3_WAR_PRI_LOWER_LIMIT 250
#define DFS_ETSI_TYPE3_WAR_PRI_UPPER_LIMIT 435
#define DFS_ETSI_WAR_VALID_PULSE_DURATION 15
#define DFS_RADAR_DELAY 500
#define DFS_RADAR_IGNORE 300
#define DFS_RADAR_FALSE_PRI_START 5
#define DFS_RADAR_FLASE_PRI_END 14
#define DFS_SIDX1_SIDX2_SIZE 0x20
#define DFS_SIDX1_SIDX2_MASK 0x1f
#define DFS_SIDX1_SIDX2_TIME_WINDOW 20000
#define DFS_SIDX1_SIDX2_DR_LIM 10
#define DFS_BIG_SIDX 10000
typedef adf_os_spinlock_t dfsq_lock_t;
#ifdef WIN32
#pragma pack(push, dfs_pulseparams, 1)
#endif
struct dfs_pulseparams {
u_int64_t p_time; /* time for start of pulse in usecs*/
u_int8_t p_dur; /* Duration of pulse in usecs*/
u_int8_t p_rssi; /* Duration of pulse in usecs*/
u_int8_t p_seg_id;
int16_t p_sidx;
int8_t p_delta_peak;
u_int32_t p_seq_num;
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_pulseparams)
#endif
#ifdef WIN32
#pragma pack(push, dfs_pulseline, 1)
#endif
struct dfs_sidx1_sidx2_pulse_line {
/* pl_elems - array of pulses in delay line */
struct dfs_pulseparams pl_elems[DFS_SIDX1_SIDX2_SIZE];
u_int32_t pl_firstelem; /* Index of the first element */
u_int32_t pl_lastelem; /* Index of the last element */
u_int32_t pl_numelems; /* Number of elements in the delay line */
} adf_os_packed;
struct dfs_pulseline {
/* pl_elems - array of pulses in delay line */
struct dfs_pulseparams pl_elems[DFS_MAX_PULSE_BUFFER_SIZE];
u_int32_t pl_firstelem; /* Index of the first element */
u_int32_t pl_lastelem; /* Index of the last element */
u_int32_t pl_numelems; /* Number of elements in the delay line */
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_pulseline)
#endif
#ifdef WIN32
#pragma pack(push, dfs_event, 1)
#endif
#define DFS_EVENT_CHECKCHIRP 0x01 /* Whether to check the chirp flag */
#define DFS_EVENT_HW_CHIRP 0x02 /* hardware chirp */
#define DFS_EVENT_SW_CHIRP 0x04 /* software chirp */
/*
* Use this only if the event has CHECKCHIRP set.
*/
#define DFS_EVENT_ISCHIRP(e) \
((e)->re_flags & (DFS_EVENT_HW_CHIRP | DFS_EVENT_SW_CHIRP))
/*
* Check if the given event is to be rejected as not possibly
* a chirp. This means:
* (a) it's a hardware or software checked chirp, and
* (b) the HW/SW chirp bits are both 0.
