| /* vi: set sw=4 ts=4: */ |
| /* |
| * Utility routines. |
| * |
| * Copyright (C) 2010 Denys Vlasenko |
| * |
| * Licensed under GPLv2 or later, see file LICENSE in this source tree. |
| */ |
| #include "libbb.h" |
| |
| #define NEED_SHA512 (ENABLE_SHA512SUM || ENABLE_USE_BB_CRYPT_SHA) |
| |
| /* gcc 4.2.1 optimizes rotr64 better with inline than with macro |
| * (for rotX32, there is no difference). Why? My guess is that |
| * macro requires clever common subexpression elimination heuristics |
| * in gcc, while inline basically forces it to happen. |
| */ |
| //#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) |
| static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n) |
| { |
| return (x << n) | (x >> (32 - n)); |
| } |
| //#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) |
| static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n) |
| { |
| return (x >> n) | (x << (32 - n)); |
| } |
| /* rotr64 in needed for sha512 only: */ |
| //#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n)))) |
| static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n) |
| { |
| return (x >> n) | (x << (64 - n)); |
| } |
| |
| /* rotl64 only used for sha3 currently */ |
| static ALWAYS_INLINE uint64_t rotl64(uint64_t x, unsigned n) |
| { |
| return (x << n) | (x >> (64 - n)); |
| } |
| |
| /* Feed data through a temporary buffer. |
| * The internal buffer remembers previous data until it has 64 |
| * bytes worth to pass on. |
| */ |
| static void FAST_FUNC common64_hash(md5_ctx_t *ctx, const void *buffer, size_t len) |
| { |
| unsigned bufpos = ctx->total64 & 63; |
| |
| ctx->total64 += len; |
| |
| while (1) { |
| unsigned remaining = 64 - bufpos; |
| if (remaining > len) |
| remaining = len; |
| /* Copy data into aligned buffer */ |
| memcpy(ctx->wbuffer + bufpos, buffer, remaining); |
| len -= remaining; |
| buffer = (const char *)buffer + remaining; |
| bufpos += remaining; |
| /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */ |
| bufpos -= 64; |
| if (bufpos != 0) |
| break; |
| /* Buffer is filled up, process it */ |
| ctx->process_block(ctx); |
| /*bufpos = 0; - already is */ |
| } |
| } |
| |
| /* Process the remaining bytes in the buffer */ |
| static void FAST_FUNC common64_end(md5_ctx_t *ctx, int swap_needed) |
| { |
| unsigned bufpos = ctx->total64 & 63; |
| /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */ |
| ctx->wbuffer[bufpos++] = 0x80; |
| |
| /* This loop iterates either once or twice, no more, no less */ |
| while (1) { |
| unsigned remaining = 64 - bufpos; |
| memset(ctx->wbuffer + bufpos, 0, remaining); |
| /* Do we have enough space for the length count? */ |
| if (remaining >= 8) { |
| /* Store the 64-bit counter of bits in the buffer */ |
| uint64_t t = ctx->total64 << 3; |
| if (swap_needed) |
| t = bb_bswap_64(t); |
| /* wbuffer is suitably aligned for this */ |
| *(bb__aliased_uint64_t *) (&ctx->wbuffer[64 - 8]) = t; |
| } |
| ctx->process_block(ctx); |
| if (remaining >= 8) |
| break; |
| bufpos = 0; |
| } |
| } |
| |
| |
| /* |
| * Compute MD5 checksum of strings according to the |
| * definition of MD5 in RFC 1321 from April 1992. |
| * |
| * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. |
| * |
| * Copyright (C) 1995-1999 Free Software Foundation, Inc. |
| * Copyright (C) 2001 Manuel Novoa III |
| * Copyright (C) 2003 Glenn L. McGrath |
| * Copyright (C) 2003 Erik Andersen |
| * |
| * Licensed under GPLv2 or later, see file LICENSE in this source tree. |
| */ |
| |
| /* 0: fastest, 3: smallest */ |
| #if CONFIG_MD5_SMALL < 0 |
| # define MD5_SMALL 0 |
| #elif CONFIG_MD5_SMALL > 3 |
| # define MD5_SMALL 3 |
| #else |
| # define MD5_SMALL CONFIG_MD5_SMALL |
| #endif |
| |
| /* These are the four functions used in the four steps of the MD5 algorithm |
| * and defined in the RFC 1321. The first function is a little bit optimized |
| * (as found in Colin Plumbs public domain implementation). |
| * #define FF(b, c, d) ((b & c) | (~b & d)) |
| */ |
| #undef FF |
| #undef FG |
| #undef FH |
| #undef FI |
| #define FF(b, c, d) (d ^ (b & (c ^ d))) |
| #define FG(b, c, d) FF(d, b, c) |
| #define FH(b, c, d) (b ^ c ^ d) |
| #define FI(b, c, d) (c ^ (b | ~d)) |
| |
| /* Hash a single block, 64 bytes long and 4-byte aligned */ |
| static void FAST_FUNC md5_process_block64(md5_ctx_t *ctx) |
| { |
| #if MD5_SMALL > 0 |
| /* Before we start, one word to the strange constants. |
| They are defined in RFC 1321 as |
| T[i] = (int)(2^32 * fabs(sin(i))), i=1..64 |
| */ |
| static const uint32_t C_array[] = { |
| /* round 1 */ |
| 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, |
| 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, |
| 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, |
| 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, |
| /* round 2 */ |
| 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, |
| 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, |
| 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, |
| 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, |
| /* round 3 */ |
| 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, |
| 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, |
| 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, |
| 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, |
| /* round 4 */ |
| 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, |
| 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, |
| 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, |
