blob: bba0a9affcb1161a7cd1eb8a2a12fb41ec5292c0 [file] [log] [blame]
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2011-2012 Intel Corporation
* Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <alloca.h>
#include <stdlib.h>
#include <stdbool.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
static int activate_amp_controller(int dev_id)
{
struct hci_dev_info di;
struct hci_filter flt;
int fd;
printf("hci%d: Activating controller\n", dev_id);
fd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI);
if (fd < 0) {
perror("Failed to open raw HCI socket");
return -1;
}
di.dev_id = dev_id;
if (ioctl(fd, HCIGETDEVINFO, (void *) &di) < 0) {
perror("Failed to get HCI device info");
close(fd);
return -1;
}
if (!hci_test_bit(HCI_UP, &di.flags)) {
if (ioctl(fd, HCIDEVUP, dev_id) < 0) {
if (errno != EALREADY) {
perror("Failed to bring up HCI device");
close(fd);
return -1;
}
}
}
close(fd);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return -1;
}
hci_filter_clear(&flt);
hci_filter_set_ptype(HCI_EVENT_PKT, &flt);
hci_filter_set_event(EVT_CHANNEL_SELECTED, &flt);
hci_filter_set_event(EVT_PHYSICAL_LINK_COMPLETE, &flt);
hci_filter_set_event(EVT_DISCONNECT_PHYSICAL_LINK_COMPLETE, &flt);
if (setsockopt(fd, SOL_HCI, HCI_FILTER, &flt, sizeof(flt)) < 0) {
perror("Failed to setup HCI device filter");
close(fd);
return -1;
}
return fd;
}
static bool read_local_amp_info(int dev_id, uint16_t *max_assoc_len)
{
read_local_amp_info_rp rp;
struct hci_request rq;
int fd;
printf("hci%d: Reading local AMP information\n", dev_id);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return false;
}
memset(&rp, 0, sizeof(rp));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_STATUS_PARAM;
rq.ocf = OCF_READ_LOCAL_AMP_INFO;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_AMP_INFO_RP_SIZE;
if (hci_send_req(fd, &rq, 1000) < 0) {
perror("Failed sending HCI request");
hci_close_dev(fd);
return false;
}
if (rp.status) {
fprintf(stderr, "Failed HCI command: 0x%02x\n", rp.status);
hci_close_dev(fd);
return false;
}
printf("\tAMP status: 0x%02x\n", rp.amp_status);
printf("\tController type: 0x%02x\n", rp.controller_type);
printf("\tMax ASSOC length: %d\n", btohs(rp.max_amp_assoc_length));
*max_assoc_len = btohs(rp.max_amp_assoc_length);
hci_close_dev(fd);
return true;
}
static bool read_local_amp_assoc(int dev_id, uint8_t phy_handle,
uint16_t max_assoc_len,
uint8_t *assoc_data,
uint16_t *assoc_len)
{
read_local_amp_assoc_cp cp;
read_local_amp_assoc_rp rp;
struct hci_request rq;
int fd;
printf("hci%d: Reading local AMP association\n", dev_id);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return false;
}
memset(&cp, 0, sizeof(cp));
cp.handle = phy_handle;
cp.length_so_far = htobs(0);
cp.assoc_length = htobs(max_assoc_len);
memset(&rp, 0, sizeof(rp));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_STATUS_PARAM;
rq.ocf = OCF_READ_LOCAL_AMP_ASSOC;
rq.cparam = &cp;
rq.clen = READ_LOCAL_AMP_ASSOC_CP_SIZE;
rq.rparam = &rp;
rq.rlen = READ_LOCAL_AMP_ASSOC_RP_SIZE;
if (hci_send_req(fd, &rq, 1000) < 0) {
perror("Failed sending HCI request");
hci_close_dev(fd);
return false;
}
if (rp.status) {
fprintf(stderr, "Failed HCI command: 0x%02x\n", rp.status);
