blob: 837a12b7b54dc93ad946d25515bcc496603201da [file] [log] [blame] [edit]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LIBMEMUNREACHABLE_ALLOCATOR_H_
#define LIBMEMUNREACHABLE_ALLOCATOR_H_
#include <atomic>
#include <cstddef>
#include <functional>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace android {
extern std::atomic<int> heap_count;
class HeapImpl;
template <typename T>
class Allocator;
// Non-templated class that implements wraps HeapImpl to keep
// implementation out of the header file
class Heap {
public:
Heap();
~Heap();
// Copy constructor that does not take ownership of impl_
Heap(const Heap& other) : impl_(other.impl_), owns_impl_(false) {}
// Assignment disabled
Heap& operator=(const Heap&) = delete;
// Allocate size bytes
void* allocate(size_t size);
// Deallocate allocation returned by allocate
void deallocate(void*);
bool empty();
static void deallocate(HeapImpl* impl, void* ptr);
// Allocate a class of type T
template <class T>
T* allocate() {
return reinterpret_cast<T*>(allocate(sizeof(T)));
}
// Comparators, copied objects will be equal
bool operator==(const Heap& other) const { return impl_ == other.impl_; }
bool operator!=(const Heap& other) const { return !(*this == other); }
// std::unique_ptr wrapper that allocates using allocate and deletes using
// deallocate
template <class T>
using unique_ptr = std::unique_ptr<T, std::function<void(void*)>>;
template <class T, class... Args>
unique_ptr<T> make_unique(Args&&... args) {
HeapImpl* impl = impl_;
return unique_ptr<T>(new (allocate<T>()) T(std::forward<Args>(args)...), [impl](void* ptr) {
reinterpret_cast<T*>(ptr)->~T();
deallocate(impl, ptr);
});
}
// std::unique_ptr wrapper that allocates using allocate and deletes using
// deallocate
template <class T>
using shared_ptr = std::shared_ptr<T>;
template <class T, class... Args>
shared_ptr<T> make_shared(Args&&... args);
protected:
HeapImpl* impl_;
bool owns_impl_;
};
// STLAllocator implements the std allocator interface on top of a Heap
template <typename T>
class STLAllocator {
public:
using value_type = T;
~STLAllocator() {}
// Construct an STLAllocator on top of a Heap
STLAllocator(const Heap& heap)
: // NOLINT, implicit
heap_(heap) {}
// Rebind an STLAllocator from an another STLAllocator
template <typename U>
STLAllocator(const STLAllocator<U>& other)
: // NOLINT, implicit
heap_(other.heap_) {}
STLAllocator(const STLAllocator&) = default;
STLAllocator<T>& operator=(const STLAllocator<T>&) = default;
T* allocate(std::size_t n) { return reinterpret_cast<T*>(heap_.allocate(n * sizeof(T))); }
void deallocate(T* ptr, std::size_t) { heap_.deallocate(ptr); }
template <typename U>
bool operator==(const STLAllocator<U>& other) const {
return heap_ == other.heap_;
}
template <typename U>
inline bool operator!=(const STLAllocator<U>& other) const {
return !(this == other);
}
template <typename U>
friend class STLAllocator;
protected:
Heap heap_;
};
// Allocator extends STLAllocator with some convenience methods for allocating
// a single object and for constructing unique_ptr and shared_ptr objects with
// appropriate deleters.
template <class T>
class Allocator : public STLAllocator<T> {
public:
~Allocator() {}
Allocator(const Heap& other)
: // NOLINT, implicit
STLAllocator<T>(other) {}
template <typename U>
Allocator(const STLAllocator<U>& other)
: // NOLINT, implicit
STLAllocator<T>(other) {}
Allocator(const Allocator&) = default;
Allocator<T>& operator=(const Allocator<T>&) = default;
using STLAllocator<T>::allocate;
using STLAllocator<T>::deallocate;
using STLAllocator<T>::heap_;
T* allocate() { return STLAllocator<T>::allocate(1); }
void deallocate(void* ptr) { heap_.deallocate(ptr); }
using shared_ptr = Heap::shared_ptr<T>;
template <class... Args>
shared_ptr make_shared(Args&&... args) {
return heap_.template make_shared<T>(std::forward<Args>(args)...);
}
using unique_ptr = Heap::unique_ptr<T>;
template <class... Args>
unique_ptr make_unique(Args&&... args) {
return heap_.template make_unique<T>(std::forward<Args>(args)...);
}
};
// std::unique_ptr wrapper that allocates using allocate and deletes using
// deallocate. Implemented outside class definition in order to pass
// Allocator<T> to shared_ptr.
template <class T, class... Args>
inline Heap::shared_ptr<T> Heap::make_shared(Args&&... args) {
return std::allocate_shared<T, Allocator<T>, Args...>(Allocator<T>(*this),
std::forward<Args>(args)...);
}
namespace allocator {
template <class T>
using vector = std::vector<T, Allocator<T>>;
template <class T>
using list = std::list<T, Allocator<T>>;
template <class Key, class T, class Compare = std::less<Key>>
using map = std::map<Key, T, Compare, Allocator<std::pair<const Key, T>>>;
template <class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>>
using unordered_map =
std::unordered_map<Key, T, Hash, KeyEqual, Allocator<std::pair<const Key, T>>>;
template <class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>>
using unordered_set = std::unordered_set<Key, Hash, KeyEqual, Allocator<Key>>;
template <class Key, class Compare = std::less<Key>>
using set = std::set<Key, Compare, Allocator<Key>>;
using string = std::basic_string<char, std::char_traits<char>, Allocator<char>>;
}
} // namespace android
#endif