| 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 |
| }; |
| static const char P_array[] ALIGN1 = { |
| # if MD5_SMALL > 1 |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ |
| # endif |
| 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ |
| 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ |
| 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ |
| }; |
| #endif |
| uint32_t *words = (void*) ctx->wbuffer; |
| uint32_t A = ctx->hash[0]; |
| uint32_t B = ctx->hash[1]; |
| uint32_t C = ctx->hash[2]; |
| uint32_t D = ctx->hash[3]; |
| |
| #if MD5_SMALL >= 2 /* 2 or 3 */ |
| |
| static const char S_array[] ALIGN1 = { |
| 7, 12, 17, 22, |
| 5, 9, 14, 20, |
| 4, 11, 16, 23, |
| 6, 10, 15, 21 |
| }; |
| const uint32_t *pc; |
| const char *pp; |
| const char *ps; |
| int i; |
| uint32_t temp; |
| |
| if (BB_BIG_ENDIAN) |
| for (i = 0; i < 16; i++) |
| words[i] = SWAP_LE32(words[i]); |
| |
| # if MD5_SMALL == 3 |
| pc = C_array; |
| pp = P_array; |
| ps = S_array - 4; |
| |
| for (i = 0; i < 64; i++) { |
| if ((i & 0x0f) == 0) |
| ps += 4; |
| temp = A; |
| switch (i >> 4) { |
| case 0: |
| temp += FF(B, C, D); |
| break; |
| case 1: |
| temp += FG(B, C, D); |
| break; |
| case 2: |
| temp += FH(B, C, D); |
| break; |
| default: /* case 3 */ |
| temp += FI(B, C, D); |
| } |
| temp += words[(int) (*pp++)] + *pc++; |
| temp = rotl32(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| # else /* MD5_SMALL == 2 */ |
| pc = C_array; |
| pp = P_array; |
| ps = S_array; |
| |
| for (i = 0; i < 16; i++) { |
| temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++; |
| temp = rotl32(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++; |
| temp = rotl32(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++; |
| temp = rotl32(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| ps += 4; |
| for (i = 0; i < 16; i++) { |
| temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++; |
| temp = rotl32(temp, ps[i & 3]); |
| temp += B; |
| A = D; |
| D = C; |
| C = B; |
| B = temp; |
| } |
| # endif |
| /* Add checksum to the starting values */ |
| ctx->hash[0] += A; |
| ctx->hash[1] += B; |
| ctx->hash[2] += C; |
| ctx->hash[3] += D; |
| |
| #else /* MD5_SMALL == 0 or 1 */ |
| |
| # if MD5_SMALL == 1 |
| const uint32_t *pc; |
| const char *pp; |
| int i; |
| # endif |
| |
| /* First round: using the given function, the context and a constant |
| the next context is computed. Because the algorithm's processing |
| unit is a 32-bit word and it is determined to work on words in |
| little endian byte order we perhaps have to change the byte order |
| before the computation. To reduce the work for the next steps |
| we save swapped words in WORDS array. */ |
| # undef OP |
| # define OP(a, b, c, d, s, T) \ |
| do { \ |
| a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \ |
| words++; \ |
| a = rotl32(a, s); \ |
| a += b; \ |
| } while (0) |
| |
| /* Round 1 */ |
| # if MD5_SMALL == 1 |
| pc = C_array; |
| for (i = 0; i < 4; i++) { |
| OP(A, B, C, D, 7, *pc++); |
| OP(D, A, B, C, 12, *pc++); |
| OP(C, D, A, B, 17, *pc++); |
| OP(B, C, D, A, 22, *pc++); |
| } |
| # else |
| OP(A, B, C, D, 7, 0xd76aa478); |
| OP(D, A, B, C, 12, 0xe8c7b756); |
| OP(C, D, A, B, 17, 0x242070db); |
| OP(B, C, D, A, 22, 0xc1bdceee); |
| OP(A, B, C, D, 7, 0xf57c0faf); |
| OP(D, A, B, C, 12, 0x4787c62a); |
| OP(C, D, A, B, 17, 0xa8304613); |
| OP(B, C, D, A, 22, 0xfd469501); |
| OP(A, B, C, D, 7, 0x698098d8); |
| OP(D, A, B, C, 12, 0x8b44f7af); |
| OP(C, D, A, B, 17, 0xffff5bb1); |
| OP(B, C, D, A, 22, 0x895cd7be); |
| OP(A, B, C, D, 7, 0x6b901122); |
| OP(D, A, B, C, 12, 0xfd987193); |
| OP(C, D, A, B, 17, 0xa679438e); |
| OP(B, C, D, A, 22, 0x49b40821); |
| # endif |
| words -= 16; |
| |
| /* For the second to fourth round we have the possibly swapped words |
| in WORDS. Redefine the macro to take an additional first |
| argument specifying the function to use. */ |
| # undef OP |
| # define OP(f, a, b, c, d, k, s, T) \ |
| do { \ |
| a += f(b, c, d) + words[k] + T; \ |
| a = rotl32(a, s); \ |
| a += b; \ |
| } while (0) |
| |
| /* Round 2 */ |
| # if MD5_SMALL == 1 |
| pp = P_array; |
| for (i = 0; i < 4; i++) { |
| OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++); |
| OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++); |
| OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++); |
| OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++); |
| } |
| # else |
| OP(FG, A, B, C, D, 1, 5, 0xf61e2562); |
| OP(FG, D, A, B, C, 6, 9, 0xc040b340); |
| OP(FG, C, D, A, B, 11, 14, 0x265e5a51); |
| OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); |
| OP(FG, A, B, C, D, 5, 5, 0xd62f105d); |
| OP(FG, D, A, B, C, 10, 9, 0x02441453); |
| OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); |
| OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); |
| OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); |
| OP(FG, D, A, B, C, 14, 9, 0xc33707d6); |
| OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); |
| OP(FG, B, C, D, A, 8, 20, 0x455a14ed); |
| OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); |
| OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); |
| OP(FG, C, D, A, B, 7, 14, 0x676f02d9); |
| OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); |
| # endif |
| |
| /* Round 3 */ |
| # if MD5_SMALL == 1 |
| for (i = 0; i < 4; i++) { |
| OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++); |
| OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++); |
| OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++); |
| OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++); |
| } |
| # else |
| OP(FH, A, B, C, D, 5, 4, 0xfffa3942); |
| OP(FH, D, A, B, C, 8, 11, 0x8771f681); |
| OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); |
| OP(FH, B, C, D, A, 14, 23, 0xfde5380c); |
| OP(FH, A, B, C, D, 1, 4, 0xa4beea44); |
| OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); |
| OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); |
| OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); |
| OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); |
| OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); |
| OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); |
| OP(FH, B, C, D, A, 6, 23, 0x04881d05); |
| OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); |
| OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); |
| OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); |
| OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); |
| # endif |
| |
| /* Round 4 */ |
| # if MD5_SMALL == 1 |
| for (i = 0; i < 4; i++) { |
| OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++); |
| OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++); |
| OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++); |
| OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++); |
| } |
| # else |
| OP(FI, A, B, C, D, 0, 6, 0xf4292244); |
| OP(FI, D, A, B, C, 7, 10, 0x432aff97); |
| OP(FI, C, D, A, B, 14, 15, 0xab9423a7); |
| OP(FI, B, C, D, A, 5, 21, 0xfc93a039); |
| OP(FI, A, B, C, D, 12, 6, 0x655b59c3); |
| OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); |
| OP(FI, C, D, A, B, 10, 15, 0xffeff47d); |
| OP(FI, B, C, D, A, 1, 21, 0x85845dd1); |
| OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); |
| OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); |
| OP(FI, C, D, A, B, 6, 15, 0xa3014314); |
| OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); |
| OP(FI, A, B, C, D, 4, 6, 0xf7537e82); |
| OP(FI, D, A, B, C, 11, 10, 0xbd3af235); |
| OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); |
| OP(FI, B, C, D, A, 9, 21, 0xeb86d391); |
| # undef OP |
| # endif |
| /* Add checksum to the starting values */ |
| ctx->hash[0] += A; |
| ctx->hash[1] += B; |
| ctx->hash[2] += C; |
| ctx->hash[3] += D; |
| #endif |
| } |
| #undef FF |
| #undef FG |
| #undef FH |
| #undef FI |
| |
| /* Initialize structure containing state of computation. |
| * (RFC 1321, 3.3: Step 3) |
| */ |
| void FAST_FUNC md5_begin(md5_ctx_t *ctx) |
| { |
| ctx->hash[0] = 0x67452301; |
| ctx->hash[1] = 0xefcdab89; |
| ctx->hash[2] = 0x98badcfe; |
| ctx->hash[3] = 0x10325476; |
| ctx->total64 = 0; |
| ctx->process_block = md5_process_block64; |
| } |
| |
| /* Used also for sha1 and sha256 */ |
| void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len) |
| { |
| common64_hash(ctx, buffer, len); |
| } |
| |
| /* Process the remaining bytes in the buffer and put result from CTX |
| * in first 16 bytes following RESBUF. The result is always in little |
| * endian byte order, so that a byte-wise output yields to the wanted |
| * ASCII representation of the message digest. |
| */ |
| unsigned FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf) |
| { |
| /* MD5 stores total in LE, need to swap on BE arches: */ |
| common64_end(ctx, /*swap_needed:*/ BB_BIG_ENDIAN); |
| |
| /* The MD5 result is in little endian byte order */ |
| if (BB_BIG_ENDIAN) { |
| ctx->hash[0] = SWAP_LE32(ctx->hash[0]); |
| ctx->hash[1] = SWAP_LE32(ctx->hash[1]); |
| ctx->hash[2] = SWAP_LE32(ctx->hash[2]); |
| ctx->hash[3] = SWAP_LE32(ctx->hash[3]); |
| } |
| |
| memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * 4); |
| return sizeof(ctx->hash[0]) * 4; |
| } |
| |
| |
| /* |
| * SHA1 part is: |
| * Copyright 2007 Rob Landley <rob@landley.net> |
| * |
| * Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com> |
| * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/ |
| * |
| * Licensed under GPLv2, see file LICENSE in this source tree. |
| * |
| * --------------------------------------------------------------------------- |
| * |
| * SHA256 and SHA512 parts are: |
| * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. |
| * Shrank by Denys Vlasenko. |
| * |
| * --------------------------------------------------------------------------- |
| * |
| * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c |
| * and replace "4096" with something like "2000 + time(NULL) % 2097", |
| * then rebuild and compare "shaNNNsum bigfile" results. |
| */ |
| |
| static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx) |
| { |
| static const uint32_t rconsts[] = { |
| 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 |
| }; |
| int i, j; |
| int cnt; |
| uint32_t W[16+16]; |
| uint32_t a, b, c, d, e; |
| |
| /* On-stack work buffer frees up one register in the main loop |
| * which otherwise will be needed to hold ctx pointer */ |
| for (i = 0; i < 16; i++) |
| W[i] = W[i+16] = SWAP_BE32(((uint32_t*)ctx->wbuffer)[i]); |
| |
| a = ctx->hash[0]; |
| b = ctx->hash[1]; |
| c = ctx->hash[2]; |
| d = ctx->hash[3]; |
| e = ctx->hash[4]; |
| |
| /* 4 rounds of 20 operations each */ |
| cnt = 0; |
| for (i = 0; i < 4; i++) { |
| j = 19; |
| do { |
| uint32_t work; |
| |
| work = c ^ d; |
| if (i == 0) { |
| work = (work & b) ^ d; |
| if (j <= 3) |
| goto ge16; |
| /* Used to do SWAP_BE32 here, but this |
| * requires ctx (see comment above) */ |
