| /* SHA256 and SHA512-based Unix crypt implementation. |
| * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. |
| */ |
| |
| /* Prefix for optional rounds specification. */ |
| static const char str_rounds[] ALIGN1 = "rounds=%u$"; |
| |
| /* Maximum salt string length. */ |
| #define SALT_LEN_MAX 16 |
| /* Default number of rounds if not explicitly specified. */ |
| #define ROUNDS_DEFAULT 5000 |
| /* Minimum number of rounds. */ |
| #define ROUNDS_MIN 1000 |
| /* Maximum number of rounds. */ |
| #define ROUNDS_MAX 999999999 |
| |
| static char * |
| NOINLINE |
| sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data) |
| { |
| #undef sha_end |
| void (*sha_begin)(void *ctx) FAST_FUNC; |
| void (*sha_hash)(void *ctx, const void *buffer, size_t len) FAST_FUNC; |
| unsigned (*sha_end)(void *ctx, void *resbuf) FAST_FUNC; |
| int _32or64; |
| |
| char *result, *resptr; |
| |
| /* btw, sha256 needs [32] and uint32_t only */ |
| struct { |
| unsigned char alt_result[64]; |
| unsigned char temp_result[64]; |
| union { |
| sha256_ctx_t x; |
| sha512_ctx_t y; |
| } ctx; |
| union { |
| sha256_ctx_t x; |
| sha512_ctx_t y; |
| } alt_ctx; |
| } L __attribute__((__aligned__(__alignof__(uint64_t)))); |
| #define alt_result (L.alt_result ) |
| #define temp_result (L.temp_result) |
| #define ctx (L.ctx ) |
| #define alt_ctx (L.alt_ctx ) |
| unsigned salt_len; |
| unsigned key_len; |
| unsigned cnt; |
| unsigned rounds; |
| char *cp; |
| |
| /* Analyze salt, construct already known part of result */ |
| cnt = strlen(salt_data) + 1 + 43 + 1; |
| _32or64 = 32; |
| if (salt_data[1] == '6') { /* sha512 */ |
| _32or64 *= 2; /*64*/ |
| cnt += 43; |
| } |
| result = resptr = xzalloc(cnt); /* will provide NUL terminator */ |
| *resptr++ = '$'; |
| *resptr++ = salt_data[1]; |
| *resptr++ = '$'; |
| rounds = ROUNDS_DEFAULT; |
| salt_data += 3; |
| if (strncmp(salt_data, str_rounds, 7) == 0) { |
| /* 7 == strlen("rounds=") */ |
| char *endp; |
| cnt = bb_strtou(salt_data + 7, &endp, 10); |
| if (*endp == '$') { |
| salt_data = endp + 1; |
| rounds = cnt; |
| if (rounds < ROUNDS_MIN) |
| rounds = ROUNDS_MIN; |
| if (rounds > ROUNDS_MAX) |
| rounds = ROUNDS_MAX; |
| /* add "rounds=NNNNN$" to result */ |
| resptr += sprintf(resptr, str_rounds, rounds); |
| } |
| } |
| salt_len = strchrnul(salt_data, '$') - salt_data; |
| if (salt_len > SALT_LEN_MAX) |
| salt_len = SALT_LEN_MAX; |
| /* xstrdup assures suitable alignment; also we will use it |
| as a scratch space later. */ |
| salt_data = xstrndup(salt_data, salt_len); |
| /* add "salt$" to result */ |
| strcpy(resptr, salt_data); |
| resptr += salt_len; |
| *resptr++ = '$'; |
| /* key data doesn't need much processing */ |
| key_len = strlen(key_data); |
| key_data = xstrdup(key_data); |
| |
| /* Which flavor of SHAnnn ops to use? */ |
| sha_begin = (void*)sha256_begin; |
| sha_hash = (void*)sha256_hash; |
| sha_end = (void*)sha256_end; |
| if (_32or64 != 32) { |
| sha_begin = (void*)sha512_begin; |
| sha_hash = (void*)sha512_hash; |
| sha_end = (void*)sha512_end; |
| } |
| |
| /* Add KEY, SALT. */ |
| sha_begin(&ctx); |
| sha_hash(&ctx, key_data, key_len); |
| sha_hash(&ctx, salt_data, salt_len); |
| |
| /* Compute alternate SHA sum with input KEY, SALT, and KEY. |
| The final result will be added to the first context. */ |
| sha_begin(&alt_ctx); |
| sha_hash(&alt_ctx, key_data, key_len); |
| sha_hash(&alt_ctx, salt_data, salt_len); |
| sha_hash(&alt_ctx, key_data, key_len); |
| sha_end(&alt_ctx, alt_result); |
| |
| /* Add result of this to the other context. */ |
| /* Add for any character in the key one byte of the alternate sum. */ |
| for (cnt = key_len; cnt > _32or64; cnt -= _32or64) |
| sha_hash(&ctx, alt_result, _32or64); |
| sha_hash(&ctx, alt_result, cnt); |
| |
| /* Take the binary representation of the length of the key and for every |
| 1 add the alternate sum, for every 0 the key. */ |
| for (cnt = key_len; cnt != 0; cnt >>= 1) |
| if ((cnt & 1) != 0) |
| sha_hash(&ctx, alt_result, _32or64); |
| else |
| sha_hash(&ctx, key_data, key_len); |
| |
| /* Create intermediate result. */ |
| sha_end(&ctx, alt_result); |
| |
| /* Start computation of P byte sequence. */ |
| /* For every character in the password add the entire password. */ |
| sha_begin(&alt_ctx); |
| for (cnt = 0; cnt < key_len; ++cnt) |
| sha_hash(&alt_ctx, key_data, key_len); |
| sha_end(&alt_ctx, temp_result); |
| |
| /* NB: past this point, raw key_data is not used anymore */ |
| |
| /* Create byte sequence P. */ |
| #define p_bytes key_data /* reuse the buffer as it is of the key_len size */ |
| cp = p_bytes; /* was: ... = alloca(key_len); */ |
| for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) { |
| cp = memcpy(cp, temp_result, _32or64); |
| cp += _32or64; |
| } |
| memcpy(cp, temp_result, cnt); |
| |
| /* Start computation of S byte sequence. */ |
| /* For every character in the password add the entire password. */ |
