|  | /* sha.c | 
|  | ** | 
|  | ** Copyright 2008, The Android Open Source Project | 
|  | ** | 
|  | ** Redistribution and use in source and binary forms, with or without | 
|  | ** modification, are permitted provided that the following conditions are met: | 
|  | **     * Redistributions of source code must retain the above copyright | 
|  | **       notice, this list of conditions and the following disclaimer. | 
|  | **     * Redistributions in binary form must reproduce the above copyright | 
|  | **       notice, this list of conditions and the following disclaimer in the | 
|  | **       documentation and/or other materials provided with the distribution. | 
|  | **     * Neither the name of Google Inc. nor the names of its contributors may | 
|  | **       be used to endorse or promote products derived from this software | 
|  | **       without specific prior written permission. | 
|  | ** | 
|  | ** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR | 
|  | ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF | 
|  | ** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO | 
|  | ** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | ** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | 
|  | ** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
|  | ** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | 
|  | ** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | 
|  | ** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #include "mincrypt/sha.h" | 
|  |  | 
|  | // Some machines lack byteswap.h and endian.h.  These have to use the | 
|  | // slower code, even if they're little-endian. | 
|  |  | 
|  | #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) | 
|  |  | 
|  | #include <byteswap.h> | 
|  | #include <memory.h> | 
|  |  | 
|  | // This version is about 28% faster than the generic version below, | 
|  | // but assumes little-endianness. | 
|  |  | 
|  | static inline uint32_t ror27(uint32_t val) { | 
|  | return (val >> 27) | (val << 5); | 
|  | } | 
|  | static inline uint32_t ror2(uint32_t val) { | 
|  | return (val >> 2) | (val << 30); | 
|  | } | 
|  | static inline uint32_t ror31(uint32_t val) { | 
|  | return (val >> 31) | (val << 1); | 
|  | } | 
|  |  | 
|  | static void SHA1_Transform(SHA_CTX* ctx) { | 
|  | uint32_t W[80]; | 
|  | register uint32_t A, B, C, D, E; | 
|  | int t; | 
|  |  | 
|  | A = ctx->state[0]; | 
|  | B = ctx->state[1]; | 
|  | C = ctx->state[2]; | 
|  | D = ctx->state[3]; | 
|  | E = ctx->state[4]; | 
|  |  | 
|  | #define SHA_F1(A,B,C,D,E,t)                     \ | 
|  | E += ror27(A) +                             \ | 
|  | (W[t] = bswap_32(ctx->buf.w[t])) +      \ | 
|  | (D^(B&(C^D))) + 0x5A827999;             \ | 
|  | B = ror2(B); | 
|  |  | 
|  | for (t = 0; t < 15; t += 5) { | 
|  | SHA_F1(A,B,C,D,E,t + 0); | 
|  | SHA_F1(E,A,B,C,D,t + 1); | 
|  | SHA_F1(D,E,A,B,C,t + 2); | 
|  | SHA_F1(C,D,E,A,B,t + 3); | 
|  | SHA_F1(B,C,D,E,A,t + 4); | 
|  | } | 
|  | SHA_F1(A,B,C,D,E,t + 0);  // 16th one, t == 15 | 
|  |  | 
|  | #undef SHA_F1 | 
|  |  | 
|  | #define SHA_F1(A,B,C,D,E,t)                                     \ | 
|  | E += ror27(A) +                                             \ | 