hci_close_dev(fd);
return false;
}
printf("\tRemain ASSOC length: %d\n", btohs(rp.length));
*assoc_len = btohs(rp.length);
memcpy(assoc_data, rp.fragment, *assoc_len);
hci_close_dev(fd);
return true;
}
static bool write_remote_amp_assoc(int dev_id, uint8_t phy_handle,
uint8_t *assoc_data,
uint16_t assoc_len)
{
write_remote_amp_assoc_cp cp;
write_remote_amp_assoc_rp rp;
struct hci_request rq;
int fd;
printf("hci%d: Writing remote AMP association\n", dev_id);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return false;
}
memset(&cp, 0, sizeof(cp));
cp.handle = phy_handle;
cp.length_so_far = htobs(0);
cp.remaining_length = htobs(assoc_len);
memcpy(cp.fragment, assoc_data, assoc_len);
memset(&rp, 0, sizeof(rp));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_STATUS_PARAM;
rq.ocf = OCF_WRITE_REMOTE_AMP_ASSOC;
rq.cparam = &cp;
rq.clen = 5 + assoc_len;
rq.rparam = &rp;
rq.rlen = WRITE_REMOTE_AMP_ASSOC_RP_SIZE;
if (hci_send_req(fd, &rq, 1000) < 0) {
perror("Failed sending HCI request");
hci_close_dev(fd);
return false;
}
if (rp.status) {
fprintf(stderr, "Failed HCI command: 0x%02x\n", rp.status);
hci_close_dev(fd);
return false;
}
hci_close_dev(fd);
return true;
}
static bool channel_selected_event(int dev_id, int fd, uint8_t phy_handle)
{
printf("hci%d: Waiting for channel selected event\n", dev_id);
while (1) {
uint8_t buf[HCI_MAX_EVENT_SIZE];
hci_event_hdr *hdr;
struct pollfd p;
int n, len;
p.fd = fd;
p.events = POLLIN;
n = poll(&p, 1, 10000);
if (n < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
perror("Failed to poll HCI device");
return false;
}
if (n == 0) {
fprintf(stderr, "Failure to receive event\n");
return false;
}
len = read(fd, buf, sizeof(buf));
if (len < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
perror("Failed to read from HCI device");
return false;
}
hdr = (void *) (buf + 1);
if (hdr->evt == EVT_CHANNEL_SELECTED)
break;
}
return true;
}
static bool create_physical_link(int dev_id, uint8_t phy_handle)
{
create_physical_link_cp cp;
evt_cmd_status evt;
struct hci_request rq;
int i, fd;
printf("hci%d: Creating physical link\n", dev_id);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return false;
}
memset(&cp, 0, sizeof(cp));
cp.handle = phy_handle;
cp.key_length = 32;
cp.key_type = 0x03;
for (i = 0; i < cp.key_length; i++)
cp.key[i] = 0x23;
memset(&evt, 0, sizeof(evt));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_CREATE_PHYSICAL_LINK;
rq.event = EVT_CMD_STATUS;
rq.cparam = &cp;
rq.clen = CREATE_PHYSICAL_LINK_CP_SIZE;
rq.rparam = &evt;
rq.rlen = EVT_CMD_STATUS_SIZE;
if (hci_send_req(fd, &rq, 1000) < 0) {
perror("Failed sending HCI request");
hci_close_dev(fd);
return false;
}
if (evt.status) {
fprintf(stderr, "Failed HCI command: 0x%02x\n", evt.status);
hci_close_dev(fd);
return false;
}
hci_close_dev(fd);
return true;
}
static bool accept_physical_link(int dev_id, uint8_t phy_handle)
{
accept_physical_link_cp cp;
evt_cmd_status evt;
struct hci_request rq;
int i, fd;
printf("hci%d: Accepting physical link\n", dev_id);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return false;
}
memset(&cp, 0, sizeof(cp));
cp.handle = phy_handle;
cp.key_length = 32;
cp.key_type = 0x03;
for (i = 0; i < cp.key_length; i++)