*/
#define DFS_EVENT_NOTCHIRP(e) \
(((e)->re_flags & (DFS_EVENT_CHECKCHIRP)) && \
(! DFS_EVENT_ISCHIRP((e))))
struct dfs_event {
u_int64_t re_full_ts; /* 64-bit full timestamp from interrupt time */
u_int32_t re_ts; /* Original 15 bit recv timestamp */
u_int8_t re_rssi; /* rssi of radar event */
u_int8_t re_dur; /* duration of radar pulse */
u_int8_t re_chanindex; /* Channel of event */
u_int8_t re_flags; /* Event flags */
u_int32_t re_freq; /* Centre frequency of event, KHz */
u_int32_t re_freq_lo; /* Lower bounds of frequency, KHz */
u_int32_t re_freq_hi; /* Upper bounds of frequency, KHz */
int16_t sidx; /* Pulse Index as in radar summary report */
u_int8_t re_seg_id; /* HT80_80/HT160 use */
u_int8_t re_delta_diff;
int8_t re_delta_peak;
STAILQ_ENTRY(dfs_event) re_list; /* List of radar events */
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_event)
#endif
#define DFS_FILTER_DEFAULT_PRI 1000000
#define DFS_AR_MAX_ACK_RADAR_DUR 511
#define DFS_AR_MAX_NUM_PEAKS 3
#define DFS_AR_ARQ_SIZE 2048 /* 8K AR events for buffer size */
#define DFS_AR_ARQ_SEQSIZE 2049 /* Sequence counter wrap for AR */
#define DFS_RADARQ_SIZE 512 /* 1K radar events for buffer size */
#define DFS_RADARQ_SEQSIZE 513 /* Sequence counter wrap for radar */
#define DFS_NUM_RADAR_STATES 64 /* Number of radar channels we keep state for */
#define DFS_MAX_NUM_RADAR_FILTERS 10 /* Max number radar filters for each type */
#define DFS_MAX_RADAR_TYPES 32 /* Number of different radar types */
struct dfs_ar_state {
u_int32_t ar_prevwidth;
u_int32_t ar_phyerrcount[DFS_AR_MAX_ACK_RADAR_DUR];
u_int32_t ar_acksum;
u_int32_t ar_packetthreshold; /* Thresh to determine traffic load */
u_int32_t ar_parthreshold; /* Thresh to determine peak */
u_int32_t ar_radarrssi; /* Rssi threshold for AR event */
u_int16_t ar_prevtimestamp;
u_int16_t ar_peaklist[DFS_AR_MAX_NUM_PEAKS];
};
#ifdef WIN32
#pragma pack(push, dfs_delayelem, 1)
#endif
struct dfs_delayelem {
u_int32_t de_time; /* Current "filter" time for start of pulse in usecs*/
u_int8_t de_dur; /* Duration of pulse in usecs*/
u_int8_t de_rssi; /* rssi of pulse in dB*/
u_int64_t de_ts; /* time stamp for this delay element */
u_int8_t de_seg_id; /* HT80_80/HT160 use */
int16_t de_sidx;
int8_t de_delta_peak;
u_int32_t de_seq_num;
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_delayelem)
#endif
/* NB: The first element in the circular buffer is the oldest element */
#ifdef WIN32
#pragma pack(push, dfs_delayline, 1)
#endif
struct dfs_delayline {
struct dfs_delayelem dl_elems[DFS_MAX_DL_SIZE]; /* Array of pulses in delay line */
u_int64_t dl_last_ts; /* Last timestamp the delay line was used (in usecs) */
u_int32_t dl_firstelem; /* Index of the first element */
u_int32_t dl_lastelem; /* Index of the last element */
u_int32_t dl_numelems; /* Number of elements in the delay line */
/**
* The following is to handle fractional PRI pulses that can cause false
* detection.
* sequence number of first pulse that was part of threshold match
*/
u_int32_t dl_seq_num_start;
/* sequence number of last pulse that was part of threshold match */
u_int32_t dl_seq_num_stop;
/**
* The following is required because the first pulse may or may not be in the
* delay line but we will find it in the pulse line using dl_seq_num_second's
* diff_ts value
* sequence number of sesecond pulse that was part of threshold match
*/
u_int32_t dl_seq_num_second;
/* we need final search PRI to identify possible fractional PRI issue */
u_int32_t dl_search_pri;
/**
* minimum sidx value of pulses used to match thershold. used for sidx
* spread check
*/
int16_t dl_min_sidx;
/**
* maximum sidx value of pulses used to match thershold. used for sidx
* spread check
*/
int8_t dl_max_sidx;
/* number of pulse in the delay line that had valid delta peak value */
u_int8_t dl_delta_peak_match_count;
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_delayline)
#endif
#ifdef WIN32
#pragma pack(push, dfs_filter, 1)
#endif
struct dfs_filter {
struct dfs_delayline rf_dl; /* Delay line of pulses for this filter */
u_int32_t rf_numpulses; /* Number of pulses in the filter */
u_int32_t rf_minpri; /* min pri to be considered for this filter*/
u_int32_t rf_maxpri; /* max pri to be considered for this filter*/
u_int32_t rf_threshold; /* match filter output threshold for radar detect */
u_int32_t rf_filterlen; /* Length (in usecs) of the filter */
u_int32_t rf_patterntype; /* fixed or variable pattern type */
u_int32_t rf_fixed_pri_radar_pulse; /* indicates if it is a fixed pri pulse */
u_int32_t rf_mindur; /* Min duration for this radar filter */
u_int32_t rf_maxdur; /* Max duration for this radar filter */
u_int32_t rf_ignore_pri_window;
u_int32_t rf_pulseid; /* Unique ID corresponding to the original filter ID */
/**
* To reduce false detection, look at frequency spread. For now we will
* use sidx spread. But for HT160 frequency spread will be a better
* measure.
