| /* |
| * Copyright (c) 2013, Kenneth MacKay |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifdef HAVE_CONFIG_H |
| #include <config.h> |
| #endif |
| |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <sys/types.h> |
| #include <string.h> |
| |
| #include "ecc.h" |
| |
| /* 256-bit curve */ |
| #define ECC_BYTES 32 |
| |
| /* Number of uint64_t's needed */ |
| #define NUM_ECC_DIGITS (ECC_BYTES / 8) |
| |
| struct ecc_point { |
| uint64_t x[NUM_ECC_DIGITS]; |
| uint64_t y[NUM_ECC_DIGITS]; |
| }; |
| |
| #define MAX_TRIES 16 |
| |
| typedef struct { |
| uint64_t m_low; |
| uint64_t m_high; |
| } uint128_t; |
| |
| #define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \ |
| 0x0000000000000000ull, 0xFFFFFFFF00000001ull } |
| |
| #define CURVE_G_32 { \ |
| { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \ |
| 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \ |
| { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \ |
| 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \ |
| } |
| |
| #define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \ |
| 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull } |
| |
| static uint64_t curve_p[NUM_ECC_DIGITS] = CURVE_P_32; |
| static struct ecc_point curve_g = CURVE_G_32; |
| static uint64_t curve_n[NUM_ECC_DIGITS] = CURVE_N_32; |
| |
| static bool get_random_number(uint64_t *vli) |
| { |
| char *ptr = (char *) vli; |
| size_t left = ECC_BYTES; |
| int fd; |
| |
| fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC); |
| if (fd < 0) { |
| fd = open("/dev/random", O_RDONLY | O_CLOEXEC); |
| if (fd < 0) |
| return false; |
| } |
| |
| while (left > 0) { |
| ssize_t ret; |
| |
| ret = read(fd, ptr, left); |
| if (ret <= 0) { |
| close(fd); |
| return false; |
| } |
| |
| left -= ret; |
| ptr += ret; |
| } |
| |
| close(fd); |
| |
| return true; |
| } |
| |
| static void vli_clear(uint64_t *vli) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) |
| vli[i] = 0; |
| } |
| |
| /* Returns true if vli == 0, false otherwise. */ |
| static bool vli_is_zero(const uint64_t *vli) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| if (vli[i]) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Returns nonzero if bit bit of vli is set. */ |
| static uint64_t vli_test_bit(const uint64_t *vli, unsigned int bit) |
| { |
| return (vli[bit / 64] & ((uint64_t) 1 << (bit % 64))); |
| } |
| |
| /* Counts the number of 64-bit "digits" in vli. */ |
| static unsigned int vli_num_digits(const uint64_t *vli) |
| { |
| int i; |
| |
| /* Search from the end until we find a non-zero digit. |
| * We do it in reverse because we expect that most digits will |
| * be nonzero. |
| */ |
| for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--); |
| |
| return (i + 1); |
| } |
| |
| /* Counts the number of bits required for vli. */ |
| static unsigned int vli_num_bits(const uint64_t *vli) |
| { |
| unsigned int i, num_digits; |
| uint64_t digit; |
| |
| num_digits = vli_num_digits(vli); |
| if (num_digits == 0) |
| return 0; |
| |
| digit = vli[num_digits - 1]; |
| for (i = 0; digit; i++) |
| digit >>= 1; |
| |
| return ((num_digits - 1) * 64 + i); |
| } |
| |
| /* Sets dest = src. */ |
| static void vli_set(uint64_t *dest, const uint64_t *src) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) |
| dest[i] = src[i]; |
| } |
| |
| /* Returns sign of left - right. */ |
| static int vli_cmp(const uint64_t *left, const uint64_t *right) |
| { |
| int i; |
| |
| for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) { |
| if (left[i] > right[i]) |
| return 1; |
| else if (left[i] < right[i]) |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Computes result = in << c, returning carry. Can modify in place |
| * (if result == in). 0 < shift < 64. |
| */ |
