| /* |
| * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm |
| * |
| * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All |
| * rights reserved. |
| * |
| * License to copy and use this software is granted provided that it |
| * is identified as the "RSA Data Security, Inc. MD5 Message-Digest |
| * Algorithm" in all material mentioning or referencing this software |
| * or this function. |
| * |
| * License is also granted to make and use derivative works provided |
| * that such works are identified as "derived from the RSA Data |
| * Security, Inc. MD5 Message-Digest Algorithm" in all material |
| * mentioning or referencing the derived work. |
| * |
| * RSA Data Security, Inc. makes no representations concerning either |
| * the merchantability of this software or the suitability of this |
| * software for any particular purpose. It is provided "as is" |
| * without express or implied warranty of any kind. |
| * |
| * These notices must be retained in any copies of any part of this |
| * documentation and/or software. |
| * |
| * $FreeBSD: src/lib/libmd/md5c.c,v 1.9.2.1 1999/08/29 14:57:12 peter Exp $ |
| * |
| * This code is the same as the code published by RSA Inc. It has been |
| * edited for clarity and style only. |
| * |
| * ---------------------------------------------------------------------------- |
| * The md5_crypt() function was taken from freeBSD's libcrypt and contains |
| * this license: |
| * "THE BEER-WARE LICENSE" (Revision 42): |
| * <phk@login.dknet.dk> wrote this file. As long as you retain this notice you |
| * can do whatever you want with this stuff. If we meet some day, and you think |
| * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp |
| * |
| * $FreeBSD: src/lib/libcrypt/crypt.c,v 1.7.2.1 1999/08/29 14:56:33 peter Exp $ |
| * |
| * ---------------------------------------------------------------------------- |
| * On April 19th, 2001 md5_crypt() was modified to make it reentrant |
| * by Erik Andersen <andersen@uclibc.org> |
| * |
| * |
| * June 28, 2001 Manuel Novoa III |
| * |
| * "Un-inlined" code using loops and static const tables in order to |
| * reduce generated code size (on i386 from approx 4k to approx 2.5k). |
| * |
| * June 29, 2001 Manuel Novoa III |
| * |
| * Completely removed static PADDING array. |
| * |
| * Reintroduced the loop unrolling in MD5_Transform and added the |
| * MD5_SIZE_OVER_SPEED option for configurability. Define below as: |
| * 0 fully unrolled loops |
| * 1 partially unrolled (4 ops per loop) |
| * 2 no unrolling -- introduces the need to swap 4 variables (slow) |
| * 3 no unrolling and all 4 loops merged into one with switch |
| * in each loop (glacial) |
| * On i386, sizes are roughly (-Os -fno-builtin): |
| * 0: 3k 1: 2.5k 2: 2.2k 3: 2k |
| * |
| * |
| * Since SuSv3 does not require crypt_r, modified again August 7, 2002 |
| * by Erik Andersen to remove reentrance stuff... |
| */ |
| |
| /* |
| * Valid values are 1 (fastest/largest) to 3 (smallest/slowest). |
| */ |
| #define MD5_SIZE_OVER_SPEED 3 |
| |
| /**********************************************************************/ |
| |
| /* MD5 context. */ |
| struct MD5Context { |
| uint32_t state[4]; /* state (ABCD) */ |
| uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */ |
| unsigned char buffer[64]; /* input buffer */ |
| }; |
| |
| static void __md5_Init(struct MD5Context *); |
| static void __md5_Update(struct MD5Context *, const unsigned char *, unsigned int); |
| static void __md5_Pad(struct MD5Context *); |
| static void __md5_Final(unsigned char [16], struct MD5Context *); |
| static void __md5_Transform(uint32_t [4], const unsigned char [64]); |
| |
| |
| #define MD5_MAGIC_STR "$1$" |
| #define MD5_MAGIC_LEN (sizeof(MD5_MAGIC_STR) - 1) |
| static const unsigned char __md5__magic[] = MD5_MAGIC_STR; |
| |
| |
| #ifdef i386 |
| #define __md5_Encode memcpy |
| #define __md5_Decode memcpy |
| #else /* i386 */ |
| |
| /* |
| * __md5_Encodes input (uint32_t) into output (unsigned char). Assumes len is |
| * a multiple of 4. |
| */ |
| static void |
| __md5_Encode(unsigned char *output, uint32_t *input, unsigned int len) |
| { |
| unsigned int i, j; |