* Maximum SIDX value spread in a matched sequence excluding FCC Bin 5
*/
u_int16_t rf_sidx_spread;
/**
* Minimum allowed delta_peak value for a pulse to be considetred for
* this filter's match
*/
int8_t rf_check_delta_peak;
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_filter)
#endif
struct dfs_filtertype {
struct dfs_filter *ft_filters[DFS_MAX_NUM_RADAR_FILTERS];
u_int32_t ft_filterdur; /* Duration of pulse which specifies filter type*/
u_int32_t ft_numfilters; /* Num filters of this type */
u_int64_t ft_last_ts; /* Last timestamp this filtertype was used
* (in usecs) */
u_int32_t ft_mindur; /* min pulse duration to be considered
* for this filter type */
u_int32_t ft_maxdur; /* max pulse duration to be considered
* for this filter type */
u_int32_t ft_rssithresh; /* min rssi to be considered
* for this filter type */
u_int32_t ft_numpulses; /* Num pulses in each filter of this type */
u_int32_t ft_patterntype; /* fixed or variable pattern type */
u_int32_t ft_minpri; /* min pri to be considered for this type */
u_int32_t ft_rssimargin; /* rssi threshold margin. In Turbo Mode HW
* reports rssi 3dB lower than in non TURBO
* mode. This will offset that diff. */
};
struct dfs_state {
struct ieee80211_channel rs_chan; /* Channel info */
u_int8_t rs_chanindex; /* Channel index in radar structure */
u_int32_t rs_numradarevents; /* Number of radar events */
struct ath_dfs_phyerr_param rs_param;
};
#define DFS_NOL_TIMEOUT_S (30*60) /* 30 minutes in seconds */
//#define DFS_NOL_TIMEOUT_S (5*60) /* 5 minutes in seconds - debugging */
#define DFS_NOL_TIMEOUT_MS (DFS_NOL_TIMEOUT_S * 1000)
#define DFS_NOL_TIMEOUT_US (DFS_NOL_TIMEOUT_MS * 1000)
#ifdef WIN32
#pragma pack(push, dfs_nolelem, 1)
#endif
struct dfs_nolelem {
u_int32_t nol_freq; /* centre frequency */
u_int32_t nol_chwidth; /* event width (MHz) */
unsigned long nol_start_ticks; /* NOL start time in OS ticks */
u_int32_t nol_timeout_ms; /* NOL timeout value in msec */
os_timer_t nol_timer; /* per element NOL timer */
struct dfs_nolelem *nol_next; /* next element pointer */
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_nolelem)
#endif
/* Pass structure to DFS NOL timer */
struct dfs_nol_timer_arg {
struct ath_dfs *dfs;
u_int16_t delfreq;
u_int16_t delchwidth;
};
#ifdef WIN32
#pragma pack(push, dfs_info, 1)
#endif
struct dfs_info {
int rn_use_nol; /* Use the NOL when radar found (default: TRUE) */
u_int32_t rn_numradars; /* Number of different types of radars */
u_int64_t rn_lastfull_ts; /* Last 64 bit timstamp from recv interrupt */
u_int16_t rn_last_ts; /* last 15 bit ts from recv descriptor */
u_int32_t rn_last_unique_ts; /* last unique 32 bit ts from recv descriptor */
u_int64_t rn_ts_prefix; /* Prefix to prepend to 15 bit recv ts */
u_int32_t rn_numbin5radars; /* Number of bin5 radar pulses to search for */