cp.key[i] = 0x23;
memset(&evt, 0, sizeof(evt));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_ACCEPT_PHYSICAL_LINK;
rq.event = EVT_CMD_STATUS;
rq.cparam = &cp;
rq.clen = ACCEPT_PHYSICAL_LINK_CP_SIZE;
rq.rparam = &evt;
rq.rlen = EVT_CMD_STATUS_SIZE;
if (hci_send_req(fd, &rq, 1000) < 0) {
perror("Failed sending HCI request");
hci_close_dev(fd);
return false;
}
if (evt.status) {
fprintf(stderr, "Failed HCI command: 0x%02x\n", evt.status);
hci_close_dev(fd);
return false;
}
hci_close_dev(fd);
return true;
}
static bool disconnect_physical_link(int dev_id, uint8_t phy_handle,
uint8_t reason)
{
disconnect_physical_link_cp cp;
evt_cmd_status evt;
struct hci_request rq;
int fd;
printf("hci%d: Disconnecting physical link\n", dev_id);
fd = hci_open_dev(dev_id);
if (fd < 0) {
perror("Failed to open HCI device");
return false;
}
memset(&cp, 0, sizeof(cp));
cp.handle = phy_handle;
cp.reason = reason;
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_LINK_CTL;
rq.ocf = OCF_DISCONNECT_PHYSICAL_LINK;
rq.event = EVT_CMD_STATUS;
rq.cparam = &cp;
rq.clen = DISCONNECT_PHYSICAL_LINK_CP_SIZE;
rq.rparam = &evt;
rq.rlen = EVT_CMD_STATUS_SIZE;
if (hci_send_req(fd, &rq, 1000) < 0) {
perror("Failed sending HCI request");
hci_close_dev(fd);
return false;
}
if (evt.status) {
fprintf(stderr, "Failed HCI command: 0x%02x\n", evt.status);
hci_close_dev(fd);
return false;
}
hci_close_dev(fd);
return true;
}
static bool physical_link_complete_event(int dev_id, int fd,
uint8_t phy_handle)
{
printf("hci%d: Waiting for physical link complete event\n", dev_id);
while (1) {
uint8_t buf[HCI_MAX_EVENT_SIZE];
hci_event_hdr *hdr;
int len;
len = read(fd, buf, sizeof(buf));
if (len < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
perror("Failed to read from HCI device");
return false;
}
hdr = (void *) (buf + 1);
if (hdr->evt == EVT_PHYSICAL_LINK_COMPLETE)
break;
}
return true;
}
static bool disconnect_physical_link_complete_event(int dev_id, int fd,
uint8_t phy_handle)
{
printf("hci%d: Waiting for physical link disconnect event\n", dev_id);
while (1) {
uint8_t buf[HCI_MAX_EVENT_SIZE];
hci_event_hdr *hdr;
int len;
len = read(fd, buf, sizeof(buf));
if (len < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
perror("Failed to read from HCI device");
return false;
}
hdr = (void *) (buf + 1);
if (hdr->evt == EVT_DISCONNECT_PHYSICAL_LINK_COMPLETE)
break;
}
return true;
}
static int amp1_dev_id = -1;
static int amp2_dev_id = -1;
static bool find_amp_controller(void)
{
struct hci_dev_list_req *dl;
struct hci_dev_req *dr;
int fd, i;
bool result;
fd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI);
if (fd < 0) {
perror("Failed to open raw HCI socket");
return false;
}
dl = malloc(HCI_MAX_DEV * sizeof(struct hci_dev_req) + sizeof(uint16_t));
if (!dl) {
perror("Failed allocate HCI device request memory");
close(fd);
return false;
}
dl->dev_num = HCI_MAX_DEV;
dr = dl->dev_req;
if (ioctl(fd, HCIGETDEVLIST, (void *) dl) < 0) {
perror("Failed to get HCI device list");
result = false;
goto done;
}
for (i = 0; i< dl->dev_num; i++) {
struct hci_dev_info di;
di.dev_id = (dr + i)->dev_id;
if (ioctl(fd, HCIGETDEVINFO, (void *) &di) < 0)
continue;
if (((di.type & 0x30) >> 4) != HCI_AMP)
