blob: e040e0aca97da2c82e4705aafcef550e4f28529e [file] [log] [blame] [edit]
/*
* Copyright (c) 2014-2016, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <gic_v2.h>
#include <gic_v3.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#include <stdint.h>
/* Value used to initialize Non-Secure IRQ priorities four at a time */
#define GICD_IPRIORITYR_DEF_VAL \
(GIC_HIGHEST_NS_PRIORITY | \
(GIC_HIGHEST_NS_PRIORITY << 8) | \
(GIC_HIGHEST_NS_PRIORITY << 16) | \
(GIC_HIGHEST_NS_PRIORITY << 24))
static uintptr_t g_gicc_base;
static uintptr_t g_gicd_base;
static uintptr_t g_gicr_base;
static const unsigned int *g_irq_sec_ptr;
static unsigned int g_num_irqs;
/*******************************************************************************
* This function does some minimal GICv3 configuration. The Firmware itself does
* not fully support GICv3 at this time and relies on GICv2 emulation as
* provided by GICv3. This function allows software (like Linux) in later stages
* to use full GICv3 features.
******************************************************************************/
static void gicv3_cpuif_setup(void)
{
unsigned int val;
uintptr_t base;
/*
* When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
* bit set. In order to allow interrupts to get routed to the CPU we
* need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
* to clear (GICv3 Architecture specification 5.4.23).
* GICR_WAKER is NOT banked per CPU, compute the correct base address
* per CPU.
*/
assert(g_gicr_base);
base = gicv3_get_rdist(g_gicr_base, read_mpidr());
if (base == (uintptr_t)NULL) {
/* No re-distributor base address. This interface cannot be
* configured.
*/
panic();
}
val = gicr_read_waker(base);
val &= ~WAKER_PS;
gicr_write_waker(base, val);
dsb();
/* We need to wait for ChildrenAsleep to clear. */
val = gicr_read_waker(base);
while (val & WAKER_CA)
val = gicr_read_waker(base);
val = read_icc_sre_el3();
write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
isb();
}
/*******************************************************************************
* This function does some minimal GICv3 configuration when cores go
* down.
******************************************************************************/
static void gicv3_cpuif_deactivate(void)
{
unsigned int val;
uintptr_t base;
/*
* When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
* wait for GICR_WAKER.ChildrenAsleep to get set.
* (GICv3 Architecture specification 5.4.23).
* GICR_WAKER is NOT banked per CPU, compute the correct base address
* per CPU.
*/
assert(g_gicr_base);
base = gicv3_get_rdist(g_gicr_base, read_mpidr());
if (base == (uintptr_t)NULL) {
/* No re-distributor base address. This interface cannot be
* configured.
*/
panic();
}
val = gicr_read_waker(base);
val |= WAKER_PS;
gicr_write_waker(base, val);
dsb();
/* We need to wait for ChildrenAsleep to set. */
val = gicr_read_waker(base);
while ((val & WAKER_CA) == 0)
val = gicr_read_waker(base);
}
/*******************************************************************************
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
* and set the priority mask register to allow all interrupts to trickle in.
******************************************************************************/
void arm_gic_cpuif_setup(void)
{
unsigned int val;
assert(g_gicc_base);
val = gicc_read_iidr(g_gicc_base);
/*
* If GICv3 we need to do a bit of additional setup. We want to
* allow default GICv2 behaviour but allow the next stage to
* enable full gicv3 features.
*/
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3)
gicv3_cpuif_setup();
val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
gicc_write_pmr(g_gicc_base, GIC_PRI_MASK);
gicc_write_ctlr(g_gicc_base, val);
}
/*******************************************************************************
* Place the cpu interface in a state where it can never make a cpu exit wfi as
* as result of an asserted interrupt. This is critical for powering down a cpu
******************************************************************************/
void arm_gic_cpuif_deactivate(void)
{
unsigned int val;
/* Disable secure, non-secure interrupts and disable their bypass */
assert(g_gicc_base);
val = gicc_read_ctlr(g_gicc_base);
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
gicc_write_ctlr(g_gicc_base, val);
val = gicc_read_iidr(g_gicc_base);
/*
* If GICv3 we need to do a bit of additional setup. Make sure the
* RDIST is put to sleep.