u_int32_t rn_fastdivGCval; /* Value of fast diversity gc limit from init file */
int32_t rn_minrssithresh; /* Min rssi for all radar types */
u_int32_t rn_maxpulsedur; /* Max pulse width in TSF ticks */
u_int8_t dfs_ext_chan_busy;
u_int64_t ext_chan_busy_ts;
u_int64_t dfs_bin5_chirp_ts;
u_int8_t dfs_last_bin5_dur;
} adf_os_packed;
#ifdef WIN32
#pragma pack(pop, dfs_info)
#endif
struct dfs_bin5elem {
u_int64_t be_ts; /* Timestamp for the bin5 element */
u_int32_t be_rssi; /* Rssi for the bin5 element */
u_int32_t be_dur; /* Duration of bin5 element */
};
struct dfs_bin5radars {
struct dfs_bin5elem br_elems[DFS_MAX_B5_SIZE]; /* List of bin5 elems that fall
* within the time window */
u_int32_t br_firstelem; /* Index of the first element */
u_int32_t br_lastelem; /* Index of the last element */
u_int32_t br_numelems; /* Number of elements in the delay line */
struct dfs_bin5pulse br_pulse; /* Original info about bin5 pulse */
};
struct dfs_stats {
u_int32_t num_radar_detects; /* total num. of radar detects */
u_int32_t total_phy_errors;
u_int32_t owl_phy_errors;
u_int32_t pri_phy_errors;
u_int32_t ext_phy_errors;
u_int32_t dc_phy_errors;
u_int32_t early_ext_phy_errors;
u_int32_t bwinfo_errors;
u_int32_t datalen_discards;
u_int32_t rssi_discards;
u_int64_t last_reset_tstamp;
};
/*
* This is for debuggin DFS as console log interferes with (helps)
* radar detection
*/
#define DFS_EVENT_LOG_SIZE 256
struct dfs_event_log {
u_int64_t ts; /* 64-bit full timestamp from interrupt time */
u_int32_t diff_ts; /* diff timestamp */
u_int8_t rssi; /* rssi of radar event */
u_int8_t dur; /* duration of radar pulse */
};
#define ATH_DFS_RESET_TIME_S 7
#define ATH_DFS_WAIT (60 + ATH_DFS_RESET_TIME_S) /* 60 seconds */
#define ATH_DFS_WAIT_MS ((ATH_DFS_WAIT) * 1000) /*in MS*/
#define ATH_DFS_WEATHER_CHANNEL_WAIT_MIN 10 /*10 minutes*/
#define ATH_DFS_WEATHER_CHANNEL_WAIT_S (ATH_DFS_WEATHER_CHANNEL_WAIT_MIN * 60)
#define ATH_DFS_WEATHER_CHANNEL_WAIT_MS ((ATH_DFS_WEATHER_CHANNEL_WAIT_S) * 1000) /*in MS*/
#define ATH_DFS_WAIT_POLL_PERIOD 2 /* 2 seconds */
#define ATH_DFS_WAIT_POLL_PERIOD_MS ((ATH_DFS_WAIT_POLL_PERIOD) * 1000) /*in MS*/
#define ATH_DFS_TEST_RETURN_PERIOD 2 /* 2 seconds */
#define ATH_DFS_TEST_RETURN_PERIOD_MS ((ATH_DFS_TEST_RETURN_PERIOD) * 1000)/* n MS*/
#define IS_CHANNEL_WEATHER_RADAR(chan) ((chan->ic_freq >= 5600) && (chan->ic_freq <= 5650))
#define DFS_DEBUG_TIMEOUT_S 30 // debug timeout is 30 seconds
#define DFS_DEBUG_TIMEOUT_MS (DFS_DEBUG_TIMEOUT_S * 1000)
#define RSSI_POSSIBLY_FALSE 50
#define SEARCH_FFT_REPORT_PEAK_MAG_THRSH 40
#if 0
struct ath_dfs_caps {
u_int32_t
ath_dfs_ext_chan_ok:1, /* Can radar be detected on the extension chan? */
ath_dfs_combined_rssi_ok:1, /* Can use combined radar RSSI? */
/* the following flag is used to indicate if radar detection scheme */
