blob: 92fdadcfae67ae0f7f82a44a7eb44a951b7148a0 [file] [log] [blame]
/*
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <mce.h>
#include <memctrl.h>
#include <memctrl_v2.h>
#include <mmio.h>
#include <smmu.h>
#include <string.h>
#include <tegra_def.h>
#include <tegra_platform.h>
#include <utils.h>
#include <xlat_tables_v2.h>
/* Video Memory base and size (live values) */
static uint64_t video_mem_base;
static uint64_t video_mem_size_mb;
static void tegra_memctrl_reconfig_mss_clients(void)
{
#if ENABLE_ROC_FOR_ORDERING_CLIENT_REQUESTS
uint32_t val, wdata_0, wdata_1;
/*
* Assert Memory Controller's HOTRESET_FLUSH_ENABLE signal for
* boot and strongly ordered MSS clients to flush existing memory
* traffic and stall future requests.
*/
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL0);
assert(val == MC_CLIENT_HOTRESET_CTRL0_RESET_VAL);
wdata_0 = MC_CLIENT_HOTRESET_CTRL0_HDA_FLUSH_ENB |
#if ENABLE_AFI_DEVICE
MC_CLIENT_HOTRESET_CTRL0_AFI_FLUSH_ENB |
#endif
MC_CLIENT_HOTRESET_CTRL0_SATA_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL0_XUSB_HOST_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL0_XUSB_DEV_FLUSH_ENB;
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL0, wdata_0);
/* Wait for HOTRESET STATUS to indicate FLUSH_DONE */
do {
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS0);
} while ((val & wdata_0) != wdata_0);
/* Wait one more time due to SW WAR for known legacy issue */
do {
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS0);
} while ((val & wdata_0) != wdata_0);
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL1);
assert(val == MC_CLIENT_HOTRESET_CTRL1_RESET_VAL);
wdata_1 = MC_CLIENT_HOTRESET_CTRL1_SDMMC4A_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_APE_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_SE_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_ETR_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_AXIS_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_EQOS_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_UFSHC_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_BPMP_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_AON_FLUSH_ENB |
MC_CLIENT_HOTRESET_CTRL1_SCE_FLUSH_ENB;
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL1, wdata_1);
/* Wait for HOTRESET STATUS to indicate FLUSH_DONE */
do {
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS1);
} while ((val & wdata_1) != wdata_1);
/* Wait one more time due to SW WAR for known legacy issue */
do {
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_STATUS1);
} while ((val & wdata_1) != wdata_1);
/*
* Change MEMTYPE_OVERRIDE from SO_DEV -> PASSTHRU for boot and
* strongly ordered MSS clients. ROC needs to be single point
* of control on overriding the memory type. So, remove TSA's
* memtype override.
*/
#if ENABLE_AFI_DEVICE
mc_set_tsa_passthrough(AFIW);
#endif
mc_set_tsa_passthrough(HDAW);
mc_set_tsa_passthrough(SATAW);
mc_set_tsa_passthrough(XUSB_HOSTW);
mc_set_tsa_passthrough(XUSB_DEVW);
mc_set_tsa_passthrough(SDMMCWAB);
mc_set_tsa_passthrough(APEDMAW);
mc_set_tsa_passthrough(SESWR);
mc_set_tsa_passthrough(ETRW);
mc_set_tsa_passthrough(AXISW);
mc_set_tsa_passthrough(EQOSW);
mc_set_tsa_passthrough(UFSHCW);
mc_set_tsa_passthrough(BPMPDMAW);
mc_set_tsa_passthrough(AONDMAW);
mc_set_tsa_passthrough(SCEDMAW);
/*
* Change COH_PATH_OVERRIDE_SO_DEV from NO_OVERRIDE -> FORCE_COHERENT
* for boot and strongly ordered MSS clients. This steers all sodev
* transactions to ROC.
*
* Change AXID_OVERRIDE/AXID_OVERRIDE_SO_DEV only for some clients
* whose AXI IDs we know and trust.