| static uint64_t vli_lshift(uint64_t *result, const uint64_t *in, |
| unsigned int shift) |
| { |
| uint64_t carry = 0; |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| uint64_t temp = in[i]; |
| |
| result[i] = (temp << shift) | carry; |
| carry = temp >> (64 - shift); |
| } |
| |
| return carry; |
| } |
| |
| /* Computes vli = vli >> 1. */ |
| static void vli_rshift1(uint64_t *vli) |
| { |
| uint64_t *end = vli; |
| uint64_t carry = 0; |
| |
| vli += NUM_ECC_DIGITS; |
| |
| while (vli-- > end) { |
| uint64_t temp = *vli; |
| *vli = (temp >> 1) | carry; |
| carry = temp << 63; |
| } |
| } |
| |
| /* Computes result = left + right, returning carry. Can modify in place. */ |
| static uint64_t vli_add(uint64_t *result, const uint64_t *left, |
| const uint64_t *right) |
| { |
| uint64_t carry = 0; |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| uint64_t sum; |
| |
| sum = left[i] + right[i] + carry; |
| if (sum != left[i]) |
| carry = (sum < left[i]); |
| |
| result[i] = sum; |
| } |
| |
| return carry; |
| } |
| |
| /* Computes result = left - right, returning borrow. Can modify in place. */ |
| static uint64_t vli_sub(uint64_t *result, const uint64_t *left, |
| const uint64_t *right) |
| { |
| uint64_t borrow = 0; |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| uint64_t diff; |
| |
| diff = left[i] - right[i] - borrow; |
| if (diff != left[i]) |
| borrow = (diff > left[i]); |
| |
| result[i] = diff; |
| } |
| |
| return borrow; |
| } |
| |
| static uint128_t mul_64_64(uint64_t left, uint64_t right) |
| { |
| uint64_t a0 = left & 0xffffffffull; |
| uint64_t a1 = left >> 32; |
| uint64_t b0 = right & 0xffffffffull; |
| uint64_t b1 = right >> 32; |
| uint64_t m0 = a0 * b0; |
| uint64_t m1 = a0 * b1; |
| uint64_t m2 = a1 * b0; |
| uint64_t m3 = a1 * b1; |
| uint128_t result; |
| |
| m2 += (m0 >> 32); |
| m2 += m1; |
| |
| /* Overflow */ |
| if (m2 < m1) |
| m3 += 0x100000000ull; |
| |
| result.m_low = (m0 & 0xffffffffull) | (m2 << 32); |
| result.m_high = m3 + (m2 >> 32); |
| |
| return result; |
| } |
| |
| static uint128_t add_128_128(uint128_t a, uint128_t b) |
| { |
| uint128_t result; |
| |
| result.m_low = a.m_low + b.m_low; |
| result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); |
| |
| return result; |
| } |
| |
| static void vli_mult(uint64_t *result, const uint64_t *left, |
| const uint64_t *right) |
| { |
| uint128_t r01 = { 0, 0 }; |
| uint64_t r2 = 0; |
| unsigned int i, k; |
| |
| /* Compute each digit of result in sequence, maintaining the |
| * carries. |
| */ |
| for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { |
| unsigned int min; |
| |
| if (k < NUM_ECC_DIGITS) |
| min = 0; |
| else |
| min = (k + 1) - NUM_ECC_DIGITS; |
| |
| for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) { |
| uint128_t product; |
| |
| product = mul_64_64(left[i], right[k - i]); |
| |
| r01 = add_128_128(r01, product); |
| r2 += (r01.m_high < product.m_high); |
| } |
| |
| result[k] = r01.m_low; |
| r01.m_low = r01.m_high; |
| r01.m_high = r2; |
| r2 = 0; |
| } |
| |
| result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; |
| } |
| |
| static void vli_square(uint64_t *result, const uint64_t *left) |
| { |
| uint128_t r01 = { 0, 0 }; |
| uint64_t r2 = 0; |
| int i, k; |
| |
| for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { |
| unsigned int min; |
| |
| if (k < NUM_ECC_DIGITS) |
| min = 0; |
| else |
| min = (k + 1) - NUM_ECC_DIGITS; |
| |
| for (i = min; i <= k && i <= k - i; i++) { |
| uint128_t product; |
| |
| product = mul_64_64(left[i], left[k - i]); |
| |
| if (i < k - i) { |
| r2 += product.m_high >> 63; |
| product.m_high = (product.m_high << 1) | |
| (product.m_low >> 63); |
| product.m_low <<= 1; |
| } |
| |
| r01 = add_128_128(r01, product); |
| r2 += (r01.m_high < product.m_high); |
| } |