/* should use enhanced chirping detection algorithm. This flag also */
/* determines if certain radar data should be discarded to minimize */
/* false detection of radar. */
ath_dfs_use_enhancement:1,
ath_strong_signal_diversiry:1;
/*
* goes with ath_strong_signal_diversiry:
* If we have fast diversity capability, read off
* Strong Signal fast diversity count set in the ini
* file, and store so we can restore the value when
* radar is disabled
*/
u_int32_t ath_fastdiv_val;
};
struct ath_dfs_radar_tab_info {
u_int32_t dfsdomain;
int numradars;
struct dfs_pulse *dfs_radars;
int numb5radars;
struct dfs_bin5pulse *b5pulses;
HAL_PHYERR_PARAM dfs_defaultparams;
};
#endif
struct ath_dfs {
uint32_t dfs_debug_mask; /* current debug bitmask */
int16_t dfs_curchan_radindex; /* cur. channel radar index */
int16_t dfs_extchan_radindex; /* extension channel radar index */
u_int32_t dfsdomain; /* cur. DFS domain */
u_int32_t dfs_proc_phyerr; /* Flags for Phy Errs to process */
struct ieee80211com *ic;
STAILQ_HEAD(,dfs_event) dfs_eventq; /* Q of free dfs event objects */
dfsq_lock_t dfs_eventqlock; /* Lock for free dfs event list */
STAILQ_HEAD(,dfs_event) dfs_radarq; /* Q of radar events */
dfsq_lock_t dfs_radarqlock; /* Lock for dfs q */
STAILQ_HEAD(,dfs_event) dfs_arq; /* Q of AR events */
dfsq_lock_t dfs_arqlock; /* Lock for AR q */
struct dfs_ar_state dfs_ar_state; /* AR state */
/* dfs_radar - Per-Channel Radar detector state */
struct dfs_state dfs_radar[DFS_NUM_RADAR_STATES];
/* dfs_radarf - One filter for each radar pulse type */
struct dfs_filtertype *dfs_radarf[DFS_MAX_RADAR_TYPES];
struct dfs_filtertype *dfs_dc_radarf[DFS_MAX_RADAR_TYPES];
struct dfs_info dfs_rinfo; /* State vars for radar processing */
struct dfs_bin5radars *dfs_b5radars;/* array of bin5 radar events */
int8_t **dfs_radartable; /* map of radar durs to filter types */
/* map of dc radar durs to filter types */
int8_t **dfs_dc_radartable;
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
struct dfs_nolelem *dfs_nol; /* Non occupancy list for radar */
int dfs_nol_count; /* How many items? */
#endif
struct ath_dfs_phyerr_param dfs_defaultparams; /* Default phy params per radar state */
struct dfs_stats ath_dfs_stats; /* DFS related stats */
struct dfs_pulseline *pulses; /* pulse history */
struct dfs_event *events; /* Events structure */
struct dfs_sidx1_sidx2_pulse_line sidx1_sidx2_elems;
u_int32_t
ath_radar_tasksched:1, /* radar task is scheduled */
ath_dfswait:1, /* waiting on channel for radar detect */
ath_dfstest:1, /* Test timer in progress */
ath_radar_delaysched:1, /*radar found event delay*/
ath_radar_ignore_after_assoc:1; /*ignore radar 300ms after assoc*/
struct ath_dfs_caps dfs_caps;
u_int8_t ath_dfstest_ieeechan; /* IEEE chan num to return to after
* a dfs mute test */
#ifndef ATH_DFS_RADAR_DETECTION_ONLY
u_int32_t ath_dfs_cac_time; /* CAC period */