*/
#if ENABLE_AFI_DEVICE
/* Match AFIW */
mc_set_forced_coherent_so_dev_cfg(AFIR);
#endif
/*
* See bug 200131110 comment #35 - there are no normal requests
* and AWID for SO/DEV requests is hardcoded in RTL for a
* particular PCIE controller
*/
#if ENABLE_AFI_DEVICE
mc_set_forced_coherent_so_dev_cfg(AFIW);
#endif
mc_set_forced_coherent_cfg(HDAR);
mc_set_forced_coherent_cfg(HDAW);
mc_set_forced_coherent_cfg(SATAR);
mc_set_forced_coherent_cfg(SATAW);
mc_set_forced_coherent_cfg(XUSB_HOSTR);
mc_set_forced_coherent_cfg(XUSB_HOSTW);
mc_set_forced_coherent_cfg(XUSB_DEVR);
mc_set_forced_coherent_cfg(XUSB_DEVW);
mc_set_forced_coherent_cfg(SDMMCRAB);
mc_set_forced_coherent_cfg(SDMMCWAB);
/* Match APEDMAW */
mc_set_forced_coherent_axid_so_dev_cfg(APEDMAR);
/*
* See bug 200131110 comment #35 - AWID for normal requests
* is 0x80 and AWID for SO/DEV requests is 0x01
*/
mc_set_forced_coherent_axid_so_dev_cfg(APEDMAW);
mc_set_forced_coherent_cfg(SESRD);
mc_set_forced_coherent_cfg(SESWR);
mc_set_forced_coherent_cfg(ETRR);
mc_set_forced_coherent_cfg(ETRW);
mc_set_forced_coherent_cfg(AXISR);
mc_set_forced_coherent_cfg(AXISW);
mc_set_forced_coherent_cfg(EQOSR);
mc_set_forced_coherent_cfg(EQOSW);
mc_set_forced_coherent_cfg(UFSHCR);
mc_set_forced_coherent_cfg(UFSHCW);
mc_set_forced_coherent_cfg(BPMPDMAR);
mc_set_forced_coherent_cfg(BPMPDMAW);
mc_set_forced_coherent_cfg(AONDMAR);
mc_set_forced_coherent_cfg(AONDMAW);
mc_set_forced_coherent_cfg(SCEDMAR);
mc_set_forced_coherent_cfg(SCEDMAW);
/*
* At this point, ordering can occur at ROC. So, remove PCFIFO's
* control over ordering requests.
*
* Change PCFIFO_*_ORDERED_CLIENT from ORDERED -> UNORDERED for
* boot and strongly ordered MSS clients
*/
val = MC_PCFIFO_CLIENT_CONFIG1_RESET_VAL &
#if ENABLE_AFI_DEVICE
mc_set_pcfifo_unordered_boot_so_mss(1, AFIW) &
#endif
mc_set_pcfifo_unordered_boot_so_mss(1, HDAW) &
mc_set_pcfifo_unordered_boot_so_mss(1, SATAW);
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG1, val);
val = MC_PCFIFO_CLIENT_CONFIG2_RESET_VAL &
mc_set_pcfifo_unordered_boot_so_mss(2, XUSB_HOSTW) &
mc_set_pcfifo_unordered_boot_so_mss(2, XUSB_DEVW);
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG2, val);
val = MC_PCFIFO_CLIENT_CONFIG3_RESET_VAL &
mc_set_pcfifo_unordered_boot_so_mss(3, SDMMCWAB);
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG3, val);
val = MC_PCFIFO_CLIENT_CONFIG4_RESET_VAL &
mc_set_pcfifo_unordered_boot_so_mss(4, SESWR) &
mc_set_pcfifo_unordered_boot_so_mss(4, ETRW) &
mc_set_pcfifo_unordered_boot_so_mss(4, AXISW) &
mc_set_pcfifo_unordered_boot_so_mss(4, EQOSW) &
mc_set_pcfifo_unordered_boot_so_mss(4, UFSHCW) &
mc_set_pcfifo_unordered_boot_so_mss(4, BPMPDMAW) &
mc_set_pcfifo_unordered_boot_so_mss(4, AONDMAW) &
mc_set_pcfifo_unordered_boot_so_mss(4, SCEDMAW);
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG4, val);
val = MC_PCFIFO_CLIENT_CONFIG5_RESET_VAL &
mc_set_pcfifo_unordered_boot_so_mss(5, APEDMAW);
tegra_mc_write_32(MC_PCFIFO_CLIENT_CONFIG5, val);
/*
* At this point, ordering can occur at ROC. SMMU need not
* reorder any requests.
