| /* vi: set sw=4 ts=4: */ |
| /* |
| * md5.c - Compute MD5 checksum of strings according to the |
| * definition of MD5 in RFC 1321 from April 1992. |
| * |
| * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. |
| * |
| * Copyright (C) 1995-1999 Free Software Foundation, Inc. |
| * Copyright (C) 2001 Manuel Novoa III |
| * Copyright (C) 2003 Glenn L. McGrath |
| * Copyright (C) 2003 Erik Andersen |
| * |
| * Licensed under the GPL v2 or later, see the file LICENSE in this tarball. |
| */ |
| |
| #include "libbb.h" |
| |
| #if CONFIG_MD5_SIZE_VS_SPEED < 0 || CONFIG_MD5_SIZE_VS_SPEED > 3 |
| # define MD5_SIZE_VS_SPEED 2 |
| #else |
| # define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED |
| #endif |
| |
| /* Initialize structure containing state of computation. |
| * (RFC 1321, 3.3: Step 3) |
| */ |
| void FAST_FUNC md5_begin(md5_ctx_t *ctx) |
| { |
| ctx->A = 0x67452301; |
| ctx->B = 0xefcdab89; |
| ctx->C = 0x98badcfe; |
| ctx->D = 0x10325476; |
| |
| ctx->total = 0; |
| ctx->buflen = 0; |
| } |
| |
| /* These are the four functions used in the four steps of the MD5 algorithm |
| * and defined in the RFC 1321. The first function is a little bit optimized |
| * (as found in Colin Plumbs public domain implementation). |
| * #define FF(b, c, d) ((b & c) | (~b & d)) |
| */ |
| # define FF(b, c, d) (d ^ (b & (c ^ d))) |
| # define FG(b, c, d) FF (d, b, c) |
| # define FH(b, c, d) (b ^ c ^ d) |
| # define FI(b, c, d) (c ^ (b | ~d)) |
| |
| /* Hash a single block, 64 bytes long and 4-byte aligned. */ |
| static void md5_hash_block(const void *buffer, md5_ctx_t *ctx) |
| { |
| uint32_t correct_words[16]; |
| const uint32_t *words = buffer; |
| |
| # if MD5_SIZE_VS_SPEED > 0 |
| static const uint32_t C_array[] = { |
| /* round 1 */ |
| 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, |
| 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, |
| 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, |
| 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, |
| /* round 2 */ |
| 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, |
| 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, |
| 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, |
| 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, |
| /* round 3 */ |
| 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, |
| 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, |
| 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, |
| 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, |
| /* round 4 */ |
| 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, |
| 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, |
| 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, |
| 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 |
| }; |
| |
| static const char P_array[] ALIGN1 = { |
| # if MD5_SIZE_VS_SPEED > 1 |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ |
| # endif /* MD5_SIZE_VS_SPEED > 1 */ |
| 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ |
| 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ |
| 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ |
| }; |
| |
| # if MD5_SIZE_VS_SPEED > 1 |
| static const char S_array[] ALIGN1 = { |
| 7, 12, 17, 22, |
| 5, 9, 14, 20, |
| 4, 11, 16, 23, |
| 6, 10, 15, 21 |
| }; |
| # endif /* MD5_SIZE_VS_SPEED > 1 */ |
| # endif |
| |
| uint32_t A = ctx->A; |
| uint32_t B = ctx->B; |
| uint32_t C = ctx->C; |
| uint32_t D = ctx->D; |
| |
| /* Process all bytes in the buffer with 64 bytes in each round of |
| the loop. */ |
| uint32_t *cwp = correct_words; |
| uint32_t A_save = A; |
| uint32_t B_save = B; |
| uint32_t C_save = C; |
| uint32_t D_save = D; |
| |
| # if MD5_SIZE_VS_SPEED > 1 |
| # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) |
| |
| const uint32_t *pc; |
| const char *pp; |
| const char *ps; |
| int i; |
| uint32_t temp; |
| |
| for (i = 0; i < 16; i++) { |
| cwp[i] = SWAP_LE32(words[i]); |
| } |
| words += 16; |
| |
| # if MD5_SIZE_VS_SPEED > 2 |
| pc = C_array; |
| pp = P_array; |
| ps = S_array - 4; |
| |
| for (i = 0; i < 64; i++) { |
| if ((i & 0x0f) == 0) |
| ps += 4; |
| temp = A; |
| switch (i >> 4) { |
| case 0: |
| temp += FF(B, C, D); |
| break; |
| case 1: |
| temp += FG(B, C, D); |
| break; |
| case 2: |
| temp += FH(B, C, D); |
| break; |
| case 3: |
| temp += FI(B, C, D); |
| } |
| temp += cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| # else |
| pc = C_array; |
| pp = P_array; |
| ps = S_array; |
| |
| for (i = 0; i < 16; i++) { |
| temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++; |
| CYCLIC(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| |
| # endif /* MD5_SIZE_VS_SPEED > 2 */ |
| # else |
| /* First round: using the given function, the context and a constant |
| the next context is computed. Because the algorithms processing |
| unit is a 32-bit word and it is determined to work on words in |
| little endian byte order we perhaps have to change the byte order |
| before the computation. To reduce the work for the next steps |
| we store the swapped words in the array CORRECT_WORDS. */ |
| |
| # define OP(a, b, c, d, s, T) \ |
| do { \ |
| a += FF (b, c, d) + (*cwp++ = SWAP_LE32(*words)) + T; \ |
| ++words; \ |
| CYCLIC (a, s); \ |
| a += b; \ |
| } while (0) |
| |
| /* It is unfortunate that C does not provide an operator for |
| cyclic rotation. Hope the C compiler is smart enough. */ |
| /* gcc 2.95.4 seems to be --aaronl */ |
| # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) |
| |
| /* Before we start, one word to the strange constants. |
| They are defined in RFC 1321 as |
| |
| T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 |
| */ |
| |
| # if MD5_SIZE_VS_SPEED == 1 |
| const uint32_t *pc; |
| const char *pp; |
| int i; |
| # endif /* MD5_SIZE_VS_SPEED */ |
| |
| /* Round 1. */ |
| # if MD5_SIZE_VS_SPEED == 1 |
| pc = C_array; |
| for (i = 0; i < 4; i++) { |
| OP(A, B, C, D, 7, *pc++); |
| OP(D, A, B, C, 12, *pc++); |
| OP(C, D, A, B, 17, *pc++); |
| OP(B, C, D, A, 22, *pc++); |
| } |
| # else |
| OP(A, B, C, D, 7, 0xd76aa478); |
| OP(D, A, B, C, 12, 0xe8c7b756); |
| OP(C, D, A, B, 17, 0x242070db); |
| OP(B, C, D, A, 22, 0xc1bdceee); |
| OP(A, B, C, D, 7, 0xf57c0faf); |
| OP(D, A, B, C, 12, 0x4787c62a); |
| OP(C, D, A, B, 17, 0xa8304613); |
| OP(B, C, D, A, 22, 0xfd469501); |
| OP(A, B, C, D, 7, 0x698098d8); |
| OP(D, A, B, C, 12, 0x8b44f7af); |
| OP(C, D, A, B, 17, 0xffff5bb1); |
| OP(B, C, D, A, 22, 0x895cd7be); |
| OP(A, B, C, D, 7, 0x6b901122); |
| OP(D, A, B, C, 12, 0xfd987193); |
| OP(C, D, A, B, 17, 0xa679438e); |
| OP(B, C, D, A, 22, 0x49b40821); |
| # endif /* MD5_SIZE_VS_SPEED == 1 */ |
| |
| /* For the second to fourth round we have the possibly swapped words |
| in CORRECT_WORDS. Redefine the macro to take an additional first |
| argument specifying the function to use. */ |
| # undef OP |
| # define OP(f, a, b, c, d, k, s, T) \ |
| do { \ |
| a += f (b, c, d) + correct_words[k] + T; \ |
| CYCLIC (a, s); \ |
| a += b; \ |
| } while (0) |
| |
| /* Round 2. */ |
| # if MD5_SIZE_VS_SPEED == 1 |
| pp = P_array; |
| for (i = 0; i < 4; i++) { |
| OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++); |
| OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++); |
| OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++); |
| OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++); |
| } |
| # else |
| OP(FG, A, B, C, D, 1, 5, 0xf61e2562); |
| OP(FG, D, A, B, C, 6, 9, 0xc040b340); |
| OP(FG, C, D, A, B, 11, 14, 0x265e5a51); |
| OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); |
| OP(FG, A, B, C, D, 5, 5, 0xd62f105d); |
| OP(FG, D, A, B, C, 10, 9, 0x02441453); |
| OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); |
| OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); |
| OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); |
| OP(FG, D, A, B, C, 14, 9, 0xc33707d6); |
| OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); |
| OP(FG, B, C, D, A, 8, 20, 0x455a14ed); |
| OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); |
| OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); |
| OP(FG, C, D, A, B, 7, 14, 0x676f02d9); |
| OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); |
| # endif /* MD5_SIZE_VS_SPEED == 1 */ |
| |
| /* Round 3. */ |
| # if MD5_SIZE_VS_SPEED == 1 |
| for (i = 0; i < 4; i++) { |
| OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++); |
| OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++); |
| OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++); |
| OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++); |
| } |
| # else |
| OP(FH, A, B, C, D, 5, 4, 0xfffa3942); |
| OP(FH, D, A, B, C, 8, 11, 0x8771f681); |
| OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); |
| OP(FH, B, C, D, A, 14, 23, 0xfde5380c); |
| OP(FH, A, B, C, D, 1, 4, 0xa4beea44); |
| OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); |
| OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); |
| OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); |
| OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); |
| OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); |
| OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); |
| OP(FH, B, C, D, A, 6, 23, 0x04881d05); |
| OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); |
| OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); |
| OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); |
| OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); |
| # endif /* MD5_SIZE_VS_SPEED == 1 */ |
| |
| /* Round 4. */ |
| # if MD5_SIZE_VS_SPEED == 1 |
| for (i = 0; i < 4; i++) { |
| OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++); |
| OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++); |
| OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++); |
| OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++); |
| } |
| # else |
| OP(FI, A, B, C, D, 0, 6, 0xf4292244); |
| OP(FI, D, A, B, C, 7, 10, 0x432aff97); |
| OP(FI, C, D, A, B, 14, 15, 0xab9423a7); |
| OP(FI, B, C, D, A, 5, 21, 0xfc93a039); |
| OP(FI, A, B, C, D, 12, 6, 0x655b59c3); |
| OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); |
| OP(FI, C, D, A, B, 10, 15, 0xffeff47d); |
| OP(FI, B, C, D, A, 1, 21, 0x85845dd1); |
| OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); |
| OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); |
| OP(FI, C, D, A, B, 6, 15, 0xa3014314); |
| OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); |
| OP(FI, A, B, C, D, 4, 6, 0xf7537e82); |
| OP(FI, D, A, B, C, 11, 10, 0xbd3af235); |
| OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); |
| OP(FI, B, C, D, A, 9, 21, 0xeb86d391); |
| # endif /* MD5_SIZE_VS_SPEED == 1 */ |
| # endif /* MD5_SIZE_VS_SPEED > 1 */ |
| |
| /* Add the starting values of the context. */ |
| A += A_save; |
| B += B_save; |
| C += C_save; |
| D += D_save; |
| |
| /* Put checksum in context given as argument. */ |
| ctx->A = A; |
| ctx->B = B; |
| ctx->C = C; |
| ctx->D = D; |
| } |
| |
| /* Feed data through a temporary buffer to call md5_hash_aligned_block() |
| * with chunks of data that are 4-byte aligned and a multiple of 64 bytes. |
| * This function's internal buffer remembers previous data until it has 64 |
| * bytes worth to pass on. Call md5_end() to flush this buffer. */ |
| |
| void FAST_FUNC md5_hash(const void *buffer, size_t len, md5_ctx_t *ctx) |
| { |
| char *buf=(char *)buffer; |
| |
| /* RFC 1321 specifies the possible length of the file up to 2^64 bits, |
| * Here we only track the number of bytes. */ |
| |
| ctx->total += len; |
| |
| // Process all input. |
| |
| while (len) { |
| unsigned i = 64 - ctx->buflen; |
| |
| // Copy data into aligned buffer. |
| |
| if (i > len) i = len; |
| memcpy(ctx->buffer + ctx->buflen, buf, i); |
| len -= i; |
| ctx->buflen += i; |
| buf += i; |
| |
| // When buffer fills up, process it. |
| |
| if (ctx->buflen == 64) { |
| md5_hash_block(ctx->buffer, ctx); |
| ctx->buflen = 0; |
| } |
| } |
| } |
| |
| /* Process the remaining bytes in the buffer and put result from CTX |
| * in first 16 bytes following RESBUF. The result is always in little |
| * endian byte order, so that a byte-wise output yields to the wanted |
| * ASCII representation of the message digest. |
| * |
| * IMPORTANT: On some systems it is required that RESBUF is correctly |
| * aligned for a 32 bits value. |
| */ |
| void* FAST_FUNC md5_end(void *resbuf, md5_ctx_t *ctx) |
| { |
| char *buf = ctx->buffer; |
| int i; |
| |
| /* Pad data to block size. */ |
| |
| buf[ctx->buflen++] = 0x80; |
| memset(buf + ctx->buflen, 0, 128 - ctx->buflen); |
| |
| /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
| ctx->total <<= 3; |
| if (ctx->buflen > 56) buf += 64; |
| for (i = 0; i < 8; i++) buf[56 + i] = ctx->total >> (i*8); |
| |
| /* Process last bytes. */ |
| if (buf != ctx->buffer) md5_hash_block(ctx->buffer, ctx); |
| md5_hash_block(buf, ctx); |
| |
| /* Put result from CTX in first 16 bytes following RESBUF. The result is |
| * always in little endian byte order, so that a byte-wise output yields |
| * to the wanted ASCII representation of the message digest. |
| * |
| * IMPORTANT: On some systems it is required that RESBUF is correctly |
| * aligned for a 32 bits value. |
| */ |
| ((uint32_t *) resbuf)[0] = SWAP_LE32(ctx->A); |
| ((uint32_t *) resbuf)[1] = SWAP_LE32(ctx->B); |
| ((uint32_t *) resbuf)[2] = SWAP_LE32(ctx->C); |
| ((uint32_t *) resbuf)[3] = SWAP_LE32(ctx->D); |
| |
| return resbuf; |
| } |
| |