u_int32_t ath_dfstesttime; /* Time to stay off chan during dfs test */
os_timer_t ath_dfswaittimer; /* dfs wait timer */
os_timer_t ath_dfstesttimer; /* dfs mute test timer */
os_timer_t ath_dfs_debug_timer; /* dfs debug timer */
u_int8_t dfs_bangradar;
#endif
os_timer_t ath_dfs_task_timer; /* dfs wait timer */
vos_timer_t ath_dfs_radar_ignore_timer; /*ignore radar timer*/
vos_timer_t ath_dfs_radar_delay_timer; /*radar found event delay timer*/
int dur_multiplier;
u_int16_t ath_dfs_isdfsregdomain; /* true when we are DFS domain */
int ath_dfs_false_rssi_thres;
int ath_dfs_peak_mag;
struct dfs_event_log radar_log[DFS_EVENT_LOG_SIZE];
int dfs_event_log_count;
int dfs_event_log_on;
int dfs_phyerr_count; /* same as number of PHY radar interrupts */
int dfs_phyerr_reject_count; /* when TLV is supported, # of radar events ignored after TLV is parsed */
int dfs_phyerr_queued_count; /* number of radar events queued for matching the filters */
int dfs_phyerr_freq_min;
int dfs_phyerr_freq_max;
int dfs_phyerr_w53_counter;
int dfs_pri_multiplier; /* allow pulse if they are within multiple of PRI for the radar type */
int ath_dfs_nol_timeout;
int dfs_pri_multiplier_ini; /* dfs pri configuration from ini */
/*
* Flag to indicate if DFS test mode is enabled and
* channel switch is disabled.
*/
int8_t disable_dfs_ch_switch;
/*
* Currently some WiFi chips sends radar, so add war as below
* Ignore radar found 500ms before assoc request packet and 300ms after
* assoc request packet.
* Create new queue and collect radar pulse with pulse index1 and pulse
* index2. Save 32 radar pulses for the new queue. Once radar is found,
* for radar pulse in the new queue, remove radar pulse that happens 20ms
* ago. Find the biggest and smallest dur for the rest radar pulse in the
* new queue. If they have more than 10 difference, then ignore this radar
* found.
*/
int8_t dfs_enable_radar_war;
u_int32_t dfs_seq_num;
};
/* This should match the table from if_ath.c */
enum {
ATH_DEBUG_DFS = 0x00000100, /* Minimal DFS debug */
ATH_DEBUG_DFS1 = 0x00000200, /* Normal DFS debug */
ATH_DEBUG_DFS2 = 0x00000400, /* Maximal DFS debug */
ATH_DEBUG_DFS3 = 0x00000800, /* matched filterID display */
ATH_DEBUG_DFS_PHYERR = 0x00001000, /* phy error parsing */
ATH_DEBUG_DFS_NOL = 0x00002000, /* NOL related entries */
ATH_DEBUG_DFS_PHYERR_SUM = 0x00004000, /* PHY error summary */
ATH_DEBUG_DFS_PHYERR_PKT = 0x00008000, /* PHY error payload */
ATH_DEBUG_DFS_BIN5 = 0x00010000, /* bin5 checks */
ATH_DEBUG_DFS_BIN5_FFT = 0x00020000, /* bin5 FFT check */
ATH_DEBUG_DFS_BIN5_PULSE = 0x00040000, /* bin5 pulse check */
};
#define IS_CHAN_HT40(_c) IEEE80211_IS_CHAN_11N_HT40(_c)
#define IS_CHAN_HT40_PLUS(_c) IEEE80211_IS_CHAN_11N_HT40PLUS(_c)
#define IS_CHAN_HT40_MINUS(_c) IEEE80211_IS_CHAN_11N_HT40MINUS(_c)
/*
* chirp notes!