continue;
if (amp1_dev_id < 0)
amp1_dev_id = di.dev_id;
else if (amp2_dev_id < 0) {
if (di.dev_id < amp1_dev_id) {
amp2_dev_id = amp1_dev_id;
amp1_dev_id = di.dev_id;
} else
amp2_dev_id = di.dev_id;
}
}
result = true;
done:
free(dl);
close(fd);
return result;
}
int main(int argc ,char *argv[])
{
int amp1_event_fd, amp2_event_fd;
uint16_t amp1_max_assoc_len, amp2_max_assoc_len;
uint8_t *amp1_assoc_data, *amp2_assoc_data;
uint16_t amp1_assoc_len, amp2_assoc_len;
uint8_t amp1_phy_handle, amp2_phy_handle;
if (!find_amp_controller())
return EXIT_FAILURE;
if (amp1_dev_id < 0 || amp2_dev_id < 0) {
fprintf(stderr, "Two AMP controllers are required\n");
return EXIT_FAILURE;
}
printf("hci%d: AMP initiator\n", amp1_dev_id);
printf("hci%d: AMP acceptor\n", amp2_dev_id);
amp1_event_fd = activate_amp_controller(amp1_dev_id);
if (amp1_event_fd < 0)
return EXIT_FAILURE;
amp2_event_fd = activate_amp_controller(amp2_dev_id);
if (amp2_event_fd < 0) {
hci_close_dev(amp1_event_fd);
return EXIT_FAILURE;
}
if (!read_local_amp_info(amp1_dev_id, &amp1_max_assoc_len))
return EXIT_FAILURE;
amp1_assoc_data = alloca(amp1_max_assoc_len);
printf("--> AMP_Get_Info_Request (Amp_ID B)\n");
if (!read_local_amp_info(amp2_dev_id, &amp2_max_assoc_len))
return EXIT_FAILURE;
amp2_assoc_data = alloca(amp2_max_assoc_len);
printf("<-- AMP_Get_Info_Response (Amp_ID B, Status)\n");
printf("--> AMP_Get_AMP_Assoc_Request (Amp_ID B)\n");
if (!read_local_amp_assoc(amp2_dev_id, 0x00, amp2_max_assoc_len,
amp2_assoc_data, &amp2_assoc_len))
return EXIT_FAILURE;
printf("<-- AMP_Get_AMP_Assoc_Response (Amp_ID B, AMP_Assoc B)\n");
amp1_phy_handle = 0x04;
if (!create_physical_link(amp1_dev_id, amp1_phy_handle))
return EXIT_FAILURE;
if (!write_remote_amp_assoc(amp1_dev_id, amp1_phy_handle,
amp2_assoc_data, amp2_assoc_len))
return EXIT_FAILURE;
printf("hci%d: Signal MAC to scan\n", amp1_dev_id);
printf("hci%d: Signal MAC to start\n", amp1_dev_id);
if (!channel_selected_event(amp1_dev_id, amp1_event_fd,
amp1_phy_handle))
return EXIT_FAILURE;
if (!read_local_amp_assoc(amp1_dev_id, amp1_phy_handle,
amp1_max_assoc_len,
amp1_assoc_data, &amp1_assoc_len))
return EXIT_FAILURE;
printf("--> AMP_Create_Physical_Link_Request (Remote-Amp-ID B, AMP_Assoc A)\n");
amp2_phy_handle = 0x05;
if (!accept_physical_link(amp2_dev_id, amp2_phy_handle))
return EXIT_FAILURE;
if (!write_remote_amp_assoc(amp2_dev_id, amp2_phy_handle,
amp1_assoc_data, amp1_assoc_len))
return EXIT_FAILURE;
printf("hci%d: Signal MAC to start\n", amp2_dev_id);
printf("<-- AMP_Create_Physical_Link_Response (Local-Amp-ID B, Status)\n");
if (!physical_link_complete_event(amp2_dev_id, amp2_event_fd,
amp2_phy_handle))
return EXIT_FAILURE;
if (!physical_link_complete_event(amp1_dev_id, amp1_event_fd,
amp1_phy_handle))
return EXIT_FAILURE;
/* physical link established */
if (!disconnect_physical_link(amp1_dev_id, amp1_phy_handle, 0x13))
return EXIT_FAILURE;
if (!disconnect_physical_link_complete_event(amp1_dev_id,
amp1_event_fd,
amp1_phy_handle))
return EXIT_FAILURE;
if (!disconnect_physical_link_complete_event(amp2_dev_id,
amp2_event_fd,
amp2_phy_handle))
return EXIT_FAILURE;
hci_close_dev(amp2_event_fd);
hci_close_dev(amp1_event_fd);
return EXIT_SUCCESS;
}