| |
| result[k] = r01.m_low; |
| r01.m_low = r01.m_high; |
| r01.m_high = r2; |
| r2 = 0; |
| } |
| |
| result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; |
| } |
| |
| /* Computes result = (left + right) % mod. |
| * Assumes that left < mod and right < mod, result != mod. |
| */ |
| static void vli_mod_add(uint64_t *result, const uint64_t *left, |
| const uint64_t *right, const uint64_t *mod) |
| { |
| uint64_t carry; |
| |
| carry = vli_add(result, left, right); |
| |
| /* result > mod (result = mod + remainder), so subtract mod to |
| * get remainder. |
| */ |
| if (carry || vli_cmp(result, mod) >= 0) |
| vli_sub(result, result, mod); |
| } |
| |
| /* Computes result = (left - right) % mod. |
| * Assumes that left < mod and right < mod, result != mod. |
| */ |
| static void vli_mod_sub(uint64_t *result, const uint64_t *left, |
| const uint64_t *right, const uint64_t *mod) |
| { |
| uint64_t borrow = vli_sub(result, left, right); |
| |
| /* In this case, p_result == -diff == (max int) - diff. |
| * Since -x % d == d - x, we can get the correct result from |
| * result + mod (with overflow). |
| */ |
| if (borrow) |
| vli_add(result, result, mod); |
| } |
| |
| /* Computes result = product % curve_p |
| from http://www.nsa.gov/ia/_files/nist-routines.pdf */ |
| static void vli_mmod_fast(uint64_t *result, const uint64_t *product) |
| { |
| uint64_t tmp[NUM_ECC_DIGITS]; |
| int carry; |
| |
| /* t */ |
| vli_set(result, product); |
| |
| /* s1 */ |
| tmp[0] = 0; |
| tmp[1] = product[5] & 0xffffffff00000000ull; |
| tmp[2] = product[6]; |
| tmp[3] = product[7]; |
| carry = vli_lshift(tmp, tmp, 1); |
| carry += vli_add(result, result, tmp); |
| |
| /* s2 */ |
| tmp[1] = product[6] << 32; |
| tmp[2] = (product[6] >> 32) | (product[7] << 32); |
| tmp[3] = product[7] >> 32; |
| carry += vli_lshift(tmp, tmp, 1); |
| carry += vli_add(result, result, tmp); |
| |
| /* s3 */ |
| tmp[0] = product[4]; |
| tmp[1] = product[5] & 0xffffffff; |
| tmp[2] = 0; |
| tmp[3] = product[7]; |
| carry += vli_add(result, result, tmp); |
| |
| /* s4 */ |
| tmp[0] = (product[4] >> 32) | (product[5] << 32); |
| tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); |
| tmp[2] = product[7]; |
| tmp[3] = (product[6] >> 32) | (product[4] << 32); |
| carry += vli_add(result, result, tmp); |
| |
| /* d1 */ |
| tmp[0] = (product[5] >> 32) | (product[6] << 32); |
| tmp[1] = (product[6] >> 32); |
| tmp[2] = 0; |
| tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); |
| carry -= vli_sub(result, result, tmp); |
| |
| /* d2 */ |
| tmp[0] = product[6]; |
| tmp[1] = product[7]; |
| tmp[2] = 0; |
| tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); |
| carry -= vli_sub(result, result, tmp); |
| |
| /* d3 */ |
| tmp[0] = (product[6] >> 32) | (product[7] << 32); |
| tmp[1] = (product[7] >> 32) | (product[4] << 32); |
| tmp[2] = (product[4] >> 32) | (product[5] << 32); |
| tmp[3] = (product[6] << 32); |
| carry -= vli_sub(result, result, tmp); |
| |
| /* d4 */ |
| tmp[0] = product[7]; |
| tmp[1] = product[4] & 0xffffffff00000000ull; |
| tmp[2] = product[5]; |
| tmp[3] = product[6] & 0xffffffff00000000ull; |
| carry -= vli_sub(result, result, tmp); |
| |
| if (carry < 0) { |
| do { |
| carry += vli_add(result, result, curve_p); |
| } while (carry < 0); |
| } else { |
| while (carry || vli_cmp(curve_p, result) != 1) |
| carry -= vli_sub(result, result, curve_p); |
| } |
| } |
| |
| /* Computes result = (left * right) % curve_p. */ |
| static void vli_mod_mult_fast(uint64_t *result, const uint64_t *left, |
| const uint64_t *right) |
| { |
| uint64_t product[2 * NUM_ECC_DIGITS]; |
| |
| vli_mult(product, left, right); |
| vli_mmod_fast(result, product); |
| } |
| |
| /* Computes result = left^2 % curve_p. */ |
| static void vli_mod_square_fast(uint64_t *result, const uint64_t *left) |