|  | (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \ | 
|  | (D^(B&(C^D))) + 0x5A827999;                             \ | 
|  | B = ror2(B); | 
|  |  | 
|  | SHA_F1(E,A,B,C,D,t + 1); | 
|  | SHA_F1(D,E,A,B,C,t + 2); | 
|  | SHA_F1(C,D,E,A,B,t + 3); | 
|  | SHA_F1(B,C,D,E,A,t + 4); | 
|  |  | 
|  | #undef SHA_F1 | 
|  |  | 
|  | #define SHA_F2(A,B,C,D,E,t)                                     \ | 
|  | E += ror27(A) +                                             \ | 
|  | (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \ | 
|  | (B^C^D) + 0x6ED9EBA1;                                   \ | 
|  | B = ror2(B); | 
|  |  | 
|  | for (t = 20; t < 40; t += 5) { | 
|  | SHA_F2(A,B,C,D,E,t + 0); | 
|  | SHA_F2(E,A,B,C,D,t + 1); | 
|  | SHA_F2(D,E,A,B,C,t + 2); | 
|  | SHA_F2(C,D,E,A,B,t + 3); | 
|  | SHA_F2(B,C,D,E,A,t + 4); | 
|  | } | 
|  |  | 
|  | #undef SHA_F2 | 
|  |  | 
|  | #define SHA_F3(A,B,C,D,E,t)                                     \ | 
|  | E += ror27(A) +                                             \ | 
|  | (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \ | 
|  | ((B&C)|(D&(B|C))) + 0x8F1BBCDC;                         \ | 
|  | B = ror2(B); | 
|  |  | 
|  | for (; t < 60; t += 5) { | 
|  | SHA_F3(A,B,C,D,E,t + 0); | 
|  | SHA_F3(E,A,B,C,D,t + 1); | 
|  | SHA_F3(D,E,A,B,C,t + 2); | 
|  | SHA_F3(C,D,E,A,B,t + 3); | 
|  | SHA_F3(B,C,D,E,A,t + 4); | 
|  | } | 
|  |  | 
|  | #undef SHA_F3 | 
|  |  | 
|  | #define SHA_F4(A,B,C,D,E,t)                                     \ | 
|  | E += ror27(A) +                                             \ | 
|  | (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) +   \ | 
|  | (B^C^D) + 0xCA62C1D6;                                   \ | 
|  | B = ror2(B); | 
|  |  | 
|  | for (; t < 80; t += 5) { | 
|  | SHA_F4(A,B,C,D,E,t + 0); | 
|  | SHA_F4(E,A,B,C,D,t + 1); | 
|  | SHA_F4(D,E,A,B,C,t + 2); | 
|  | SHA_F4(C,D,E,A,B,t + 3); | 
|  | SHA_F4(B,C,D,E,A,t + 4); | 
|  | } | 
|  |  | 
|  | #undef SHA_F4 | 
|  |  | 
|  | ctx->state[0] += A; | 
|  | ctx->state[1] += B; | 
|  | ctx->state[2] += C; | 
|  | ctx->state[3] += D; | 
|  | ctx->state[4] += E; | 
|  | } | 
|  |  | 
|  | void SHA_update(SHA_CTX* ctx, const void* data, int len) { | 
|  | int i = ctx->count % sizeof(ctx->buf); | 
|  | const uint8_t* p = (const uint8_t*)data; | 
|  |  | 
|  | ctx->count += len; | 
|  |  | 
|  | while (len > sizeof(ctx->buf) - i) { | 
|  | memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i); | 
|  | len -= sizeof(ctx->buf) - i; | 
|  | p += sizeof(ctx->buf) - i; | 
|  | SHA1_Transform(ctx); | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | while (len--) { | 
|  | ctx->buf.b[i++] = *p++; | 
|  | if (i == sizeof(ctx->buf)) { | 
|  | SHA1_Transform(ctx); | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | const uint8_t* SHA_final(SHA_CTX* ctx) { | 
|  | uint64_t cnt = ctx->count * 8; | 
|  | int i; | 
|  |  | 
|  | SHA_update(ctx, (uint8_t*)"\x80", 1); | 
|  | while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { | 
|  | SHA_update(ctx, (uint8_t*)"\0", 1); | 
|  | } | 
|  | for (i = 0; i < 8; ++i) { | 
|  | uint8_t tmp = cnt >> ((7 - i) * 8); | 
|  | SHA_update(ctx, &tmp, 1); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 5; i++) { | 