| |
| for (i = 0, j = 0; j < len; i++, j += 4) { |
| output[j] = input[i]; |
| output[j+1] = (input[i] >> 8); |
| output[j+2] = (input[i] >> 16); |
| output[j+3] = (input[i] >> 24); |
| } |
| } |
| |
| /* |
| * __md5_Decodes input (unsigned char) into output (uint32_t). Assumes len is |
| * a multiple of 4. |
| */ |
| static void |
| __md5_Decode(uint32_t *output, const unsigned char *input, unsigned int len) |
| { |
| unsigned int i, j; |
| |
| for (i = 0, j = 0; j < len; i++, j += 4) |
| output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j+1]) << 8) | |
| (((uint32_t)input[j+2]) << 16) | (((uint32_t)input[j+3]) << 24); |
| } |
| #endif /* i386 */ |
| |
| /* F, G, H and I are basic MD5 functions. */ |
| #define F(x, y, z) (((x) & (y)) | (~(x) & (z))) |
| #define G(x, y, z) (((x) & (z)) | ((y) & ~(z))) |
| #define H(x, y, z) ((x) ^ (y) ^ (z)) |
| #define I(x, y, z) ((y) ^ ((x) | ~(z))) |
| |
| /* ROTATE_LEFT rotates x left n bits. */ |
| #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) |
| |
| /* |
| * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. |
| * Rotation is separate from addition to prevent recomputation. |
| */ |
| #define FF(a, b, c, d, x, s, ac) { \ |
| (a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| #define GG(a, b, c, d, x, s, ac) { \ |
| (a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| #define HH(a, b, c, d, x, s, ac) { \ |
| (a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| #define II(a, b, c, d, x, s, ac) { \ |
| (a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \ |
| (a) = ROTATE_LEFT((a), (s)); \ |
| (a) += (b); \ |
| } |
| |
| /* MD5 initialization. Begins an MD5 operation, writing a new context. */ |
| static void __md5_Init(struct MD5Context *context) |
| { |
| context->count[0] = context->count[1] = 0; |
| |
| /* Load magic initialization constants. */ |
| context->state[0] = 0x67452301; |
| context->state[1] = 0xefcdab89; |
| context->state[2] = 0x98badcfe; |
| context->state[3] = 0x10325476; |
| } |
| |
| /* |
| * MD5 block update operation. Continues an MD5 message-digest |
| * operation, processing another message block, and updating the |
| * context. |
| */ |
| static void __md5_Update(struct MD5Context *context, const unsigned char *input, unsigned int inputLen) |
| { |
| unsigned int i, idx, partLen; |
| |
| /* Compute number of bytes mod 64 */ |
| idx = (context->count[0] >> 3) & 0x3F; |
| |
| /* Update number of bits */ |
| context->count[0] += (inputLen << 3); |
| if (context->count[0] < (inputLen << 3)) |
| context->count[1]++; |
| context->count[1] += (inputLen >> 29); |
| |
| partLen = 64 - idx; |
| |
| /* Transform as many times as possible. */ |
| if (inputLen >= partLen) { |
| memcpy(&context->buffer[idx], input, partLen); |
| __md5_Transform(context->state, context->buffer); |
| |
| for (i = partLen; i + 63 < inputLen; i += 64) |
| __md5_Transform(context->state, &input[i]); |
| |
| idx = 0; |
| } else |
| i = 0; |
| |
| /* Buffer remaining input */ |
| memcpy(&context->buffer[idx], &input[i], inputLen - i); |
| } |
| |
| /* |
| * MD5 padding. Adds padding followed by original length. |
| */ |
| static void __md5_Pad(struct MD5Context *context) |
| { |
| unsigned char bits[8]; |
| unsigned int idx, padLen; |
| unsigned char PADDING[64]; |
| |
| memset(PADDING, 0, sizeof(PADDING)); |
| PADDING[0] = 0x80; |
| |
| /* Save number of bits */ |
| __md5_Encode(bits, context->count, 8); |
| |
| /* Pad out to 56 mod 64. */ |
| idx = (context->count[0] >> 3) & 0x3f; |
| padLen = (idx < 56) ? (56 - idx) : (120 - idx); |
| __md5_Update(context, PADDING, padLen); |
| |
| /* Append length (before padding) */ |
| __md5_Update(context, bits, 8); |
| } |
| |
| /* |
| * MD5 finalization. Ends an MD5 message-digest operation, writing the |
| * the message digest and zeroizing the context. |
| */ |
| static void __md5_Final(unsigned char digest[16], struct MD5Context *context) |
| { |
| /* Do padding. */ |
| __md5_Pad(context); |
| |
| /* Store state in digest */ |
| __md5_Encode(digest, context->state, 16); |
| |
| /* Zeroize sensitive information. */ |
| memset(context, 0, sizeof(*context)); |
| } |
| |