| { |
| uint64_t product[2 * NUM_ECC_DIGITS]; |
| |
| vli_square(product, left); |
| vli_mmod_fast(result, product); |
| } |
| |
| #define EVEN(vli) (!(vli[0] & 1)) |
| /* Computes result = (1 / p_input) % mod. All VLIs are the same size. |
| * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" |
| * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf |
| */ |
| static void vli_mod_inv(uint64_t *result, const uint64_t *input, |
| const uint64_t *mod) |
| { |
| uint64_t a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS]; |
| uint64_t u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS]; |
| uint64_t carry; |
| int cmp_result; |
| |
| if (vli_is_zero(input)) { |
| vli_clear(result); |
| return; |
| } |
| |
| vli_set(a, input); |
| vli_set(b, mod); |
| vli_clear(u); |
| u[0] = 1; |
| vli_clear(v); |
| |
| while ((cmp_result = vli_cmp(a, b)) != 0) { |
| carry = 0; |
| |
| if (EVEN(a)) { |
| vli_rshift1(a); |
| |
| if (!EVEN(u)) |
| carry = vli_add(u, u, mod); |
| |
| vli_rshift1(u); |
| if (carry) |
| u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| } else if (EVEN(b)) { |
| vli_rshift1(b); |
| |
| if (!EVEN(v)) |
| carry = vli_add(v, v, mod); |
| |
| vli_rshift1(v); |
| if (carry) |
| v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| } else if (cmp_result > 0) { |
| vli_sub(a, a, b); |
| vli_rshift1(a); |
| |
| if (vli_cmp(u, v) < 0) |
| vli_add(u, u, mod); |
| |
| vli_sub(u, u, v); |
| if (!EVEN(u)) |
| carry = vli_add(u, u, mod); |
| |
| vli_rshift1(u); |
| if (carry) |
| u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| } else { |
| vli_sub(b, b, a); |
| vli_rshift1(b); |
| |
| if (vli_cmp(v, u) < 0) |
| vli_add(v, v, mod); |
| |
| vli_sub(v, v, u); |
| if (!EVEN(v)) |
| carry = vli_add(v, v, mod); |
| |
| vli_rshift1(v); |
| if (carry) |
| v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; |
| } |
| } |
| |
| vli_set(result, u); |
| } |
| |
| /* ------ Point operations ------ */ |
| |
| /* Returns true if p_point is the point at infinity, false otherwise. */ |
| static bool ecc_point_is_zero(const struct ecc_point *point) |
| { |
| return (vli_is_zero(point->x) && vli_is_zero(point->y)); |
| } |
| |
| /* Point multiplication algorithm using Montgomery's ladder with co-Z |
| * coordinates. From http://eprint.iacr.org/2011/338.pdf |
| */ |
| |
| /* Double in place */ |
| static void ecc_point_double_jacobian(uint64_t *x1, uint64_t *y1, uint64_t *z1) |
| { |
| /* t1 = x, t2 = y, t3 = z */ |
| uint64_t t4[NUM_ECC_DIGITS]; |
| uint64_t t5[NUM_ECC_DIGITS]; |
| |
| if (vli_is_zero(z1)) |
| return; |
| |
| vli_mod_square_fast(t4, y1); /* t4 = y1^2 */ |
| vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */ |
| vli_mod_square_fast(t4, t4); /* t4 = y1^4 */ |
| vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */ |
| vli_mod_square_fast(z1, z1); /* t3 = z1^2 */ |
| |
| vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */ |
| vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */ |
| vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */ |
| vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */ |
| |
| vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ |
| vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ |
| if (vli_test_bit(x1, 0)) { |
| uint64_t carry = vli_add(x1, x1, curve_p); |
| vli_rshift1(x1); |
| x1[NUM_ECC_DIGITS - 1] |= carry << 63; |
| } else { |
| vli_rshift1(x1); |
| } |
| /* t1 = 3/2*(x1^2 - z1^4) = B */ |
| |
| vli_mod_square_fast(z1, x1); /* t3 = B^2 */ |
| vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */ |
| vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ |
| vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */ |
| vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */ |
| vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */ |
| |
| vli_set(x1, z1); |
| vli_set(z1, y1); |
| vli_set(y1, t4); |
| } |
| |
| /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ |
| static void apply_z(uint64_t *x1, uint64_t *y1, uint64_t *z) |
| { |
| uint64_t t1[NUM_ECC_DIGITS]; |
| |
| vli_mod_square_fast(t1, z); /* z^2 */ |
| vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */ |
| vli_mod_mult_fast(t1, t1, z); /* z^3 */ |
| vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */ |
| } |
| |
| /* P = (x1, y1) => 2P, (x2, y2) => P' */ |
| static void xycz_initial_double(uint64_t *x1, uint64_t *y1, uint64_t *x2, |
| uint64_t *y2, uint64_t *p_initial_z) |
| { |
| uint64_t z[NUM_ECC_DIGITS]; |
| |
| vli_set(x2, x1); |
| vli_set(y2, y1); |
| |
| vli_clear(z); |
| z[0] = 1; |
| |
| if (p_initial_z) |
| vli_set(z, p_initial_z); |
| |
| apply_z(x1, y1, z); |
| |
| ecc_point_double_jacobian(x1, y1, z); |
| |
| apply_z(x2, y2, z); |
| } |
| |
| /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) |
| * or P => P', Q => P + Q |
| */ |
| static void xycz_add(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2) |
| { |
| /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| uint64_t t5[NUM_ECC_DIGITS]; |
| |
| vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ |
| vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ |
| vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ |
| vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ |
| vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ |
| vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */ |
| |
| vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */ |
| vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */ |
| vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */ |
| vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */ |
| vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */ |
| vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */ |
| vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ |
| |
| vli_set(x2, t5); |
| } |
| |
| /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
| * or P => P - Q, Q => P + Q |
| */ |
| static void xycz_add_c(uint64_t *x1, uint64_t *y1, uint64_t *x2, uint64_t *y2) |
| { |
| /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
| uint64_t t5[NUM_ECC_DIGITS]; |
| uint64_t t6[NUM_ECC_DIGITS]; |
| uint64_t t7[NUM_ECC_DIGITS]; |
| |
| vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ |
| vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ |
| vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ |
| vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ |
| vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */ |
| vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ |
| |
| vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */ |
| vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */ |
| vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */ |
| vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */ |
| vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */ |
| |
| vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */ |
| vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */ |
| vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ |
| |
| vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ |
| vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */ |
| vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */ |
| vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ |
| vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */ |
| |
| vli_set(x1, t7); |
| } |
| |
| static void ecc_point_mult(struct ecc_point *result, |
| const struct ecc_point *point, |
| uint64_t *scalar, uint64_t *initial_z, |
| int num_bits) |
| { |
| /* R0 and R1 */ |
| uint64_t rx[2][NUM_ECC_DIGITS]; |