|  | ctx->buf.w[i] = bswap_32(ctx->state[i]); | 
|  | } | 
|  |  | 
|  | return ctx->buf.b; | 
|  | } | 
|  |  | 
|  | #else   // #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) | 
|  |  | 
|  | #define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits)))) | 
|  |  | 
|  | static void SHA1_transform(SHA_CTX *ctx) { | 
|  | uint32_t W[80]; | 
|  | uint32_t A, B, C, D, E; | 
|  | uint8_t *p = ctx->buf; | 
|  | int t; | 
|  |  | 
|  | for(t = 0; t < 16; ++t) { | 
|  | uint32_t tmp =  *p++ << 24; | 
|  | tmp |= *p++ << 16; | 
|  | tmp |= *p++ << 8; | 
|  | tmp |= *p++; | 
|  | W[t] = tmp; | 
|  | } | 
|  |  | 
|  | for(; t < 80; t++) { | 
|  | W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); | 
|  | } | 
|  |  | 
|  | A = ctx->state[0]; | 
|  | B = ctx->state[1]; | 
|  | C = ctx->state[2]; | 
|  | D = ctx->state[3]; | 
|  | E = ctx->state[4]; | 
|  |  | 
|  | for(t = 0; t < 80; t++) { | 
|  | uint32_t tmp = rol(5,A) + E + W[t]; | 
|  |  | 
|  | if (t < 20) | 
|  | tmp += (D^(B&(C^D))) + 0x5A827999; | 
|  | else if ( t < 40) | 
|  | tmp += (B^C^D) + 0x6ED9EBA1; | 
|  | else if ( t < 60) | 
|  | tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC; | 
|  | else | 
|  | tmp += (B^C^D) + 0xCA62C1D6; | 
|  |  | 
|  | E = D; | 
|  | D = C; | 
|  | C = rol(30,B); | 
|  | B = A; | 
|  | A = tmp; | 
|  | } | 
|  |  | 
|  | ctx->state[0] += A; | 
|  | ctx->state[1] += B; | 
|  | ctx->state[2] += C; | 
|  | ctx->state[3] += D; | 
|  | ctx->state[4] += E; | 
|  | } | 
|  |  | 
|  | void SHA_update(SHA_CTX *ctx, const void *data, int len) { | 
|  | int i = ctx->count % sizeof(ctx->buf); | 
|  | const uint8_t* p = (const uint8_t*)data; | 
|  |  | 
|  | ctx->count += len; | 
|  |  | 
|  | while (len--) { | 
|  | ctx->buf[i++] = *p++; | 
|  | if (i == sizeof(ctx->buf)) { | 
|  | SHA1_transform(ctx); | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | const uint8_t *SHA_final(SHA_CTX *ctx) { | 
|  | uint8_t *p = ctx->buf; | 
|  | uint64_t cnt = ctx->count * 8; | 
|  | int i; | 
|  |  | 
|  | SHA_update(ctx, (uint8_t*)"\x80", 1); | 
|  | while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) { | 
|  | SHA_update(ctx, (uint8_t*)"\0", 1); | 
|  | } | 
|  | for (i = 0; i < 8; ++i) { | 
|  | uint8_t tmp = cnt >> ((7 - i) * 8); | 
|  | SHA_update(ctx, &tmp, 1); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 5; i++) { | 
|  | uint32_t tmp = ctx->state[i]; | 
|  | *p++ = tmp >> 24; | 
|  | *p++ = tmp >> 16; | 
|  | *p++ = tmp >> 8; | 
|  | *p++ = tmp >> 0; | 
|  | } | 
|  |  | 
|  | return ctx->buf; | 
|  | } | 
|  |  | 
|  | #endif // endianness | 
|  |  | 
|  | void SHA_init(SHA_CTX* ctx) { | 
|  | ctx->state[0] = 0x67452301; | 
|  | ctx->state[1] = 0xEFCDAB89; | 
|  | ctx->state[2] = 0x98BADCFE; | 
|  | ctx->state[3] = 0x10325476; | 
|  | ctx->state[4] = 0xC3D2E1F0; | 
|  | ctx->count = 0; | 
|  | } | 
|  |  | 
|  | /* Convenience function */ | 
|  | const uint8_t* SHA(const void *data, int len, uint8_t *digest) { | 
|  | const uint8_t *p; | 
|  | int i; | 
|  | SHA_CTX ctx; | 
|  | SHA_init(&ctx); | 
|  | SHA_update(&ctx, data, len); | 
|  | p = SHA_final(&ctx); | 
|  | for (i = 0; i < SHA_DIGEST_SIZE; ++i) { | 
|  | digest[i] = *p++; | 
|  | } | 
|  | return digest; | 
|  | } |