blob: d748a8dc94977653a187627219ca546ef7b2ea6f [file] [log] [blame]
<!doctype html>
<html>
<head>
<title>Edge TPU Performance Demo</title>
<link rel="icon" type="image/png" sizes="16x16" href="favicon.png"/>
<link rel="stylesheet" type="text/css" href="coral.css">
<script type="text/javascript" src="protobuf.min.js"></script>
<script type="text/javascript" src="broadway/YUVCanvas.js"></script>
<script type="text/javascript" src="broadway/Decoder.js"></script>
<script type="text/javascript" src="broadway/Player.js"></script>
<script type="text/javascript" src="ws_client.js"></script>
<style>
.description {
max-width: 960px; /* This matches the video width */
}
</style>
</head>
<body>
<img src="coral_logo.png" width="100em" style="padding-bottom:10px" alt="Coral" />
<div class="description">
<h1>Edge TPU Performance Demo</h1>
<p>The video below demonstrates the realtime processing power of the Edge TPU by
running a MobileNet SSD model that can identify and classify multiple objects.
The footage of the cars is a recording, but the MobileNet model is executing in
realtime on your Coral Dev Board to detect each car indicated with a box
(limited to 20 detected cars).</p>
<p>In the terminal where you started the demo, press the N key to switch between
running the model on either the Edge TPU or the CPU (quad-core Cortex-A53).</p>
</p>
</div>
<div id="container"></div>
</body>
</html>