*
* Change SMMU_*_ORDERED_CLIENT from ORDERED -> UNORDERED
* for boot and strongly ordered MSS clients
*/
val = MC_SMMU_CLIENT_CONFIG1_RESET_VAL &
#if ENABLE_AFI_DEVICE
mc_set_smmu_unordered_boot_so_mss(1, AFIW) &
#endif
mc_set_smmu_unordered_boot_so_mss(1, HDAW) &
mc_set_smmu_unordered_boot_so_mss(1, SATAW);
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG1, val);
val = MC_SMMU_CLIENT_CONFIG2_RESET_VAL &
mc_set_smmu_unordered_boot_so_mss(2, XUSB_HOSTW) &
mc_set_smmu_unordered_boot_so_mss(2, XUSB_DEVW);
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG2, val);
val = MC_SMMU_CLIENT_CONFIG3_RESET_VAL &
mc_set_smmu_unordered_boot_so_mss(3, SDMMCWAB);
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG3, val);
val = MC_SMMU_CLIENT_CONFIG4_RESET_VAL &
mc_set_smmu_unordered_boot_so_mss(4, SESWR) &
mc_set_smmu_unordered_boot_so_mss(4, ETRW) &
mc_set_smmu_unordered_boot_so_mss(4, AXISW) &
mc_set_smmu_unordered_boot_so_mss(4, EQOSW) &
mc_set_smmu_unordered_boot_so_mss(4, UFSHCW) &
mc_set_smmu_unordered_boot_so_mss(4, BPMPDMAW) &
mc_set_smmu_unordered_boot_so_mss(4, AONDMAW) &
mc_set_smmu_unordered_boot_so_mss(4, SCEDMAW);
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG4, val);
val = MC_SMMU_CLIENT_CONFIG5_RESET_VAL &
mc_set_smmu_unordered_boot_so_mss(5, APEDMAW);
tegra_mc_write_32(MC_SMMU_CLIENT_CONFIG5, val);
/*
* Deassert HOTRESET FLUSH_ENABLE for boot and strongly ordered MSS
* clients to allow memory traffic from all clients to start passing
* through ROC
*/
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL0);
assert(val == wdata_0);
wdata_0 = MC_CLIENT_HOTRESET_CTRL0_RESET_VAL;
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL0, wdata_0);
val = tegra_mc_read_32(MC_CLIENT_HOTRESET_CTRL1);
assert(val == wdata_1);
wdata_1 = MC_CLIENT_HOTRESET_CTRL1_RESET_VAL;
tegra_mc_write_32(MC_CLIENT_HOTRESET_CTRL1, wdata_1);
#endif
}
static void tegra_memctrl_set_overrides(void)
{
tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
const mc_txn_override_cfg_t *mc_txn_override_cfgs;
uint32_t num_txn_override_cfgs;
uint32_t i, val;
/* Get the settings from the platform */
assert(plat_mc_settings);
mc_txn_override_cfgs = plat_mc_settings->txn_override_cfg;
num_txn_override_cfgs = plat_mc_settings->num_txn_override_cfgs;
/*
* Set the MC_TXN_OVERRIDE registers for write clients.
*/
if ((tegra_chipid_is_t186()) &&
(!tegra_platform_is_silicon() ||
(tegra_platform_is_silicon() && (tegra_get_chipid_minor() == 1)))) {
/*
* GPU and NVENC settings for Tegra186 simulation and
* Silicon rev. A01
*/
val = tegra_mc_read_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR);
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
tegra_mc_write_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR,
val | MC_TXN_OVERRIDE_CGID_TAG_ZERO);
val = tegra_mc_read_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR2);
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
tegra_mc_write_32(MC_TXN_OVERRIDE_CONFIG_GPUSWR2,
val | MC_TXN_OVERRIDE_CGID_TAG_ZERO);
val = tegra_mc_read_32(MC_TXN_OVERRIDE_CONFIG_NVENCSWR);
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
tegra_mc_write_32(MC_TXN_OVERRIDE_CONFIG_NVENCSWR,
val | MC_TXN_OVERRIDE_CGID_TAG_CLIENT_AXI_ID);
} else {
/*
* Settings for Tegra186 silicon rev. A02 and onwards.