| work += W[cnt]; |
| } else { |
| if (i == 2) |
| work = ((b | c) & d) | (b & c); |
| else /* i = 1 or 3 */ |
| work ^= b; |
| ge16: |
| W[cnt] = W[cnt+16] = rotl32(W[cnt+13] ^ W[cnt+8] ^ W[cnt+2] ^ W[cnt], 1); |
| work += W[cnt]; |
| } |
| work += e + rotl32(a, 5) + rconsts[i]; |
| |
| /* Rotate by one for next time */ |
| e = d; |
| d = c; |
| c = /* b = */ rotl32(b, 30); |
| b = a; |
| a = work; |
| cnt = (cnt + 1) & 15; |
| } while (--j >= 0); |
| } |
| |
| ctx->hash[0] += a; |
| ctx->hash[1] += b; |
| ctx->hash[2] += c; |
| ctx->hash[3] += d; |
| ctx->hash[4] += e; |
| } |
| |
| /* Constants for SHA512 from FIPS 180-2:4.2.3. |
| * SHA256 constants from FIPS 180-2:4.2.2 |
| * are the most significant half of first 64 elements |
| * of the same array. |
| */ |
| #undef K |
| #if NEED_SHA512 |
| typedef uint64_t sha_K_int; |
| # define K(v) v |
| #else |
| typedef uint32_t sha_K_int; |
| # define K(v) (uint32_t)(v >> 32) |
| #endif |
| static const sha_K_int sha_K[] = { |
| K(0x428a2f98d728ae22ULL), K(0x7137449123ef65cdULL), |
| K(0xb5c0fbcfec4d3b2fULL), K(0xe9b5dba58189dbbcULL), |
| K(0x3956c25bf348b538ULL), K(0x59f111f1b605d019ULL), |
| K(0x923f82a4af194f9bULL), K(0xab1c5ed5da6d8118ULL), |
| K(0xd807aa98a3030242ULL), K(0x12835b0145706fbeULL), |
| K(0x243185be4ee4b28cULL), K(0x550c7dc3d5ffb4e2ULL), |
| K(0x72be5d74f27b896fULL), K(0x80deb1fe3b1696b1ULL), |
| K(0x9bdc06a725c71235ULL), K(0xc19bf174cf692694ULL), |
| K(0xe49b69c19ef14ad2ULL), K(0xefbe4786384f25e3ULL), |
| K(0x0fc19dc68b8cd5b5ULL), K(0x240ca1cc77ac9c65ULL), |
| K(0x2de92c6f592b0275ULL), K(0x4a7484aa6ea6e483ULL), |
| K(0x5cb0a9dcbd41fbd4ULL), K(0x76f988da831153b5ULL), |
| K(0x983e5152ee66dfabULL), K(0xa831c66d2db43210ULL), |
| K(0xb00327c898fb213fULL), K(0xbf597fc7beef0ee4ULL), |
| K(0xc6e00bf33da88fc2ULL), K(0xd5a79147930aa725ULL), |
| K(0x06ca6351e003826fULL), K(0x142929670a0e6e70ULL), |
| K(0x27b70a8546d22ffcULL), K(0x2e1b21385c26c926ULL), |
| K(0x4d2c6dfc5ac42aedULL), K(0x53380d139d95b3dfULL), |
| K(0x650a73548baf63deULL), K(0x766a0abb3c77b2a8ULL), |
| K(0x81c2c92e47edaee6ULL), K(0x92722c851482353bULL), |
| K(0xa2bfe8a14cf10364ULL), K(0xa81a664bbc423001ULL), |
| K(0xc24b8b70d0f89791ULL), K(0xc76c51a30654be30ULL), |
| K(0xd192e819d6ef5218ULL), K(0xd69906245565a910ULL), |
| K(0xf40e35855771202aULL), K(0x106aa07032bbd1b8ULL), |
| K(0x19a4c116b8d2d0c8ULL), K(0x1e376c085141ab53ULL), |
| K(0x2748774cdf8eeb99ULL), K(0x34b0bcb5e19b48a8ULL), |
| K(0x391c0cb3c5c95a63ULL), K(0x4ed8aa4ae3418acbULL), |
| K(0x5b9cca4f7763e373ULL), K(0x682e6ff3d6b2b8a3ULL), |
| K(0x748f82ee5defb2fcULL), K(0x78a5636f43172f60ULL), |
| K(0x84c87814a1f0ab72ULL), K(0x8cc702081a6439ecULL), |
| K(0x90befffa23631e28ULL), K(0xa4506cebde82bde9ULL), |
| K(0xbef9a3f7b2c67915ULL), K(0xc67178f2e372532bULL), |
| #if NEED_SHA512 /* [64]+ are used for sha512 only */ |
| K(0xca273eceea26619cULL), K(0xd186b8c721c0c207ULL), |
| K(0xeada7dd6cde0eb1eULL), K(0xf57d4f7fee6ed178ULL), |
| K(0x06f067aa72176fbaULL), K(0x0a637dc5a2c898a6ULL), |
| K(0x113f9804bef90daeULL), K(0x1b710b35131c471bULL), |
| K(0x28db77f523047d84ULL), K(0x32caab7b40c72493ULL), |
| K(0x3c9ebe0a15c9bebcULL), K(0x431d67c49c100d4cULL), |
| K(0x4cc5d4becb3e42b6ULL), K(0x597f299cfc657e2aULL), |
| K(0x5fcb6fab3ad6faecULL), K(0x6c44198c4a475817ULL), |
| #endif |
| }; |
| #undef K |
| |
| #undef Ch |
| #undef Maj |
| #undef S0 |
| #undef S1 |
| #undef R0 |
| #undef R1 |
| |
| static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx) |
| { |
| unsigned t; |
| uint32_t W[64], a, b, c, d, e, f, g, h; |
| const uint32_t *words = (uint32_t*) ctx->wbuffer; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22)) |
| #define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25)) |
| #define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3)) |
| #define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10)) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ |
| for (t = 0; t < 16; ++t) |
| W[t] = SWAP_BE32(words[t]); |
| for (/*t = 16*/; t < 64; ++t) |
| W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
| |
| a = ctx->hash[0]; |
| b = ctx->hash[1]; |
| c = ctx->hash[2]; |
| d = ctx->hash[3]; |
| e = ctx->hash[4]; |
| f = ctx->hash[5]; |
| g = ctx->hash[6]; |
| h = ctx->hash[7]; |
| |
| /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ |
| for (t = 0; t < 64; ++t) { |
| /* Need to fetch upper half of sha_K[t] |
| * (I hope compiler is clever enough to just fetch |
| * upper half) |
| */ |
| uint32_t K_t = NEED_SHA512 ? (sha_K[t] >> 32) : sha_K[t]; |
| uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t]; |
| uint32_t T2 = S0(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| #undef Ch |
| #undef Maj |
| #undef S0 |
| #undef S1 |
| #undef R0 |
| #undef R1 |
| /* Add the starting values of the context according to FIPS 180-2:6.2.2 |
| step 4. */ |
| ctx->hash[0] += a; |
| ctx->hash[1] += b; |
| ctx->hash[2] += c; |
| ctx->hash[3] += d; |
| ctx->hash[4] += e; |
| ctx->hash[5] += f; |
| ctx->hash[6] += g; |
| ctx->hash[7] += h; |
| } |
| |
| #if NEED_SHA512 |
| static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx) |
| { |
| unsigned t; |
| uint64_t W[80]; |
| /* On i386, having assignments here (not later as sha256 does) |
| * produces 99 bytes smaller code with gcc 4.3.1 |
| */ |
| uint64_t a = ctx->hash[0]; |
| uint64_t b = ctx->hash[1]; |
| uint64_t c = ctx->hash[2]; |
| uint64_t d = ctx->hash[3]; |
| uint64_t e = ctx->hash[4]; |
| uint64_t f = ctx->hash[5]; |