*/
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3)
gicv3_cpuif_deactivate();
}
/*******************************************************************************
* Per cpu gic distributor setup which will be done by all cpus after a cold
* boot/hotplug. This marks out the secure interrupts & enables them.
******************************************************************************/
void arm_gic_pcpu_distif_setup(void)
{
unsigned int index, irq_num, sec_ppi_sgi_mask;
assert(g_gicd_base);
/* Setup PPI priorities doing four at a time */
for (index = 0; index < 32; index += 4) {
gicd_write_ipriorityr(g_gicd_base, index,
GICD_IPRIORITYR_DEF_VAL);
}
assert(g_irq_sec_ptr);
sec_ppi_sgi_mask = 0;
/* Ensure all SGIs and PPIs are Group0 to begin with */
gicd_write_igroupr(g_gicd_base, 0, 0);
for (index = 0; index < g_num_irqs; index++) {
irq_num = g_irq_sec_ptr[index];
if (irq_num < MIN_SPI_ID) {
/* We have an SGI or a PPI */
sec_ppi_sgi_mask |= 1U << irq_num;
gicd_set_ipriorityr(g_gicd_base, irq_num,
GIC_HIGHEST_SEC_PRIORITY);
gicd_set_isenabler(g_gicd_base, irq_num);
}
}
/*
* Invert the bitmask to create a mask for non-secure PPIs and
* SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
* update the GICR_IGROUPR0 as well in case we are running on a GICv3
* system. This is critical if GICD_CTLR.ARE_NS=1.
*/
gicd_write_igroupr(g_gicd_base, 0, ~sec_ppi_sgi_mask);
}
/*******************************************************************************
* Get the current CPU bit mask from GICD_ITARGETSR0
******************************************************************************/
static unsigned int arm_gic_get_cpuif_id(void)
{
unsigned int val;
val = gicd_read_itargetsr(g_gicd_base, 0);
return val & GIC_TARGET_CPU_MASK;
}
/*******************************************************************************
* Global gic distributor setup which will be done by the primary cpu after a
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
* then enables the secure GIC distributor interface.
******************************************************************************/
static void arm_gic_distif_setup(void)
{
unsigned int num_ints, ctlr, index, irq_num;
uint8_t target_cpu;
/* Disable the distributor before going further */
assert(g_gicd_base);
ctlr = gicd_read_ctlr(g_gicd_base);
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
gicd_write_ctlr(g_gicd_base, ctlr);
/*
* Mark out non-secure SPI interrupts. The number of interrupts is
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
*/
num_ints = gicd_read_typer(g_gicd_base) & IT_LINES_NO_MASK;
num_ints = (num_ints + 1) << 5;
for (index = MIN_SPI_ID; index < num_ints; index += 32)
gicd_write_igroupr(g_gicd_base, index, ~0);
/* Setup SPI priorities doing four at a time */
for (index = MIN_SPI_ID; index < num_ints; index += 4) {
gicd_write_ipriorityr(g_gicd_base, index,
GICD_IPRIORITYR_DEF_VAL);
}
/* Read the target CPU mask */
target_cpu = arm_gic_get_cpuif_id();
/* Configure SPI secure interrupts now */
assert(g_irq_sec_ptr);
for (index = 0; index < g_num_irqs; index++) {
irq_num = g_irq_sec_ptr[index];
if (irq_num >= MIN_SPI_ID) {
/* We have an SPI */
gicd_clr_igroupr(g_gicd_base, irq_num);
gicd_set_ipriorityr(g_gicd_base, irq_num,
GIC_HIGHEST_SEC_PRIORITY);
gicd_set_itargetsr(g_gicd_base, irq_num, target_cpu);
gicd_set_isenabler(g_gicd_base, irq_num);
}
}
/*
* Configure the SGI and PPI. This is done in a separated function
* because each CPU is responsible for initializing its own private
* interrupts.