| /* MD5 basic transformation. Transforms state based on block. */ |
| static void __md5_Transform(uint32_t state[4], const unsigned char block[64]) |
| { |
| uint32_t a, b, c, d, x[16]; |
| #if MD5_SIZE_OVER_SPEED > 1 |
| uint32_t temp; |
| const unsigned char *ps; |
| |
| static const unsigned char S[] = { |
| 7, 12, 17, 22, |
| 5, 9, 14, 20, |
| 4, 11, 16, 23, |
| 6, 10, 15, 21 |
| }; |
| #endif /* MD5_SIZE_OVER_SPEED > 1 */ |
| |
| #if MD5_SIZE_OVER_SPEED > 0 |
| const uint32_t *pc; |
| const unsigned char *pp; |
| int i; |
| |
| static const uint32_t C[] = { |
| /* round 1 */ |
| 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, |
| 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, |
| 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, |
| 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, |
| /* round 2 */ |
| 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, |
| 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, |
| 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, |
| 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, |
| /* round 3 */ |
| 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, |
| 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, |
| 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, |
| 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, |
| /* round 4 */ |
| 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, |
| 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, |
| 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, |
| 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 |
| }; |
| |
| static const unsigned char P[] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ |
| 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ |
| 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ |
| 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ |
| }; |
| |
| #endif /* MD5_SIZE_OVER_SPEED > 0 */ |
| |
| __md5_Decode(x, block, 64); |
| |
| a = state[0]; b = state[1]; c = state[2]; d = state[3]; |
| |
| #if MD5_SIZE_OVER_SPEED > 2 |
| pc = C; pp = P; ps = S - 4; |
| |
| for (i = 0; i < 64; i++) { |
| if ((i & 0x0f) == 0) ps += 4; |
| temp = a; |
| switch (i>>4) { |
| case 0: |
| temp += F(b, c, d); |
| break; |
| case 1: |
| temp += G(b, c, d); |
| break; |
| case 2: |
| temp += H(b, c, d); |
| break; |
| case 3: |
| temp += I(b, c, d); |
| break; |
| } |
| temp += x[*pp++] + *pc++; |
| temp = ROTATE_LEFT(temp, ps[i & 3]); |
| temp += b; |
| a = d; d = c; c = b; b = temp; |
| } |
| #elif MD5_SIZE_OVER_SPEED > 1 |
| pc = C; pp = P; ps = S; |
| |
| /* Round 1 */ |
| for (i = 0; i < 16; i++) { |
| FF(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; |
| temp = d; d = c; c = b; b = a; a = temp; |
| } |
| |
| /* Round 2 */ |
| ps += 4; |
| for (; i < 32; i++) { |
| GG(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; |
| temp = d; d = c; c = b; b = a; a = temp; |
| } |
| /* Round 3 */ |
| ps += 4; |
| for (; i < 48; i++) { |
| HH(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; |
| temp = d; d = c; c = b; b = a; a = temp; |
| } |
| |
| /* Round 4 */ |
| ps += 4; |
| for (; i < 64; i++) { |
| II(a, b, c, d, x[*pp], ps[i & 0x3], *pc); pp++; pc++; |
| temp = d; d = c; c = b; b = a; a = temp; |
| } |
| #elif MD5_SIZE_OVER_SPEED > 0 |
| pc = C; pp = P; |
| |
| /* Round 1 */ |
| for (i = 0; i < 4; i++) { |
| FF(a, b, c, d, x[*pp], 7, *pc); pp++; pc++; |
| FF(d, a, b, c, x[*pp], 12, *pc); pp++; pc++; |
| FF(c, d, a, b, x[*pp], 17, *pc); pp++; pc++; |
| FF(b, c, d, a, x[*pp], 22, *pc); pp++; pc++; |
| } |
| |
| /* Round 2 */ |
| for (i = 0; i < 4; i++) { |
| GG(a, b, c, d, x[*pp], 5, *pc); pp++; pc++; |
| GG(d, a, b, c, x[*pp], 9, *pc); pp++; pc++; |
| GG(c, d, a, b, x[*pp], 14, *pc); pp++; pc++; |
| GG(b, c, d, a, x[*pp], 20, *pc); pp++; pc++; |
| } |
| /* Round 3 */ |
| for (i = 0; i < 4; i++) { |
| HH(a, b, c, d, x[*pp], 4, *pc); pp++; pc++; |
| HH(d, a, b, c, x[*pp], 11, *pc); pp++; pc++; |
| HH(c, d, a, b, x[*pp], 16, *pc); pp++; pc++; |
| HH(b, c, d, a, x[*pp], 23, *pc); pp++; pc++; |
| } |
| |
| /* Round 4 */ |
| for (i = 0; i < 4; i++) { |
| II(a, b, c, d, x[*pp], 6, *pc); pp++; pc++; |