| uint64_t g = ctx->hash[6]; |
| uint64_t h = ctx->hash[7]; |
| const uint64_t *words = (uint64_t*) ctx->wbuffer; |
| |
| /* Operators defined in FIPS 180-2:4.1.2. */ |
| #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
| #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
| #define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39)) |
| #define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41)) |
| #define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7)) |
| #define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6)) |
| |
| /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ |
| for (t = 0; t < 16; ++t) |
| W[t] = SWAP_BE64(words[t]); |
| for (/*t = 16*/; t < 80; ++t) |
| W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
| |
| /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ |
| for (t = 0; t < 80; ++t) { |
| uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t]; |
| uint64_t T2 = S0(a) + Maj(a, b, c); |
| h = g; |
| g = f; |
| f = e; |
| e = d + T1; |
| d = c; |
| c = b; |
| b = a; |
| a = T1 + T2; |
| } |
| #undef Ch |
| #undef Maj |
| #undef S0 |
| #undef S1 |
| #undef R0 |
| #undef R1 |
| /* Add the starting values of the context according to FIPS 180-2:6.3.2 |
| step 4. */ |
| ctx->hash[0] += a; |
| ctx->hash[1] += b; |
| ctx->hash[2] += c; |
| ctx->hash[3] += d; |
| ctx->hash[4] += e; |
| ctx->hash[5] += f; |
| ctx->hash[6] += g; |
| ctx->hash[7] += h; |
| } |
| #endif /* NEED_SHA512 */ |
| |
| void FAST_FUNC sha1_begin(sha1_ctx_t *ctx) |
| { |
| ctx->hash[0] = 0x67452301; |
| ctx->hash[1] = 0xefcdab89; |
| ctx->hash[2] = 0x98badcfe; |
| ctx->hash[3] = 0x10325476; |
| ctx->hash[4] = 0xc3d2e1f0; |
| ctx->total64 = 0; |
| ctx->process_block = sha1_process_block64; |
| } |
| |
| static const uint32_t init256[] = { |
| 0, |
| 0, |
| 0x6a09e667, |
| 0xbb67ae85, |
| 0x3c6ef372, |
| 0xa54ff53a, |
| 0x510e527f, |
| 0x9b05688c, |
| 0x1f83d9ab, |
| 0x5be0cd19, |
| }; |
| #if NEED_SHA512 |
| static const uint32_t init512_lo[] = { |
| 0, |
| 0, |
| 0xf3bcc908, |
| 0x84caa73b, |
| 0xfe94f82b, |
| 0x5f1d36f1, |
| 0xade682d1, |
| 0x2b3e6c1f, |
| 0xfb41bd6b, |
| 0x137e2179, |
| }; |
| #endif /* NEED_SHA512 */ |
| |
| // Note: SHA-384 is identical to SHA-512, except that initial hash values are |
| // 0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939, |
| // 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4, |
| // and the output is constructed by omitting last two 64-bit words of it. |
| |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.2) */ |
| void FAST_FUNC sha256_begin(sha256_ctx_t *ctx) |
| { |
| memcpy(&ctx->total64, init256, sizeof(init256)); |
| /*ctx->total64 = 0; - done by prepending two 32-bit zeros to init256 */ |
| ctx->process_block = sha256_process_block64; |
| } |
| |
| #if NEED_SHA512 |
| /* Initialize structure containing state of computation. |
| (FIPS 180-2:5.3.3) */ |
| void FAST_FUNC sha512_begin(sha512_ctx_t *ctx) |
| { |
| int i; |
| /* Two extra iterations zero out ctx->total64[2] */ |
| uint64_t *tp = ctx->total64; |
| for (i = 0; i < 2+8; i++) |
| tp[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i]; |
| /*ctx->total64[0] = ctx->total64[1] = 0; - already done */ |
| } |
| |
| void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len) |
| { |
| unsigned bufpos = ctx->total64[0] & 127; |
| unsigned remaining; |
| |
| /* First increment the byte count. FIPS 180-2 specifies the possible |
| length of the file up to 2^128 _bits_. |
| We compute the number of _bytes_ and convert to bits later. */ |
| ctx->total64[0] += len; |
| if (ctx->total64[0] < len) |
| ctx->total64[1]++; |
| # if 0 |
| remaining = 128 - bufpos; |
| |
| /* Hash whole blocks */ |
| while (len >= remaining) { |
| memcpy(ctx->wbuffer + bufpos, buffer, remaining); |
| buffer = (const char *)buffer + remaining; |
| len -= remaining; |
| remaining = 128; |
| bufpos = 0; |
| sha512_process_block128(ctx); |
| } |
| |
| /* Save last, partial blosk */ |
| memcpy(ctx->wbuffer + bufpos, buffer, len); |
| # else |
| while (1) { |
| remaining = 128 - bufpos; |
| if (remaining > len) |
| remaining = len; |
| /* Copy data into aligned buffer */ |
| memcpy(ctx->wbuffer + bufpos, buffer, remaining); |
| len -= remaining; |
| buffer = (const char *)buffer + remaining; |
| bufpos += remaining; |
| /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */ |
| bufpos -= 128; |
| if (bufpos != 0) |
| break; |
| /* Buffer is filled up, process it */ |
| sha512_process_block128(ctx); |
| /*bufpos = 0; - already is */ |
| } |
| # endif |
| } |
| #endif /* NEED_SHA512 */ |
| |
| /* Used also for sha256 */ |
| unsigned FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf) |
| { |
| unsigned hash_size; |
| |
| /* SHA stores total in BE, need to swap on LE arches: */ |
| common64_end(ctx, /*swap_needed:*/ BB_LITTLE_ENDIAN); |
| |
| hash_size = (ctx->process_block == sha1_process_block64) ? 5 : 8; |
| /* This way we do not impose alignment constraints on resbuf: */ |
| if (BB_LITTLE_ENDIAN) { |
| unsigned i; |
| for (i = 0; i < hash_size; ++i) |
| ctx->hash[i] = SWAP_BE32(ctx->hash[i]); |
| } |
| hash_size *= sizeof(ctx->hash[0]); |
| memcpy(resbuf, ctx->hash, hash_size); |
| return hash_size; |
| } |
| |
| #if NEED_SHA512 |
| unsigned FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf) |
| { |
| unsigned bufpos = ctx->total64[0] & 127; |
| |
| /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */ |
| ctx->wbuffer[bufpos++] = 0x80; |
