| """A demo which runs object detection on camera frames.""" |
| |
| # export TEST_DATA=/usr/lib/python3.5/dist-packages/edgetpu/test_data/ |
| # |
| # Run face detection model: |
| # python3 detect.py \ |
| # --model=${TEST_DATA}/mobilenet_ssd_v2_face_quant_postprocess_edgetpu.tflite |
| # |
| # Run coco model: |
| # python3 detect.py \ |
| # --model=${TEST_DATA}/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite |
| # --labels=${TEST_DATA}/coco_labels.txt |
| |
| import argparse |
| import time |
| |
| from edgetpu.detection.engine import DetectionEngine |
| |
| from . import gstreamer |
| from . import overlays |
| from .utils import load_labels |
| |
| def main(): |
| parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
| parser.add_argument('--source', |
| help='/dev/videoN:FMT:WxH:N/D or .mp4 file', |
| default='/dev/video0:YUY2:1280x720:30/1') |
| parser.add_argument('--downscale', type=float, default=2.0, |
| help='Downscale factor for .mp4 file rendering.') |
| parser.add_argument('--model', |
| help='.tflite model path.', required=True) |
| parser.add_argument('--labels', |
| help='labels file path.') |
| parser.add_argument('--top_k', type=int, default=50, |
| help='Max number of objects to detect.') |
| parser.add_argument('--threshold', type=float, default=0.1, |
| help='Detection threshold.') |
| parser.add_argument('--filter', default=None) |
| parser.add_argument('--fullscreen', default=False, action='store_true', |
| help='Fullscreen rendering.') |
| args = parser.parse_args() |
| |
| engine = DetectionEngine(args.model) |
| labels = load_labels(args.labels) if args.labels else None |
| filtered_labels = set(x.strip() for x in args.filter.split(',')) if args.filter else None |
| |
| def render_overlay(rgb, size, view_box, inference_fps): |
| start = time.monotonic() |
| objs = engine.DetectWithInputTensor(rgb, threshold=args.threshold, top_k=args.top_k) |
| inference_time = time.monotonic() - start |
| if labels and filtered_labels: |
| objs = [obj for obj in objs if labels[obj.label_id] in filtered_labels] |
| |
| return overlays.detection(objs, inference_time, inference_fps, labels, size, view_box) |
| |
| _, h, w, _ = engine.get_input_tensor_shape() |
| |
| if not gstreamer.run((w, h), render_overlay, |
| source=args.source, |
| downscale=args.downscale, |
| fullscreen=args.fullscreen): |
| print('Invalid source argument:', args.source) |
| |
| |
| if __name__ == '__main__': |
| main() |