*/
for (i = 0; i < num_txn_override_cfgs; i++) {
val = tegra_mc_read_32(mc_txn_override_cfgs[i].offset);
val &= ~MC_TXN_OVERRIDE_CGID_TAG_MASK;
tegra_mc_write_32(mc_txn_override_cfgs[i].offset,
val | mc_txn_override_cfgs[i].cgid_tag);
}
}
}
/*
* Init Memory controller during boot.
*/
void tegra_memctrl_setup(void)
{
uint32_t val;
const uint32_t *mc_streamid_override_regs;
uint32_t num_streamid_override_regs;
const mc_streamid_security_cfg_t *mc_streamid_sec_cfgs;
uint32_t num_streamid_sec_cfgs;
tegra_mc_settings_t *plat_mc_settings = tegra_get_mc_settings();
uint32_t i;
INFO("Tegra Memory Controller (v2)\n");
#if ENABLE_SMMU_DEVICE
/* Program the SMMU pagesize */
tegra_smmu_init();
#endif
/* Get the settings from the platform */
assert(plat_mc_settings);
mc_streamid_override_regs = plat_mc_settings->streamid_override_cfg;
num_streamid_override_regs = plat_mc_settings->num_streamid_override_cfgs;
mc_streamid_sec_cfgs = plat_mc_settings->streamid_security_cfg;
num_streamid_sec_cfgs = plat_mc_settings->num_streamid_security_cfgs;
/* Program all the Stream ID overrides */
for (i = 0; i < num_streamid_override_regs; i++)
tegra_mc_streamid_write_32(mc_streamid_override_regs[i],
MC_STREAM_ID_MAX);
/* Program the security config settings for all Stream IDs */
for (i = 0; i < num_streamid_sec_cfgs; i++) {
val = mc_streamid_sec_cfgs[i].override_enable << 16 |
mc_streamid_sec_cfgs[i].override_client_inputs << 8 |
mc_streamid_sec_cfgs[i].override_client_ns_flag << 0;
tegra_mc_streamid_write_32(mc_streamid_sec_cfgs[i].offset, val);
}
/*
* All requests at boot time, and certain requests during
* normal run time, are physically addressed and must bypass
* the SMMU. The client hub logic implements a hardware bypass
* path around the Translation Buffer Units (TBU). During
* boot-time, the SMMU_BYPASS_CTRL register (which defaults to
* TBU_BYPASS mode) will be used to steer all requests around
* the uninitialized TBUs. During normal operation, this register
* is locked into TBU_BYPASS_SID config, which routes requests
* with special StreamID 0x7f on the bypass path and all others
* through the selected TBU. This is done to disable SMMU Bypass
* mode, as it could be used to circumvent SMMU security checks.
*/
tegra_mc_write_32(MC_SMMU_BYPASS_CONFIG,
MC_SMMU_BYPASS_CONFIG_SETTINGS);
/*
* Re-configure MSS to allow ROC to deal with ordering of the
* Memory Controller traffic. This is needed as the Memory Controller
* boots with MSS having all control, but ROC provides a performance
* boost as compared to MSS.
*/
tegra_memctrl_reconfig_mss_clients();
/* Program overrides for MC transactions */
tegra_memctrl_set_overrides();
}
/*
* Restore Memory Controller settings after "System Suspend"
*/
void tegra_memctrl_restore_settings(void)
{
/*
* Re-configure MSS to allow ROC to deal with ordering of the
* Memory Controller traffic. This is needed as the Memory Controller
* resets during System Suspend with MSS having all control, but ROC
* provides a performance boost as compared to MSS.
*/
tegra_memctrl_reconfig_mss_clients();
/* Program overrides for MC transactions */
tegra_memctrl_set_overrides();
/* video memory carveout region */
if (video_mem_base) {
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO,
(uint32_t)video_mem_base);
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
(uint32_t)(video_mem_base >> 32));
tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, video_mem_size_mb);
/*
* MCE propagates the VideoMem configuration values across the
* CCPLEX.
*/
mce_update_gsc_videomem();
}
}
/*
* Secure the BL31 DRAM aperture.