| |
| while (1) { |
| unsigned remaining = 128 - bufpos; |
| memset(ctx->wbuffer + bufpos, 0, remaining); |
| if (remaining >= 16) { |
| /* Store the 128-bit counter of bits in the buffer in BE format */ |
| uint64_t t; |
| t = ctx->total64[0] << 3; |
| t = SWAP_BE64(t); |
| *(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 8]) = t; |
| t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61); |
| t = SWAP_BE64(t); |
| *(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 16]) = t; |
| } |
| sha512_process_block128(ctx); |
| if (remaining >= 16) |
| break; |
| bufpos = 0; |
| } |
| |
| if (BB_LITTLE_ENDIAN) { |
| unsigned i; |
| for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i) |
| ctx->hash[i] = SWAP_BE64(ctx->hash[i]); |
| } |
| memcpy(resbuf, ctx->hash, sizeof(ctx->hash)); |
| return sizeof(ctx->hash); |
| } |
| #endif /* NEED_SHA512 */ |
| |
| |
| /* |
| * The Keccak sponge function, designed by Guido Bertoni, Joan Daemen, |
| * Michael Peeters and Gilles Van Assche. For more information, feedback or |
| * questions, please refer to our website: http://keccak.noekeon.org/ |
| * |
| * Implementation by Ronny Van Keer, |
| * hereby denoted as "the implementer". |
| * |
| * To the extent possible under law, the implementer has waived all copyright |
| * and related or neighboring rights to the source code in this file. |
| * http://creativecommons.org/publicdomain/zero/1.0/ |
| * |
| * Busybox modifications (C) Lauri Kasanen, under the GPLv2. |
| */ |
| |
| #if CONFIG_SHA3_SMALL < 0 |
| # define SHA3_SMALL 0 |
| #elif CONFIG_SHA3_SMALL > 1 |
| # define SHA3_SMALL 1 |
| #else |
| # define SHA3_SMALL CONFIG_SHA3_SMALL |
| #endif |
| |
| #define OPTIMIZE_SHA3_FOR_32 0 |
| /* |
| * SHA3 can be optimized for 32-bit CPUs with bit-slicing: |
| * every 64-bit word of state[] can be split into two 32-bit words |
| * by even/odd bits. In this form, all rotations of sha3 round |
| * are 32-bit - and there are lots of them. |
| * However, it requires either splitting/combining state words |
| * before/after sha3 round (code does this now) |
| * or shuffling bits before xor'ing them into state and in sha3_end. |
| * Without shuffling, bit-slicing results in -130 bytes of code |
| * and marginal speedup (but of course it gives wrong result). |
| * With shuffling it works, but +260 code bytes, and slower. |
| * Disabled for now: |
| */ |
| #if 0 /* LONG_MAX == 0x7fffffff */ |
| # undef OPTIMIZE_SHA3_FOR_32 |
| # define OPTIMIZE_SHA3_FOR_32 1 |
| #endif |
| |
| #if OPTIMIZE_SHA3_FOR_32 |
| /* This splits every 64-bit word into a pair of 32-bit words, |
| * even bits go into first word, odd bits go to second one. |
| * The conversion is done in-place. |
| */ |
| static void split_halves(uint64_t *state) |
| { |
| /* Credit: Henry S. Warren, Hacker's Delight, Addison-Wesley, 2002 */ |
| uint32_t *s32 = (uint32_t*)state; |
| uint32_t t, x0, x1; |
| int i; |
| for (i = 24; i >= 0; --i) { |
| x0 = s32[0]; |
| t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1); |
| t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2); |
| t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4); |
| t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8); |
| x1 = s32[1]; |
| t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1); |
| t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2); |
| t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4); |
| t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8); |
| *s32++ = (x0 & 0x0000FFFF) | (x1 << 16); |
| *s32++ = (x0 >> 16) | (x1 & 0xFFFF0000); |
| } |
| } |
| /* The reverse operation */ |
| static void combine_halves(uint64_t *state) |
| { |
| uint32_t *s32 = (uint32_t*)state; |
| uint32_t t, x0, x1; |
| int i; |
| for (i = 24; i >= 0; --i) { |
| x0 = s32[0]; |
| x1 = s32[1]; |
| t = (x0 & 0x0000FFFF) | (x1 << 16); |
| x1 = (x0 >> 16) | (x1 & 0xFFFF0000); |
| x0 = t; |
| t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8); |
| t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4); |
| t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2); |
| t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1); |
| *s32++ = x0; |
| t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8); |
| t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4); |
| t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2); |
| t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1); |
| *s32++ = x1; |
| } |
| } |
| #endif |
| |
| /* |
| * In the crypto literature this function is usually called Keccak-f(). |
| */ |
| static void sha3_process_block72(uint64_t *state) |
| { |
| enum { NROUNDS = 24 }; |
| |
| #if OPTIMIZE_SHA3_FOR_32 |
| /* |
| static const uint32_t IOTA_CONST_0[NROUNDS] = { |
| 0x00000001UL, |
| 0x00000000UL, |
| 0x00000000UL, |
| 0x00000000UL, |
| 0x00000001UL, |
| 0x00000001UL, |
| 0x00000001UL, |
| 0x00000001UL, |
| 0x00000000UL, |
| 0x00000000UL, |
| 0x00000001UL, |
| 0x00000000UL, |
| 0x00000001UL, |
| 0x00000001UL, |
| 0x00000001UL, |
| 0x00000001UL, |
| 0x00000000UL, |
| 0x00000000UL, |
| 0x00000000UL, |
| 0x00000000UL, |
| 0x00000001UL, |
| 0x00000000UL, |
| 0x00000001UL, |
| 0x00000000UL, |
| }; |
| ** bits are in lsb: 0101 0000 1111 0100 1111 0001 |
| */ |
| uint32_t IOTA_CONST_0bits = (uint32_t)(0x0050f4f1); |
| static const uint32_t IOTA_CONST_1[NROUNDS] = { |
| 0x00000000UL, |
| 0x00000089UL, |
| 0x8000008bUL, |
| 0x80008080UL, |
| 0x0000008bUL, |
| 0x00008000UL, |
| 0x80008088UL, |
| 0x80000082UL, |
| 0x0000000bUL, |
