blob: 2e3a642b0acce9f5998d1429b8936e6fb4cadc83 [file] [log] [blame]
"""A demo which runs object classification on camera frames."""
#export TEST_DATA=/usr/lib/python3.5/dist-packages/edgetpu/test_data/
#
# python3 classify.py \
# --model=${TEST_DATA}/mobilenet_v1_1.0_224_quant_edgetpu.tflite \
# --labels=${TEST_DATA}/imagenet_labels.txt
import argparse
import collections
import time
from edgetpu.classification.engine import ClassificationEngine
from . import gstreamer
from . import overlays
from .utils import load_labels
def top_results(window, top_k):
total_scores = collections.defaultdict(lambda: 0.0)
for results in window:
for label, score in results:
total_scores[label] += score
return sorted(total_scores.items(), key=lambda kv: kv[1], reverse=True)[:top_k]
def accumulator(size, top_k):
window = collections.deque(maxlen=size)
window.append((yield []))
while True:
window.append((yield top_results(window, top_k)))
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--source',
help='/dev/videoN:FMT:WxH:N/D or .mp4 file',
default='/dev/video0:YUY2:1280x720:30/1')
parser.add_argument('--downscale', type=float, default=2.0,
help='Downscale factor for .mp4 file rendering.')
parser.add_argument('--model', required=True,
help='.tflite model path.')
parser.add_argument('--labels', required=True,
help='label file path.')
parser.add_argument('--window', type=int, default=10,
help='number of frames to accumulate inference results.')
parser.add_argument('--top_k', type=int, default=3,
help='number of classes with highest score to display.')
parser.add_argument('--threshold', type=float, default=0.1,
help='class score threshold.')
parser.add_argument('--print', action='store_true', default=False,
help='Print detected classes to console.')
parser.add_argument('--fullscreen', default=False, action='store_true',
help='Fullscreen rendering.')
args = parser.parse_args()
engine = ClassificationEngine(args.model)
labels = load_labels(args.labels)
acc = accumulator(size=args.window, top_k=args.top_k)
acc.send(None) # Initialize.
def render_overlay(rgb, size, view_box, inference_fps):
start = time.monotonic()
results = engine.ClassifyWithInputTensor(rgb, threshold=args.threshold, top_k=args.top_k)
inference_time = time.monotonic() - start
results = [(labels[i], score) for i, score in results]
results = acc.send(results)
if args.print:
print(results)
return overlays.classification(results, inference_time, inference_fps, size, view_box)
_, h, w, _ = engine.get_input_tensor_shape()
if not gstreamer.run((w, h), render_overlay,
source=args.source,
downscale=args.downscale,
fullscreen=args.fullscreen):
print('Invalid source argument:', args.source)
if __name__ == '__main__':
main()