| sha_begin(&alt_ctx); |
| for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) |
| sha_hash(&alt_ctx, salt_data, salt_len); |
| sha_end(&alt_ctx, temp_result); |
| |
| /* NB: past this point, raw salt_data is not used anymore */ |
| |
| /* Create byte sequence S. */ |
| #define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */ |
| cp = s_bytes; /* was: ... = alloca(salt_len); */ |
| for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) { |
| cp = memcpy(cp, temp_result, _32or64); |
| cp += _32or64; |
| } |
| memcpy(cp, temp_result, cnt); |
| |
| /* Repeatedly run the collected hash value through SHA to burn |
| CPU cycles. */ |
| for (cnt = 0; cnt < rounds; ++cnt) { |
| sha_begin(&ctx); |
| |
| /* Add key or last result. */ |
| if ((cnt & 1) != 0) |
| sha_hash(&ctx, p_bytes, key_len); |
| else |
| sha_hash(&ctx, alt_result, _32or64); |
| /* Add salt for numbers not divisible by 3. */ |
| if (cnt % 3 != 0) |
| sha_hash(&ctx, s_bytes, salt_len); |
| /* Add key for numbers not divisible by 7. */ |
| if (cnt % 7 != 0) |
| sha_hash(&ctx, p_bytes, key_len); |
| /* Add key or last result. */ |
| if ((cnt & 1) != 0) |
| sha_hash(&ctx, alt_result, _32or64); |
| else |
| sha_hash(&ctx, p_bytes, key_len); |
| |
| sha_end(&ctx, alt_result); |
| } |
| |
| /* Append encrypted password to result buffer */ |
| //TODO: replace with something like |
| // bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64); |
| #define b64_from_24bit(B2, B1, B0, N) \ |
| do { \ |
| unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
| resptr = to64(resptr, w, N); \ |
| } while (0) |
| if (_32or64 == 32) { /* sha256 */ |
| unsigned i = 0; |
| while (1) { |
| unsigned j = i + 10; |
| unsigned k = i + 20; |
| if (j >= 30) j -= 30; |
| if (k >= 30) k -= 30; |
| b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4); |
| if (k == 29) |
| break; |
| i = k + 1; |
| } |
| b64_from_24bit(0, alt_result[31], alt_result[30], 3); |
| /* was: |
| b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); |
| b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); |
| b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); |
| b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); |
| b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); |
| b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); |
| b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); |
| b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); |
| b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); |
| b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); |
| b64_from_24bit(0, alt_result[31], alt_result[30], 3); |
| */ |
| } else { |
| unsigned i = 0; |
| while (1) { |
| unsigned j = i + 21; |
| unsigned k = i + 42; |
| if (j >= 63) j -= 63; |
| if (k >= 63) k -= 63; |
| b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4); |
| if (j == 20) |
| break; |
| i = j + 1; |
| } |
| b64_from_24bit(0, 0, alt_result[63], 2); |
| /* was: |
| b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4); |
| b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4); |
| b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4); |
| b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4); |
| b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4); |
| b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4); |
| b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4); |
| b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4); |
| b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4); |
| b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4); |
| b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4); |
| b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4); |
| b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4); |
| b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4); |
| b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4); |
| b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4); |
| b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4); |
| b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4); |
| b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4); |
| b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4); |
| b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4); |
| b64_from_24bit(0, 0, alt_result[63], 2); |
| */ |
| } |
| /* *resptr = '\0'; - xzalloc did it */ |
| #undef b64_from_24bit |
| |
| /* Clear the buffer for the intermediate result so that people |
| attaching to processes or reading core dumps cannot get any |
| information. */ |
| memset(&L, 0, sizeof(L)); /* [alt]_ctx and XXX_result buffers */ |
| memset(key_data, 0, key_len); /* also p_bytes */ |
| memset(salt_data, 0, salt_len); /* also s_bytes */ |
| free(key_data); |
| free(salt_data); |
| #undef p_bytes |
| #undef s_bytes |
| |
| return result; |
| #undef alt_result |
| #undef temp_result |
| #undef ctx |
| #undef alt_ctx |
| } |