| 0x0000000aUL, |
| 0x00008082UL, |
| 0x00008003UL, |
| 0x0000808bUL, |
| 0x8000000bUL, |
| 0x8000008aUL, |
| 0x80000081UL, |
| 0x80000081UL, |
| 0x80000008UL, |
| 0x00000083UL, |
| 0x80008003UL, |
| 0x80008088UL, |
| 0x80000088UL, |
| 0x00008000UL, |
| 0x80008082UL, |
| }; |
| |
| uint32_t *const s32 = (uint32_t*)state; |
| unsigned round; |
| |
| split_halves(state); |
| |
| for (round = 0; round < NROUNDS; round++) { |
| unsigned x; |
| |
| /* Theta */ |
| { |
| uint32_t BC[20]; |
| for (x = 0; x < 10; ++x) { |
| BC[x+10] = BC[x] = s32[x]^s32[x+10]^s32[x+20]^s32[x+30]^s32[x+40]; |
| } |
| for (x = 0; x < 10; x += 2) { |
| uint32_t ta, tb; |
| ta = BC[x+8] ^ rotl32(BC[x+3], 1); |
| tb = BC[x+9] ^ BC[x+2]; |
| s32[x+0] ^= ta; |
| s32[x+1] ^= tb; |
| s32[x+10] ^= ta; |
| s32[x+11] ^= tb; |
| s32[x+20] ^= ta; |
| s32[x+21] ^= tb; |
| s32[x+30] ^= ta; |
| s32[x+31] ^= tb; |
| s32[x+40] ^= ta; |
| s32[x+41] ^= tb; |
| } |
| } |
| /* RhoPi */ |
| { |
| uint32_t t0a,t0b, t1a,t1b; |
| t1a = s32[1*2+0]; |
| t1b = s32[1*2+1]; |
| |
| #define RhoPi(PI_LANE, ROT_CONST) \ |
| t0a = s32[PI_LANE*2+0];\ |
| t0b = s32[PI_LANE*2+1];\ |
| if (ROT_CONST & 1) {\ |
| s32[PI_LANE*2+0] = rotl32(t1b, ROT_CONST/2+1);\ |
| s32[PI_LANE*2+1] = ROT_CONST == 1 ? t1a : rotl32(t1a, ROT_CONST/2+0);\ |
| } else {\ |
| s32[PI_LANE*2+0] = rotl32(t1a, ROT_CONST/2);\ |
| s32[PI_LANE*2+1] = rotl32(t1b, ROT_CONST/2);\ |
| }\ |
| t1a = t0a; t1b = t0b; |
| |
| RhoPi(10, 1) |
| RhoPi( 7, 3) |
| RhoPi(11, 6) |
| RhoPi(17,10) |
| RhoPi(18,15) |
| RhoPi( 3,21) |
| RhoPi( 5,28) |
| RhoPi(16,36) |
| RhoPi( 8,45) |
| RhoPi(21,55) |
| RhoPi(24, 2) |
| RhoPi( 4,14) |
| RhoPi(15,27) |
| RhoPi(23,41) |
| RhoPi(19,56) |
| RhoPi(13, 8) |
| RhoPi(12,25) |
| RhoPi( 2,43) |
| RhoPi(20,62) |
| RhoPi(14,18) |
| RhoPi(22,39) |
| RhoPi( 9,61) |
| RhoPi( 6,20) |
| RhoPi( 1,44) |
| #undef RhoPi |
| } |
| /* Chi */ |
| for (x = 0; x <= 40;) { |
| uint32_t BC0, BC1, BC2, BC3, BC4; |
| BC0 = s32[x + 0*2]; |
| BC1 = s32[x + 1*2]; |
| BC2 = s32[x + 2*2]; |
| s32[x + 0*2] = BC0 ^ ((~BC1) & BC2); |
| BC3 = s32[x + 3*2]; |
| s32[x + 1*2] = BC1 ^ ((~BC2) & BC3); |
| BC4 = s32[x + 4*2]; |
| s32[x + 2*2] = BC2 ^ ((~BC3) & BC4); |
| s32[x + 3*2] = BC3 ^ ((~BC4) & BC0); |
| s32[x + 4*2] = BC4 ^ ((~BC0) & BC1); |
| x++; |
| BC0 = s32[x + 0*2]; |
| BC1 = s32[x + 1*2]; |
| BC2 = s32[x + 2*2]; |
| s32[x + 0*2] = BC0 ^ ((~BC1) & BC2); |
| BC3 = s32[x + 3*2]; |
| s32[x + 1*2] = BC1 ^ ((~BC2) & BC3); |
| BC4 = s32[x + 4*2]; |
| s32[x + 2*2] = BC2 ^ ((~BC3) & BC4); |
| s32[x + 3*2] = BC3 ^ ((~BC4) & BC0); |
| s32[x + 4*2] = BC4 ^ ((~BC0) & BC1); |
| x += 9; |
| } |
| /* Iota */ |
| s32[0] ^= IOTA_CONST_0bits & 1; |
| IOTA_CONST_0bits >>= 1; |
| s32[1] ^= IOTA_CONST_1[round]; |
| } |
| |
| combine_halves(state); |
| #else |
| /* Native 64-bit algorithm */ |
| static const uint16_t IOTA_CONST[NROUNDS] = { |
| /* Elements should be 64-bit, but top half is always zero |
| * or 0x80000000. We encode 63rd bits in a separate word below. |
| * Same is true for 31th bits, which lets us use 16-bit table |
| * instead of 64-bit. The speed penalty is lost in the noise. |
| */ |
| 0x0001, |
| 0x8082, |
| 0x808a, |
| 0x8000, |
| 0x808b, |
| 0x0001, |
| 0x8081, |
| 0x8009, |
| 0x008a, |
| 0x0088, |
| 0x8009, |
| 0x000a, |
| 0x808b, |
| 0x008b, |
| 0x8089, |
| 0x8003, |
| 0x8002, |
| 0x0080, |
| 0x800a, |
| 0x000a, |
| 0x8081, |
| 0x8080, |
| 0x0001, |
| 0x8008, |
| }; |
| /* bit for CONST[0] is in msb: 0011 0011 0000 0111 1101 1101 */ |
| const uint32_t IOTA_CONST_bit63 = (uint32_t)(0x3307dd00); |
| /* bit for CONST[0] is in msb: 0001 0110 0011 1000 0001 1011 */ |
| const uint32_t IOTA_CONST_bit31 = (uint32_t)(0x16381b00); |
| |
| static const uint8_t ROT_CONST[24] = { |
| 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, |
| 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44, |
| }; |
| static const uint8_t PI_LANE[24] = { |
| 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, |
| 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1, |
| }; |
| /*static const uint8_t MOD5[10] = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, };*/ |
| |
| unsigned x; |
| unsigned round; |
| |
| if (BB_BIG_ENDIAN) { |
| for (x = 0; x < 25; x++) { |
| state[x] = SWAP_LE64(state[x]); |
| } |
| } |
| |
| for (round = 0; round < NROUNDS; ++round) { |
| /* Theta */ |
| { |
| uint64_t BC[10]; |
| for (x = 0; x < 5; ++x) { |
| BC[x + 5] = BC[x] = state[x] |
| ^ state[x + 5] ^ state[x + 10] |
| ^ state[x + 15] ^ state[x + 20]; |
| } |
| /* Using 2x5 vector above eliminates the need to use |
| * BC[MOD5[x+N]] trick below to fetch BC[(x+N) % 5], |
| * and the code is a bit _smaller_. |
| */ |
| for (x = 0; x < 5; ++x) { |
| uint64_t temp = BC[x + 4] ^ rotl64(BC[x + 1], 1); |
| state[x] ^= temp; |
| state[x + 5] ^= temp; |
| state[x + 10] ^= temp; |
| state[x + 15] ^= temp; |
| state[x + 20] ^= temp; |
| } |
| } |
| |
| /* Rho Pi */ |
| if (SHA3_SMALL) { |
| uint64_t t1 = state[1]; |
| for (x = 0; x < 24; ++x) { |
| uint64_t t0 = state[PI_LANE[x]]; |
| state[PI_LANE[x]] = rotl64(t1, ROT_CONST[x]); |
| t1 = t0; |
| } |
| } else { |
| /* Especially large benefit for 32-bit arch (75% faster): |
| * 64-bit rotations by non-constant usually are SLOW on those. |
| * We resort to unrolling here. |
| * This optimizes out PI_LANE[] and ROT_CONST[], |
| * but generates 300-500 more bytes of code. |
| */ |
| uint64_t t0; |
| uint64_t t1 = state[1]; |
| #define RhoPi_twice(x) \ |