*
* Pre-Sowl chips don't do FFT reports, so chirp pulses simply show up
* as long duration pulses.
*
* The bin5 checking code would simply look for a chirp pulse of the correct
* duration (within MIN_BIN5_DUR and MAX_BIN5_DUR) and add it to the "chirp"
* pattern.
*
* For Sowl and later, an FFT was done on longer duration frames. If those
* frames looked like a chirp, their duration was adjusted to fall within
* the chirp duration limits. If the pulse failed the chirp test (it had
* no FFT data or the FFT didn't meet the chirping requirements) then the
* pulse duration was adjusted to be greater than MAX_BIN5_DUR, so it
* would always fail chirp detection.
*
* This is pretty horrible.
*
* The eventual goal for chirp handling is thus:
*
* + In case someone ever wants to do chirp detection with this code on
* chips that don't support chirp detection, you can still do it based
* on pulse duration. That's your problem to solve.
*
* + For chips that do hardware chirp detection or FFT, the "do_check_chirp"
* bit should be set.
*
* + Then, either is_hw_chirp or is_sw_chirp is set, indicating that
* the hardware or software post-processing of the chirp event found
* that indeed it was a chirp.
*
* + Finally, the bin5 code should just check whether the chirp bits are
* set and behave appropriately, falling back onto the duration checks
* if someone wishes to use this on older hardware (or with disabled
* FFTs, for whatever reason.)
*/
/*
* XXX TODO:
*
* + add duration in uS and raw duration, so the PHY error parsing
* code is responsible for doing the duration calculation;
* + add ts in raw and corrected, so the PHY error parsing
* code is responsible for doing the offsetting, not the radar
* event code.
*/
struct dfs_phy_err {
u_int64_t fulltsf; /* 64-bit TSF as read from MAC */
uint32_t is_pri:1, /* detected on primary channel */
is_ext:1, /* detected on extension channel */
is_dc:1, /* detected at DC */
is_early:1, /* early detect */
do_check_chirp:1, /* whether to check hw_chirp/sw_chirp */
is_hw_chirp:1, /* hardware-detected chirp */
is_sw_chirp:1; /* software detected chirp */
u_int32_t rs_tstamp; /* 32 bit TSF from RX descriptor (event) */
u_int32_t freq; /* Centre frequency of event - KHz */
u_int32_t freq_lo; /* Lower bounds of frequency - KHz */
u_int32_t freq_hi; /* Upper bounds of frequency - KHz */
u_int8_t rssi; /* pulse RSSI */
u_int8_t dur; /* pulse duration, raw (not uS) */
int sidx; /* Pulse Index as in radar summary report */
u_int8_t pulse_delta_diff;
int8_t pulse_delta_peak;
};
/* Attach, detach, handle ioctl prototypes */
int dfs_get_thresholds(struct ieee80211com *ic,
struct ath_dfs_phyerr_param *param);
int dfs_set_thresholds(struct ieee80211com *ic,
const u_int32_t threshtype, const u_int32_t value);
/* PHY error and radar event handling */
int dfs_process_radarevent(struct ath_dfs *dfs, struct ieee80211_channel *chan);
/* Non occupancy (NOL) handling prototypes */
void dfs_nol_addchan(struct ath_dfs *dfs, struct ieee80211_channel *chan, u_int32_t dfs_nol_timeout);
void dfs_get_nol(struct ath_dfs *dfs, struct dfsreq_nolelem *dfs_nol, int *nchan);
void dfs_set_nol(struct ath_dfs *dfs, struct dfsreq_nolelem *dfs_nol, int nchan);