| II(d, a, b, c, x[*pp], 10, *pc); pp++; pc++; |
| II(c, d, a, b, x[*pp], 15, *pc); pp++; pc++; |
| II(b, c, d, a, x[*pp], 21, *pc); pp++; pc++; |
| } |
| #else |
| /* Round 1 */ |
| #define S11 7 |
| #define S12 12 |
| #define S13 17 |
| #define S14 22 |
| FF(a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ |
| FF(d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ |
| FF(c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ |
| FF(b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ |
| FF(a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ |
| FF(d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ |
| FF(c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ |
| FF(b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ |
| FF(a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ |
| FF(d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ |
| FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ |
| FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ |
| FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ |
| FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ |
| FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ |
| FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ |
| |
| /* Round 2 */ |
| #define S21 5 |
| #define S22 9 |
| #define S23 14 |
| #define S24 20 |
| GG(a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ |
| GG(d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ |
| GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ |
| GG(b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ |
| GG(a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ |
| GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */ |
| GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ |
| GG(b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ |
| GG(a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ |
| GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ |
| GG(c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ |
| GG(b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ |
| GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ |
| GG(d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ |
| GG(c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ |
| GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ |
| |
| /* Round 3 */ |
| #define S31 4 |
| #define S32 11 |
| #define S33 16 |
| #define S34 23 |
| HH(a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ |
| HH(d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ |
| HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ |
| HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ |
| HH(a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ |
| HH(d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ |
| HH(c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ |
| HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ |
| HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ |
| HH(d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ |
| HH(c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ |
| HH(b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ |
| HH(a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ |
| HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ |
| HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ |
| HH(b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ |
| |
| /* Round 4 */ |
| #define S41 6 |
| #define S42 10 |
| #define S43 15 |
| #define S44 21 |
| II(a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ |
| II(d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ |
| II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ |
| II(b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ |
| II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ |
| II(d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ |
| II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ |
| II(b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ |
| II(a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ |
| II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ |
| II(c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ |
| II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ |
| II(a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ |
| II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ |
| II(c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ |
| II(b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ |
| #endif |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| |
| /* Zeroize sensitive information. */ |
| memset(x, 0, sizeof(x)); |
| } |
| |
| |
| static char* |
| __md5_to64(char *s, unsigned v, int n) |
| { |
| while (--n >= 0) { |
| *s++ = ascii64[v & 0x3f]; |
| v >>= 6; |
| } |
| return s; |
| } |
| |
| /* |
| * UNIX password |
| * |
| * Use MD5 for what it is best at... |
| */ |
| #define MD5_OUT_BUFSIZE 36 |
| static char * |
| NOINLINE |
| md5_crypt(char passwd[MD5_OUT_BUFSIZE], const unsigned char *pw, const unsigned char *salt) |
| { |
| const unsigned char *sp, *ep; |
| char *p; |
| unsigned char final[17]; /* final[16] exists only to aid in looping */ |
| int sl, pl, i, pw_len; |
| struct MD5Context ctx, ctx1; |
| |
| /* Refine the Salt first */ |
| sp = salt; |
| |
| // always true for bbox |
| // /* If it starts with the magic string, then skip that */ |
| // if (!strncmp(sp, __md5__magic, MD5_MAGIC_LEN)) |
| sp += MD5_MAGIC_LEN; |
| |
| /* It stops at the first '$', max 8 chars */ |
| for (ep = sp; *ep && *ep != '$' && ep < (sp+8); ep++) |
| continue; |
| |
| /* get the length of the true salt */ |
| sl = ep - sp; |
| |
| __md5_Init(&ctx); |
| |
| /* The password first, since that is what is most unknown */ |
| pw_len = strlen((char*)pw); |
| __md5_Update(&ctx, pw, pw_len); |
| |
| /* Then our magic string */ |
| __md5_Update(&ctx, __md5__magic, MD5_MAGIC_LEN); |
| |
| /* Then the raw salt */ |
| __md5_Update(&ctx, sp, sl); |
| |
| /* Then just as many characters of the MD5(pw, salt, pw) */ |
| __md5_Init(&ctx1); |
| __md5_Update(&ctx1, pw, pw_len); |
| __md5_Update(&ctx1, sp, sl); |
| __md5_Update(&ctx1, pw, pw_len); |
| __md5_Final(final, &ctx1); |
| for (pl = pw_len; pl > 0; pl -= 16) |
| __md5_Update(&ctx, final, pl > 16 ? 16 : pl); |
| |
| /* Don't leave anything around in vm they could use. */ |
| //TODO: the above comment seems to be wrong. final is used later. |
| memset(final, 0, sizeof(final)); |
| |
| /* Then something really weird... */ |
| for (i = pw_len; i; i >>= 1) { |
| __md5_Update(&ctx, ((i & 1) ? final : (const unsigned char *) pw), 1); |
| } |
| |
| /* Now make the output string */ |
| passwd[0] = '$'; |
| passwd[1] = '1'; |
| passwd[2] = '$'; |
| strncpy(passwd + 3, (char*)sp, sl); |
| passwd[sl + 3] = '$'; |
| |
| __md5_Final(final, &ctx); |
| |
| /* |
| * and now, just to make sure things don't run too fast |
| * On a 60 Mhz Pentium this takes 34 msec, so you would |
| * need 30 seconds to build a 1000 entry dictionary... |
| */ |
| for (i = 0; i < 1000; i++) { |
| __md5_Init(&ctx1); |
| if (i & 1) |
| __md5_Update(&ctx1, pw, pw_len); |
| else |
| __md5_Update(&ctx1, final, 16); |
| |
| if (i % 3) |
| __md5_Update(&ctx1, sp, sl); |
| |
| if (i % 7) |
| __md5_Update(&ctx1, pw, pw_len); |
| |
| if (i & 1) |
| __md5_Update(&ctx1, final, 16); |
| else |
| __md5_Update(&ctx1, pw, pw_len); |
| __md5_Final(final, &ctx1); |
| } |
| |
| p = passwd + sl + 4; /* 12 bytes max (sl is up to 8 bytes) */ |
| |
| /* Add 5*4+2 = 22 bytes of hash, + NUL byte. */ |
| final[16] = final[5]; |
| for (i = 0; i < 5; i++) { |
| unsigned l = (final[i] << 16) | (final[i+6] << 8) | final[i+12]; |
| p = __md5_to64(p, l, 4); |
| } |
| p = __md5_to64(p, final[11], 2); |
| *p = '\0'; |
| |
| /* Don't leave anything around in vm they could use. */ |
| memset(final, 0, sizeof(final)); |
| |
| return passwd; |
| } |
| |
| #undef MD5_SIZE_OVER_SPEED |
| #undef MD5_MAGIC_STR |
| #undef MD5_MAGIC_LEN |
| #undef __md5_Encode |
| #undef __md5_Decode |
| #undef F |
| #undef G |
| #undef H |
| #undef I |
| #undef ROTATE_LEFT |
| #undef FF |
| #undef GG |
| #undef HH |
| #undef II |
| #undef S11 |
| #undef S12 |
| #undef S13 |
| #undef S14 |
| #undef S21 |
| #undef S22 |
| #undef S23 |
| #undef S24 |
| #undef S31 |
| #undef S32 |
| #undef S33 |
| #undef S34 |
| #undef S41 |
| #undef S42 |
| #undef S43 |
| #undef S44 |