*
* phys_base = physical base of TZDRAM aperture
* size_in_bytes = size of aperture in bytes
*/
void tegra_memctrl_tzdram_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
/*
* Setup the Memory controller to allow only secure accesses to
* the TZDRAM carveout
*/
INFO("Configuring TrustZone DRAM Memory Carveout\n");
tegra_mc_write_32(MC_SECURITY_CFG0_0, (uint32_t)phys_base);
tegra_mc_write_32(MC_SECURITY_CFG3_0, (uint32_t)(phys_base >> 32));
tegra_mc_write_32(MC_SECURITY_CFG1_0, size_in_bytes >> 20);
/*
* When TZ encryption enabled,
* We need setup TZDRAM before CPU to access TZ Carveout,
* otherwise CPU will fetch non-decrypted data.
* So save TZDRAM setting for retore by SC7 resume FW.
*/
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV55_LO,
tegra_mc_read_32(MC_SECURITY_CFG0_0));
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV55_HI,
tegra_mc_read_32(MC_SECURITY_CFG3_0));
mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV54_HI,
tegra_mc_read_32(MC_SECURITY_CFG1_0));
/*
* MCE propagates the security configuration values across the
* CCPLEX.
*/
mce_update_gsc_tzdram();
}
/*
* Secure the BL31 TZRAM aperture.
*
* phys_base = physical base of TZRAM aperture
* size_in_bytes = size of aperture in bytes
*/
void tegra_memctrl_tzram_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
uint32_t index;
uint32_t total_128kb_blocks = size_in_bytes >> 17;
uint32_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
uint32_t val;
INFO("Configuring TrustZone SRAM Memory Carveout\n");
/*
* Reset the access configuration registers to restrict access
* to the TZRAM aperture
*/
for (index = MC_TZRAM_CLIENT_ACCESS_CFG0;
index < ((uint32_t)MC_TZRAM_CARVEOUT_CFG + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
index += 4U) {
tegra_mc_write_32(index, 0);
}
/*
* Set the TZRAM base. TZRAM base must be 4k aligned, at least.
*/
assert((phys_base & (uint64_t)0xFFF) == 0U);
tegra_mc_write_32(MC_TZRAM_BASE_LO, (uint32_t)phys_base);
tegra_mc_write_32(MC_TZRAM_BASE_HI,
(uint32_t)(phys_base >> 32) & MC_GSC_BASE_HI_MASK);
/*
* Set the TZRAM size
*
* total size = (number of 128KB blocks) + (number of remaining 4KB
* blocks)
*
*/
val = (residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
total_128kb_blocks;
tegra_mc_write_32(MC_TZRAM_SIZE, val);
/*
* Lock the configuration settings by disabling TZ-only lock
* and locking the configuration against any future changes
* at all.
*/
val = tegra_mc_read_32(MC_TZRAM_CARVEOUT_CFG);
val &= ~MC_GSC_ENABLE_TZ_LOCK_BIT;
val |= MC_GSC_LOCK_CFG_SETTINGS_BIT;
tegra_mc_write_32(MC_TZRAM_CARVEOUT_CFG, val);
/*
* MCE propagates the security configuration values across the
* CCPLEX.
*/
mce_update_gsc_tzram();
}
static void tegra_lock_videomem_nonoverlap(uint64_t phys_base,
uint64_t size_in_bytes)
{
uint32_t index;
uint64_t total_128kb_blocks = size_in_bytes >> 17;
uint64_t residual_4kb_blocks = (size_in_bytes & (uint32_t)0x1FFFF) >> 12;
uint64_t val;
/*
* Reset the access configuration registers to restrict access to
* old Videomem aperture
*/
for (index = MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0;
index < ((uint32_t)MC_VIDEO_PROTECT_CLEAR_ACCESS_CFG0 + (uint32_t)MC_GSC_CONFIG_REGS_SIZE);
index += 4U) {
tegra_mc_write_32(index, 0);
}
/*
* Set the base. It must be 4k aligned, at least.