void dfs_nol_update(struct ath_dfs *dfs);
void dfs_nol_timer_cleanup(struct ath_dfs *dfs);
/* FCC Bin5 detection prototypes */
int dfs_bin5_check_pulse(struct ath_dfs *dfs, struct dfs_event *re,
struct dfs_bin5radars *br);
int dfs_bin5_addpulse(struct ath_dfs *dfs, struct dfs_bin5radars *br,
struct dfs_event *re, u_int64_t thists);
int dfs_bin5_check(struct ath_dfs *dfs);
int dfs_check_chirping(struct ath_dfs *dfs, void *buf,
u_int16_t datalen, int is_ctl,
int is_ext, int *slope, int *is_dc);
u_int8_t dfs_retain_bin5_burst_pattern(struct ath_dfs *dfs, u_int32_t diff_ts, u_int8_t old_dur);
u_int8_t dfs_retain_bin5_burst_pattern(struct ath_dfs *dfs, u_int32_t diff_ts, u_int8_t old_dur);
int dfs_get_random_bin5_dur(struct ath_dfs *dfs, u_int64_t tstamp);
/* Debug prototypes */
void dfs_print_delayline(struct ath_dfs *dfs, struct dfs_delayline *dl);
void dfs_print_nol(struct ath_dfs *dfs);
void dfs_print_filters(struct ath_dfs *dfs);
void dfs_print_activity(struct ath_dfs *dfs);
OS_TIMER_FUNC(dfs_debug_timeout);
void dfs_print_filter(struct ath_dfs *dfs, struct dfs_filter *rf);
/* Misc prototypes */
u_int32_t dfs_round(int32_t val);
struct dfs_state* dfs_getchanstate(struct ath_dfs *dfs, u_int8_t *index, int ext_ch_flag);
/* Reset and init data structures */
int dfs_init_radar_filters( struct ieee80211com *ic, struct ath_dfs_radar_tab_info *radar_info);
void dfs_reset_alldelaylines(struct ath_dfs *dfs);
void dfs_reset_delayline(struct dfs_delayline *dl);
void dfs_reset_filter_delaylines(struct dfs_filtertype *dft);
void dfs_reset_radarq(struct ath_dfs *dfs);
/* Detection algorithm prototypes */
void dfs_add_pulse(struct ath_dfs *dfs, struct dfs_filter *rf,
struct dfs_event *re, u_int32_t deltaT, u_int64_t this_ts);
int dfs_bin_fixedpattern_check(struct ath_dfs *dfs, struct dfs_filter *rf,
u_int32_t dur, int ext_chan_flag);
int dfs_bin_check(struct ath_dfs *dfs, struct dfs_filter *rf,
u_int32_t deltaT, u_int32_t dur, int ext_chan_flag);
int dfs_bin_pri_check(struct ath_dfs *dfs, struct dfs_filter *rf,
struct dfs_delayline *dl, u_int32_t score,
u_int32_t refpri, u_int32_t refdur, int ext_chan_flag, int fundamentalpri);
int dfs_staggered_check(struct ath_dfs *dfs, struct dfs_filter *rf,
u_int32_t deltaT, u_int32_t width);
/* False detection reduction */
int dfs_get_pri_margin(struct ath_dfs *dfs, int is_extchan_detect,
int is_fixed_pattern);
int dfs_get_filter_threshold(struct ath_dfs *dfs, struct dfs_filter *rf,
int is_extchan_detect);
/* AR related prototypes */
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void dfs_process_ar_event(struct ath_dfs *dfs, struct ieee80211_channel *chan);
*/
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void ath_ar_disable(struct ath_dfs *dfs);
*/
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void ath_ar_enable(struct ath_dfs *dfs);
*/
void dfs_reset_ar(struct ath_dfs *dfs);
/* Commenting out since all the ar functions are obsolete and
* the function definition has been removed as part of dfs_ar.c
* void dfs_reset_arq(struct ath_dfs *dfs);
*/
struct ieee80211_channel *ieee80211_get_extchan(struct ieee80211com *ic);
#endif /* _DFS_H_ */