| uint64_t ry[2][NUM_ECC_DIGITS]; |
| uint64_t z[NUM_ECC_DIGITS]; |
| int i, nb; |
| |
| vli_set(rx[1], point->x); |
| vli_set(ry[1], point->y); |
| |
| xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z); |
| |
| for (i = num_bits - 2; i > 0; i--) { |
| nb = !vli_test_bit(scalar, i); |
| xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); |
| xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); |
| } |
| |
| nb = !vli_test_bit(scalar, 0); |
| xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); |
| |
| /* Find final 1/Z value. */ |
| vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */ |
| vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */ |
| vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */ |
| vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ |
| vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */ |
| vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
| /* End 1/Z calculation */ |
| |
| xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); |
| |
| apply_z(rx[0], ry[0], z); |
| |
| vli_set(result->x, rx[0]); |
| vli_set(result->y, ry[0]); |
| } |
| |
| /* Little endian byte-array to native conversion */ |
| static void ecc_bytes2native(const uint8_t bytes[ECC_BYTES], |
| uint64_t native[NUM_ECC_DIGITS]) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| const uint8_t *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); |
| |
| native[NUM_ECC_DIGITS - 1 - i] = |
| ((uint64_t) digit[0] << 0) | |
| ((uint64_t) digit[1] << 8) | |
| ((uint64_t) digit[2] << 16) | |
| ((uint64_t) digit[3] << 24) | |
| ((uint64_t) digit[4] << 32) | |
| ((uint64_t) digit[5] << 40) | |
| ((uint64_t) digit[6] << 48) | |
| ((uint64_t) digit[7] << 56); |
| } |
| } |
| |
| /* Native to little endian byte-array conversion */ |
| static void ecc_native2bytes(const uint64_t native[NUM_ECC_DIGITS], |
| uint8_t bytes[ECC_BYTES]) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_ECC_DIGITS; i++) { |
| uint8_t *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); |
| |
| digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0; |
| digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8; |
| digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16; |
| digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24; |
| digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32; |
| digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40; |
| digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48; |
| digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56; |
| } |
| } |
| |
| bool ecc_make_key(uint8_t public_key[64], uint8_t private_key[32]) |
| { |
| struct ecc_point pk; |
| uint64_t priv[NUM_ECC_DIGITS]; |
| unsigned tries = 0; |
| |
| do { |
| if (!get_random_number(priv) || (tries++ >= MAX_TRIES)) |
| return false; |
| |
| if (vli_is_zero(priv)) |
| continue; |
| |
| /* Make sure the private key is in the range [1, n-1]. */ |
| if (vli_cmp(curve_n, priv) != 1) |
| continue; |
| |
| ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv)); |
| } while (ecc_point_is_zero(&pk)); |
| |
| ecc_native2bytes(priv, private_key); |
| ecc_native2bytes(pk.x, public_key); |
| ecc_native2bytes(pk.y, &public_key[32]); |
| |
| return true; |
| } |
| |
| bool ecdh_shared_secret(const uint8_t public_key[64], |
| const uint8_t private_key[32], |
| uint8_t secret[32]) |
| { |
| uint64_t priv[NUM_ECC_DIGITS]; |
| uint64_t rand[NUM_ECC_DIGITS]; |
| struct ecc_point product, pk; |
| |
| if (!get_random_number(rand)) |
| return false; |
| |
| ecc_bytes2native(public_key, pk.x); |
| ecc_bytes2native(&public_key[32], pk.y); |
| ecc_bytes2native(private_key, priv); |
| |
| ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv)); |
| |
| ecc_native2bytes(product.x, secret); |
| |
| return !ecc_point_is_zero(&product); |
| } |