*/
arm_gic_pcpu_distif_setup();
gicd_write_ctlr(g_gicd_base, ctlr | ENABLE_GRP0);
}
/*******************************************************************************
* Initialize the ARM GIC driver with the provided platform inputs
******************************************************************************/
void arm_gic_init(uintptr_t gicc_base,
uintptr_t gicd_base,
uintptr_t gicr_base,
const unsigned int *irq_sec_ptr,
unsigned int num_irqs)
{
unsigned int val;
assert(gicc_base);
assert(gicd_base);
assert(irq_sec_ptr);
g_gicc_base = gicc_base;
g_gicd_base = gicd_base;
val = gicc_read_iidr(g_gicc_base);
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
assert(gicr_base);
g_gicr_base = gicr_base;
}
g_irq_sec_ptr = irq_sec_ptr;
g_num_irqs = num_irqs;
}
/*******************************************************************************
* Setup the ARM GIC CPU and distributor interfaces.
******************************************************************************/
void arm_gic_setup(void)
{
arm_gic_cpuif_setup();
arm_gic_distif_setup();
}
/*******************************************************************************
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. This function provides a common implementation of
* plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
* across platforms. It lets the interrupt management framework determine
* for a type of interrupt and security state, which line should be used in the
* SCR_EL3 to control its routing to EL3. The interrupt line is represented as
* the bit position of the IRQ or FIQ bit in the SCR_EL3.
******************************************************************************/
uint32_t arm_gic_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
assert(type == INTR_TYPE_S_EL1 ||
type == INTR_TYPE_EL3 ||
type == INTR_TYPE_NS);
assert(sec_state_is_valid(security_state));
/*
* We ignore the security state parameter under the assumption that
* both normal and secure worlds are using ARM GICv2. This parameter
* will be used when the secure world starts using GICv3.
*/
#if ARM_GIC_ARCH == 2
return gicv2_interrupt_type_to_line(g_gicc_base, type);
#else
#error "Invalid ARM GIC architecture version specified for platform port"
#endif /* ARM_GIC_ARCH */
}
#if ARM_GIC_ARCH == 2
/*******************************************************************************
* This function returns the type of the highest priority pending interrupt at
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
* interrupt pending.
******************************************************************************/
uint32_t arm_gic_get_pending_interrupt_type(void)
{
uint32_t id;
assert(g_gicc_base);
id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK;
/* Assume that all secure interrupts are S-EL1 interrupts */
if (id < 1022)
return INTR_TYPE_S_EL1;
if (id == GIC_SPURIOUS_INTERRUPT)
return INTR_TYPE_INVAL;
return INTR_TYPE_NS;
}
/*******************************************************************************
* This function returns the id of the highest priority pending interrupt at
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
* interrupt pending.
******************************************************************************/
uint32_t arm_gic_get_pending_interrupt_id(void)
{
uint32_t id;
assert(g_gicc_base);
id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK;
if (id < 1022)
return id;
if (id == 1023)
return INTR_ID_UNAVAILABLE;
/*
* Find out which non-secure interrupt it is under the assumption that
* the GICC_CTLR.AckCtl bit is 0.
*/
return gicc_read_ahppir(g_gicc_base) & INT_ID_MASK;
}
/*******************************************************************************
* This functions reads the GIC cpu interface Interrupt Acknowledge register
* to start handling the pending interrupt. It returns the contents of the IAR.
******************************************************************************/
uint32_t arm_gic_acknowledge_interrupt(void)
{
assert(g_gicc_base);
return gicc_read_IAR(g_gicc_base);
}
/*******************************************************************************
* This functions writes the GIC cpu interface End Of Interrupt register with
* the passed value to finish handling the active interrupt
******************************************************************************/
void arm_gic_end_of_interrupt(uint32_t id)
{
assert(g_gicc_base);
gicc_write_EOIR(g_gicc_base, id);
}
/*******************************************************************************
* This function returns the type of the interrupt id depending upon the group
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1.
******************************************************************************/
uint32_t arm_gic_get_interrupt_type(uint32_t id)
{
uint32_t group;
assert(g_gicd_base);
group = gicd_get_igroupr(g_gicd_base, id);
/* Assume that all secure interrupts are S-EL1 interrupts */
if (group == GRP0)
return INTR_TYPE_S_EL1;
else
return INTR_TYPE_NS;
}
#else
#error "Invalid ARM GIC architecture version specified for platform port"
#endif /* ARM_GIC_ARCH */