| t0 = state[PI_LANE[x ]]; \ |
| state[PI_LANE[x ]] = rotl64(t1, ROT_CONST[x ]); \ |
| t1 = state[PI_LANE[x+1]]; \ |
| state[PI_LANE[x+1]] = rotl64(t0, ROT_CONST[x+1]); |
| RhoPi_twice(0); RhoPi_twice(2); |
| RhoPi_twice(4); RhoPi_twice(6); |
| RhoPi_twice(8); RhoPi_twice(10); |
| RhoPi_twice(12); RhoPi_twice(14); |
| RhoPi_twice(16); RhoPi_twice(18); |
| RhoPi_twice(20); RhoPi_twice(22); |
| #undef RhoPi_twice |
| } |
| /* Chi */ |
| # if LONG_MAX > 0x7fffffff |
| for (x = 0; x <= 20; x += 5) { |
| uint64_t BC0, BC1, BC2, BC3, BC4; |
| BC0 = state[x + 0]; |
| BC1 = state[x + 1]; |
| BC2 = state[x + 2]; |
| state[x + 0] = BC0 ^ ((~BC1) & BC2); |
| BC3 = state[x + 3]; |
| state[x + 1] = BC1 ^ ((~BC2) & BC3); |
| BC4 = state[x + 4]; |
| state[x + 2] = BC2 ^ ((~BC3) & BC4); |
| state[x + 3] = BC3 ^ ((~BC4) & BC0); |
| state[x + 4] = BC4 ^ ((~BC0) & BC1); |
| } |
| # else |
| /* Reduced register pressure version |
| * for register-starved 32-bit arches |
| * (i386: -95 bytes, and it is _faster_) |
| */ |
| for (x = 0; x <= 40;) { |
| uint32_t BC0, BC1, BC2, BC3, BC4; |
| uint32_t *const s32 = (uint32_t*)state; |
| # if SHA3_SMALL |
| do_half: |
| # endif |
| BC0 = s32[x + 0*2]; |
| BC1 = s32[x + 1*2]; |
| BC2 = s32[x + 2*2]; |
| s32[x + 0*2] = BC0 ^ ((~BC1) & BC2); |
| BC3 = s32[x + 3*2]; |
| s32[x + 1*2] = BC1 ^ ((~BC2) & BC3); |
| BC4 = s32[x + 4*2]; |
| s32[x + 2*2] = BC2 ^ ((~BC3) & BC4); |
| s32[x + 3*2] = BC3 ^ ((~BC4) & BC0); |
| s32[x + 4*2] = BC4 ^ ((~BC0) & BC1); |
| x++; |
| # if SHA3_SMALL |
| if (x & 1) |
| goto do_half; |
| x += 8; |
| # else |
| BC0 = s32[x + 0*2]; |
| BC1 = s32[x + 1*2]; |
| BC2 = s32[x + 2*2]; |
| s32[x + 0*2] = BC0 ^ ((~BC1) & BC2); |
| BC3 = s32[x + 3*2]; |
| s32[x + 1*2] = BC1 ^ ((~BC2) & BC3); |
| BC4 = s32[x + 4*2]; |
| s32[x + 2*2] = BC2 ^ ((~BC3) & BC4); |
| s32[x + 3*2] = BC3 ^ ((~BC4) & BC0); |
| s32[x + 4*2] = BC4 ^ ((~BC0) & BC1); |
| x += 9; |
| # endif |
| } |
| # endif /* long is 32-bit */ |
| /* Iota */ |
| state[0] ^= IOTA_CONST[round] |
| | (uint32_t)((IOTA_CONST_bit31 << round) & 0x80000000) |
| | (uint64_t)((IOTA_CONST_bit63 << round) & 0x80000000) << 32; |
| } |
| |
| if (BB_BIG_ENDIAN) { |
| for (x = 0; x < 25; x++) { |
| state[x] = SWAP_LE64(state[x]); |
| } |
| } |
| #endif |
| } |
| |
| void FAST_FUNC sha3_begin(sha3_ctx_t *ctx) |
| { |
| memset(ctx, 0, sizeof(*ctx)); |
| /* SHA3-512, user can override */ |
| ctx->input_block_bytes = (1600 - 512*2) / 8; /* 72 bytes */ |
| } |
| |
| void FAST_FUNC sha3_hash(sha3_ctx_t *ctx, const void *buffer, size_t len) |
| { |
| #if SHA3_SMALL |
| const uint8_t *data = buffer; |
| unsigned bufpos = ctx->bytes_queued; |
| |
| while (1) { |
| unsigned remaining = ctx->input_block_bytes - bufpos; |
| if (remaining > len) |
| remaining = len; |
| len -= remaining; |
| /* XOR data into buffer */ |
| while (remaining != 0) { |
| uint8_t *buf = (uint8_t*)ctx->state; |
| buf[bufpos] ^= *data++; |
| bufpos++; |
| remaining--; |
| } |
| /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */ |
| bufpos -= ctx->input_block_bytes; |
| if (bufpos != 0) |
| break; |
| /* Buffer is filled up, process it */ |
| sha3_process_block72(ctx->state); |
| /*bufpos = 0; - already is */ |
| } |
| ctx->bytes_queued = bufpos + ctx->input_block_bytes; |
| #else |
| /* +50 bytes code size, but a bit faster because of long-sized XORs */ |
| const uint8_t *data = buffer; |
| unsigned bufpos = ctx->bytes_queued; |
| unsigned iblk_bytes = ctx->input_block_bytes; |
| |
| /* If already data in queue, continue queuing first */ |
| if (bufpos != 0) { |
| while (len != 0) { |
| uint8_t *buf = (uint8_t*)ctx->state; |
| buf[bufpos] ^= *data++; |
| len--; |
| bufpos++; |
| if (bufpos == iblk_bytes) { |
| bufpos = 0; |
| goto do_block; |
| } |
| } |
| } |
| |
| /* Absorb complete blocks */ |
| while (len >= iblk_bytes) { |
| /* XOR data onto beginning of state[]. |
| * We try to be efficient - operate one word at a time, not byte. |
| * Careful wrt unaligned access: can't just use "*(long*)data"! |
| */ |
| unsigned count = iblk_bytes / sizeof(long); |
| long *buf = (long*)ctx->state; |
| do { |
| long v; |
| move_from_unaligned_long(v, (long*)data); |
| *buf++ ^= v; |
| data += sizeof(long); |
| } while (--count); |
| len -= iblk_bytes; |
| do_block: |
| sha3_process_block72(ctx->state); |
| } |
| |
| /* Queue remaining data bytes */ |
| while (len != 0) { |
| uint8_t *buf = (uint8_t*)ctx->state; |
| buf[bufpos] ^= *data++; |
| bufpos++; |
| len--; |
| } |
| |
| ctx->bytes_queued = bufpos; |
| #endif |
| } |
| |
| unsigned FAST_FUNC sha3_end(sha3_ctx_t *ctx, void *resbuf) |
| { |
| /* Padding */ |
| uint8_t *buf = (uint8_t*)ctx->state; |
| /* |
| * Keccak block padding is: add 1 bit after last bit of input, |
| * then add zero bits until the end of block, and add the last 1 bit |
| * (the last bit in the block) - the "10*1" pattern. |
| * SHA3 standard appends additional two bits, 01, before that padding: |
| * |
| * SHA3-224(M) = KECCAK[448](M||01, 224) |
| * SHA3-256(M) = KECCAK[512](M||01, 256) |
| * SHA3-384(M) = KECCAK[768](M||01, 384) |
| * SHA3-512(M) = KECCAK[1024](M||01, 512) |
| * (M is the input, || is bit concatenation) |
| * |
| * The 6 below contains 01 "SHA3" bits and the first 1 "Keccak" bit: |
| */ |
| buf[ctx->bytes_queued] ^= 6; /* bit pattern 00000110 */ |
| buf[ctx->input_block_bytes - 1] ^= 0x80; |
| |
| sha3_process_block72(ctx->state); |
| |
| /* Output */ |
| memcpy(resbuf, ctx->state, 64); |
| return 64; |
| } |