blob: b3fccdec4e8da23063cbab8c915450a10d705805 [file] [log] [blame]
/*
* Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <asm_macros.S>
#include <bl_common.h>
#include <context.h>
#include <el3_common_macros.S>
#include <runtime_svc.h>
#include <smcc_helpers.h>
#include <smcc_macros.S>
#include <xlat_tables_defs.h>
.globl sp_min_vector_table
.globl sp_min_entrypoint
.globl sp_min_warm_entrypoint
vector_base sp_min_vector_table
b sp_min_entrypoint
b plat_panic_handler /* Undef */
b handle_smc /* Syscall */
b plat_panic_handler /* Prefetch abort */
b plat_panic_handler /* Data abort */
b plat_panic_handler /* Reserved */
b plat_panic_handler /* IRQ */
b plat_panic_handler /* FIQ */
/*
* The Cold boot/Reset entrypoint for SP_MIN
*/
func sp_min_entrypoint
#if !RESET_TO_SP_MIN
/* ---------------------------------------------------------------
* Preceding bootloader has populated r0 with a pointer to a
* 'bl_params_t' structure & r1 with a pointer to platform
* specific structure
* ---------------------------------------------------------------
*/
mov r11, r0
mov r12, r1
/* ---------------------------------------------------------------------
* For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches
* sp_min_entrypoint() during the cold boot flow, so the cold/warm boot
* and primary/secondary CPU logic should not be executed in this case.
*
* Also, assume that the previous bootloader has already initialised the
* SCTLR, including the CPU endianness, and has initialised the memory.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
_init_sctlr=0 \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
_init_c_runtime=1 \
_exception_vectors=sp_min_vector_table
/* ---------------------------------------------------------------------
* Relay the previous bootloader's arguments to the platform layer
* ---------------------------------------------------------------------
*/
mov r0, r11
mov r1, r12
#else
/* ---------------------------------------------------------------------
* For RESET_TO_SP_MIN systems which have a programmable reset address,
* sp_min_entrypoint() is executed only on the cold boot path so we can
* skip the warm boot mailbox mechanism.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
_init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
_init_c_runtime=1 \
_exception_vectors=sp_min_vector_table
/* ---------------------------------------------------------------------
* For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader
* to run so there's no argument to relay from a previous bootloader.
* Zero the arguments passed to the platform layer to reflect that.
* ---------------------------------------------------------------------
*/
mov r0, #0
mov r1, #0
#endif /* RESET_TO_SP_MIN */
bl sp_min_early_platform_setup
bl sp_min_plat_arch_setup
/* Jump to the main function */
bl sp_min_main
/* -------------------------------------------------------------
* Clean the .data & .bss sections to main memory. This ensures
* that any global data which was initialised by the primary CPU
* is visible to secondary CPUs before they enable their data
* caches and participate in coherency.
* -------------------------------------------------------------
*/
ldr r0, =__DATA_START__
ldr r1, =__DATA_END__
sub r1, r1, r0
bl clean_dcache_range
ldr r0, =__BSS_START__
ldr r1, =__BSS_END__
sub r1, r1, r0
bl clean_dcache_range
bl smc_get_next_ctx
/* r0 points to `smc_ctx_t` */
/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
b sp_min_exit
endfunc sp_min_entrypoint
/*
* SMC handling function for SP_MIN.
*/
func handle_smc
/* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */
str lr, [sp, #SMC_CTX_LR_MON]
smcc_save_gp_mode_regs
/*
* `sp` still points to `smc_ctx_t`. Save it to a register
* and restore the C runtime stack pointer to `sp`.
*/
mov r2, sp /* handle */
ldr sp, [r2, #SMC_CTX_SP_MON]
ldr r0, [r2, #SMC_CTX_SCR]
and r3, r0, #SCR_NS_BIT /* flags */
/* Switch to Secure Mode*/
bic r0, #SCR_NS_BIT
stcopr r0, SCR
isb
ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */
/* Check whether an SMC64 is issued */
tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT)
beq 1f
/* SMC32 is not detected. Return error back to caller */
mov r0, #SMC_UNK
str r0, [r2, #SMC_CTX_GPREG_R0]
mov r0, r2
b sp_min_exit
1:
/* SMC32 is detected */
mov r1, #0 /* cookie */
bl handle_runtime_svc
/* `r0` points to `smc_ctx_t` */
b sp_min_exit
endfunc handle_smc
/*
* The Warm boot entrypoint for SP_MIN.
*/
func sp_min_warm_entrypoint
/*
* On the warm boot path, most of the EL3 initialisations performed by
* 'el3_entrypoint_common' must be skipped:
*
* - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by
* programming the reset address do we need to initialied the SCTLR.
* In other cases, we assume this has been taken care by the
* entrypoint code.
*
* - No need to determine the type of boot, we know it is a warm boot.
*
* - Do not try to distinguish between primary and secondary CPUs, this
* notion only exists for a cold boot.
*
* - No need to initialise the memory or the C runtime environment,
* it has been done once and for all on the cold boot path.
*/
el3_entrypoint_common \
_init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
_init_c_runtime=0 \
_exception_vectors=sp_min_vector_table
/*
* We're about to enable MMU and participate in PSCI state coordination.
*
* The PSCI implementation invokes platform routines that enable CPUs to
* participate in coherency. On a system where CPUs are not
* cache-coherent without appropriate platform specific programming,
* having caches enabled until such time might lead to coherency issues
* (resulting from stale data getting speculatively fetched, among
* others). Therefore we keep data caches disabled even after enabling
* the MMU for such platforms.
*
* On systems with hardware-assisted coherency, or on single cluster
* platforms, such platform specific programming is not required to
* enter coherency (as CPUs already are); and there's no reason to have
* caches disabled either.
*/
mov r0, #DISABLE_DCACHE
bl bl32_plat_enable_mmu
#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
ldcopr r0, SCTLR
orr r0, r0, #SCTLR_C_BIT
stcopr r0, SCTLR
isb
#endif
bl sp_min_warm_boot
bl smc_get_next_ctx
/* r0 points to `smc_ctx_t` */
/* The PSCI cpu_context registers have been copied to `smc_ctx_t` */
b sp_min_exit
endfunc sp_min_warm_entrypoint
/*
* The function to restore the registers from SMC context and return
* to the mode restored to SPSR.
*
* Arguments : r0 must point to the SMC context to restore from.
*/
func sp_min_exit
monitor_exit
endfunc sp_min_exit