*/
assert((phys_base & (uint64_t)0xFFF) == 0U);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, (uint32_t)phys_base);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI,
(uint32_t)(phys_base >> 32) & (uint32_t)MC_GSC_BASE_HI_MASK);
/*
* Set the aperture size
*
* total size = (number of 128KB blocks) + (number of remaining 4KB
* blocks)
*
*/
val = (uint32_t)((residual_4kb_blocks << MC_GSC_SIZE_RANGE_4KB_SHIFT) |
total_128kb_blocks);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, (uint32_t)val);
/*
* Lock the configuration settings by enabling TZ-only lock and
* locking the configuration against any future changes from NS
* world.
*/
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_CFG,
(uint32_t)MC_GSC_ENABLE_TZ_LOCK_BIT);
/*
* MCE propagates the GSC configuration values across the
* CCPLEX.
*/
}
static void tegra_unlock_videomem_nonoverlap(void)
{
/* Clear the base */
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_LO, 0);
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_BASE_HI, 0);
/* Clear the size */
tegra_mc_write_32(MC_VIDEO_PROTECT_CLEAR_SIZE, 0);
}
static void tegra_clear_videomem(uintptr_t non_overlap_area_start,
unsigned long long non_overlap_area_size)
{
/*
* Map the NS memory first, clean it and then unmap it.
*/
mmap_add_dynamic_region(non_overlap_area_start, /* PA */
non_overlap_area_start, /* VA */
non_overlap_area_size, /* size */
MT_NS | MT_RW | MT_EXECUTE_NEVER); /* attrs */
zero_normalmem((void *)non_overlap_area_start, non_overlap_area_size);
flush_dcache_range(non_overlap_area_start, non_overlap_area_size);
mmap_remove_dynamic_region(non_overlap_area_start,
non_overlap_area_size);
}
/*
* Program the Video Memory carveout region
*
* phys_base = physical base of aperture
* size_in_bytes = size of aperture in bytes
*/
void tegra_memctrl_videomem_setup(uint64_t phys_base, uint32_t size_in_bytes)
{
uintptr_t vmem_end_old = video_mem_base + (video_mem_size_mb << 20);
uintptr_t vmem_end_new = phys_base + size_in_bytes;
unsigned long long non_overlap_area_size;
/*
* Setup the Memory controller to restrict CPU accesses to the Video
* Memory region
*/
INFO("Configuring Video Memory Carveout\n");
/*
* Configure Memory Controller directly for the first time.
*/
if (video_mem_base == 0U)
goto done;
/*
* Lock the non overlapping memory being cleared so that other masters
* do not accidently write to it. The memory would be unlocked once
* the non overlapping region is cleared and the new memory
* settings take effect.
*/
tegra_lock_videomem_nonoverlap(video_mem_base,
video_mem_size_mb << 20);
/*
* Clear the old regions now being exposed. The following cases
* can occur -
*
* 1. clear whole old region (no overlap with new region)
* 2. clear old sub-region below new base
* 3. clear old sub-region above new end
*/
INFO("Cleaning previous Video Memory Carveout\n");
if (phys_base > vmem_end_old || video_mem_base > vmem_end_new) {
tegra_clear_videomem(video_mem_base,
(uint64_t)video_mem_size_mb << 20);
} else {
if (video_mem_base < phys_base) {
non_overlap_area_size = phys_base - video_mem_base;
tegra_clear_videomem(video_mem_base, non_overlap_area_size);
}
if (vmem_end_old > vmem_end_new) {
non_overlap_area_size = vmem_end_old - vmem_end_new;
tegra_clear_videomem(vmem_end_new, non_overlap_area_size);
}
}
done:
/* program the Videomem aperture */
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_LO, (uint32_t)phys_base);
tegra_mc_write_32(MC_VIDEO_PROTECT_BASE_HI,
(uint32_t)(phys_base >> 32));
tegra_mc_write_32(MC_VIDEO_PROTECT_SIZE_MB, size_in_bytes >> 20);
/* unlock the previous locked nonoverlapping aperture */
tegra_unlock_videomem_nonoverlap();
/* store new values */
video_mem_base = phys_base;
video_mem_size_mb = size_in_bytes >> 20;
/*
* MCE propagates the VideoMem configuration values across the
* CCPLEX.
*/
mce_update_gsc_videomem();
}
/*
* This feature exists only for v1 of the Tegra Memory Controller.
*/
void tegra_memctrl_disable_ahb_redirection(void)
{
; /* do nothing */
}