|  | /* | 
|  | * Copyright (C) 2012 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "fs_mgr.h" | 
|  |  | 
|  | #include <ctype.h> | 
|  | #include <dirent.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <inttypes.h> | 
|  | #include <libgen.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/mount.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/swap.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/wait.h> | 
|  | #include <time.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <functional> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <thread> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include <android-base/file.h> | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <cutils/android_filesystem_config.h> | 
|  | #include <cutils/android_reboot.h> | 
|  | #include <cutils/partition_utils.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <ext4_utils/ext4.h> | 
|  | #include <ext4_utils/ext4_sb.h> | 
|  | #include <ext4_utils/ext4_utils.h> | 
|  | #include <ext4_utils/wipe.h> | 
|  | #include <fs_avb/fs_avb.h> | 
|  | #include <fs_mgr_overlayfs.h> | 
|  | #include <libdm/dm.h> | 
|  | #include <liblp/metadata_format.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/loop.h> | 
|  | #include <linux/magic.h> | 
|  | #include <log/log_properties.h> | 
|  | #include <logwrap/logwrap.h> | 
|  |  | 
|  | #include "fs_mgr_priv.h" | 
|  |  | 
|  | #define KEY_LOC_PROP   "ro.crypto.keyfile.userdata" | 
|  | #define KEY_IN_FOOTER  "footer" | 
|  |  | 
|  | #define E2FSCK_BIN      "/system/bin/e2fsck" | 
|  | #define F2FS_FSCK_BIN   "/system/bin/fsck.f2fs" | 
|  | #define MKSWAP_BIN      "/system/bin/mkswap" | 
|  | #define TUNE2FS_BIN     "/system/bin/tune2fs" | 
|  |  | 
|  | #define FSCK_LOG_FILE   "/dev/fscklogs/log" | 
|  |  | 
|  | #define ZRAM_CONF_DEV   "/sys/block/zram0/disksize" | 
|  | #define ZRAM_CONF_MCS   "/sys/block/zram0/max_comp_streams" | 
|  | #define ZRAM_BACK_DEV   "/sys/block/zram0/backing_dev" | 
|  |  | 
|  | #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity" | 
|  |  | 
|  | #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) | 
|  |  | 
|  | using android::base::Basename; | 
|  | using android::base::Realpath; | 
|  | using android::base::StartsWith; | 
|  | using android::base::unique_fd; | 
|  | using android::dm::DeviceMapper; | 
|  | using android::dm::DmDeviceState; | 
|  |  | 
|  | // Realistically, this file should be part of the android::fs_mgr namespace; | 
|  | using namespace android::fs_mgr; | 
|  |  | 
|  | using namespace std::literals; | 
|  |  | 
|  | // record fs stat | 
|  | enum FsStatFlags { | 
|  | FS_STAT_IS_EXT4 = 0x0001, | 
|  | FS_STAT_NEW_IMAGE_VERSION = 0x0002, | 
|  | FS_STAT_E2FSCK_F_ALWAYS = 0x0004, | 
|  | FS_STAT_UNCLEAN_SHUTDOWN = 0x0008, | 
|  | FS_STAT_QUOTA_ENABLED = 0x0010, | 
|  | FS_STAT_RO_MOUNT_FAILED = 0x0040, | 
|  | FS_STAT_RO_UNMOUNT_FAILED = 0x0080, | 
|  | FS_STAT_FULL_MOUNT_FAILED = 0x0100, | 
|  | FS_STAT_E2FSCK_FAILED = 0x0200, | 
|  | FS_STAT_E2FSCK_FS_FIXED = 0x0400, | 
|  | FS_STAT_INVALID_MAGIC = 0x0800, | 
|  | FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000, | 
|  | FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000, | 
|  | FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000, | 
|  | FS_STAT_ENABLE_VERITY_FAILED = 0x80000, | 
|  | }; | 
|  |  | 
|  | // TODO: switch to inotify() | 
|  | bool fs_mgr_wait_for_file(const std::string& filename, | 
|  | const std::chrono::milliseconds relative_timeout, | 
|  | FileWaitMode file_wait_mode) { | 
|  | auto start_time = std::chrono::steady_clock::now(); | 
|  |  | 
|  | while (true) { | 
|  | int rv = access(filename.c_str(), F_OK); | 
|  | if (file_wait_mode == FileWaitMode::Exists) { | 
|  | if (!rv || errno != ENOENT) return true; | 
|  | } else if (file_wait_mode == FileWaitMode::DoesNotExist) { | 
|  | if (rv && errno == ENOENT) return true; | 
|  | } | 
|  |  | 
|  | std::this_thread::sleep_for(50ms); | 
|  |  | 
|  | auto now = std::chrono::steady_clock::now(); | 
|  | auto time_elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time); | 
|  | if (time_elapsed > relative_timeout) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void log_fs_stat(const std::string& blk_device, int fs_stat) { | 
|  | if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4 | 
|  | std::string msg = | 
|  | android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat); | 
|  | android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | | 
|  | O_APPEND | O_CREAT, 0664))); | 
|  | if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) { | 
|  | LWARNING << __FUNCTION__ << "() cannot log " << msg; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_extfs(const std::string& fs_type) { | 
|  | return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2"; | 
|  | } | 
|  |  | 
|  | static bool is_f2fs(const std::string& fs_type) { | 
|  | return fs_type == "f2fs"; | 
|  | } | 
|  |  | 
|  | static std::string realpath(const std::string& blk_device) { | 
|  | std::string real_path; | 
|  | if (!Realpath(blk_device, &real_path)) { | 
|  | real_path = blk_device; | 
|  | } | 
|  | return real_path; | 
|  | } | 
|  |  | 
|  | static bool should_force_check(int fs_stat) { | 
|  | return fs_stat & | 
|  | (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED | | 
|  | FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED | | 
|  | FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED | | 
|  | FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED); | 
|  | } | 
|  |  | 
|  | static void check_fs(const std::string& blk_device, const std::string& fs_type, | 
|  | const std::string& target, int* fs_stat) { | 
|  | int status; | 
|  | int ret; | 
|  | long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; | 
|  | auto tmpmnt_opts = "errors=remount-ro"s; | 
|  | const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()}; | 
|  | const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()}; | 
|  |  | 
|  | if (*fs_stat & FS_STAT_INVALID_MAGIC) {  // will fail, so do not try | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check for the types of filesystems we know how to check */ | 
|  | if (is_extfs(fs_type)) { | 
|  | /* | 
|  | * First try to mount and unmount the filesystem.  We do this because | 
|  | * the kernel is more efficient than e2fsck in running the journal and | 
|  | * processing orphaned inodes, and on at least one device with a | 
|  | * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes | 
|  | * to do what the kernel does in about a second. | 
|  | * | 
|  | * After mounting and unmounting the filesystem, run e2fsck, and if an | 
|  | * error is recorded in the filesystem superblock, e2fsck will do a full | 
|  | * check.  Otherwise, it does nothing.  If the kernel cannot mount the | 
|  | * filesytsem due to an error, e2fsck is still run to do a full check | 
|  | * fix the filesystem. | 
|  | */ | 
|  | if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) {  // already tried if full mount failed | 
|  | errno = 0; | 
|  | if (fs_type == "ext4") { | 
|  | // This option is only valid with ext4 | 
|  | tmpmnt_opts += ",nomblk_io_submit"; | 
|  | } | 
|  | ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags, | 
|  | tmpmnt_opts.c_str()); | 
|  | PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type | 
|  | << ")=" << ret; | 
|  | if (!ret) { | 
|  | bool umounted = false; | 
|  | int retry_count = 5; | 
|  | while (retry_count-- > 0) { | 
|  | umounted = umount(target.c_str()) == 0; | 
|  | if (umounted) { | 
|  | LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded"; | 
|  | break; | 
|  | } | 
|  | PERROR << __FUNCTION__ << "(): umount(" << target << ") failed"; | 
|  | if (retry_count) sleep(1); | 
|  | } | 
|  | if (!umounted) { | 
|  | // boot may fail but continue and leave it to later stage for now. | 
|  | PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out"; | 
|  | *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED; | 
|  | } | 
|  | } else { | 
|  | *fs_stat |= FS_STAT_RO_MOUNT_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some system images do not have e2fsck for licensing reasons | 
|  | * (e.g. recent SDK system images). Detect these and skip the check. | 
|  | */ | 
|  | if (access(E2FSCK_BIN, X_OK)) { | 
|  | LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device) | 
|  | << " (executable not in system image)"; | 
|  | } else { | 
|  | LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device); | 
|  | if (should_force_check(*fs_stat)) { | 
|  | ret = android_fork_execvp_ext( | 
|  | ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status, | 
|  | true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); | 
|  | } else { | 
|  | ret = android_fork_execvp_ext( | 
|  | ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true, | 
|  | LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | /* No need to check for error in fork, we can't really handle it now */ | 
|  | LERROR << "Failed trying to run " << E2FSCK_BIN; | 
|  | *fs_stat |= FS_STAT_E2FSCK_FAILED; | 
|  | } else if (status != 0) { | 
|  | LINFO << "e2fsck returned status 0x" << std::hex << status; | 
|  | *fs_stat |= FS_STAT_E2FSCK_FS_FIXED; | 
|  | } | 
|  | } | 
|  | } else if (is_f2fs(fs_type)) { | 
|  | const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", blk_device.c_str()}; | 
|  | LINFO << "Running " << F2FS_FSCK_BIN << " -a " << realpath(blk_device); | 
|  |  | 
|  | ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv), | 
|  | const_cast<char **>(f2fs_fsck_argv), | 
|  | &status, true, LOG_KLOG | LOG_FILE, | 
|  | true, const_cast<char *>(FSCK_LOG_FILE), | 
|  | NULL, 0); | 
|  | if (ret < 0) { | 
|  | /* No need to check for error in fork, we can't really handle it now */ | 
|  | LERROR << "Failed trying to run " << F2FS_FSCK_BIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) { | 
|  | return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) | | 
|  | le32_to_cpu(es->s_blocks_count_lo); | 
|  | } | 
|  |  | 
|  | static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) { | 
|  | return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) | | 
|  | le32_to_cpu(es->s_r_blocks_count_lo); | 
|  | } | 
|  |  | 
|  | static bool is_ext4_superblock_valid(const struct ext4_super_block* es) { | 
|  | if (es->s_magic != EXT4_SUPER_MAGIC) return false; | 
|  | if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false; | 
|  | if (EXT4_INODES_PER_GROUP(es) == 0) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Read the primary superblock from an ext4 filesystem.  On failure return | 
|  | // false.  If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC. | 
|  | static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb, | 
|  | int* fs_stat) { | 
|  | android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  |  | 
|  | if (fd < 0) { | 
|  | PERROR << "Failed to open '" << blk_device << "'"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) { | 
|  | PERROR << "Can't read '" << blk_device << "' superblock"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!is_ext4_superblock_valid(sb)) { | 
|  | LINFO << "Invalid ext4 superblock on '" << blk_device << "'"; | 
|  | // not a valid fs, tune2fs, fsck, and mount  will all fail. | 
|  | *fs_stat |= FS_STAT_INVALID_MAGIC; | 
|  | return false; | 
|  | } | 
|  | *fs_stat |= FS_STAT_IS_EXT4; | 
|  | LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device; | 
|  | if (sb->s_max_mnt_count == 0xffff) {  // -1 (int16) in ext2, but uint16 in ext4 | 
|  | *fs_stat |= FS_STAT_NEW_IMAGE_VERSION; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // exported silent version of the above that just answer the question is_ext4 | 
|  | bool fs_mgr_is_ext4(const std::string& blk_device) { | 
|  | android::base::ErrnoRestorer restore; | 
|  | android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  | if (fd < 0) return false; | 
|  | ext4_super_block sb; | 
|  | if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false; | 
|  | if (!is_ext4_superblock_valid(&sb)) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Some system images do not have tune2fs for licensing reasons. | 
|  | // Detect these and skip running it. | 
|  | static bool tune2fs_available(void) { | 
|  | return access(TUNE2FS_BIN, X_OK) == 0; | 
|  | } | 
|  |  | 
|  | static bool run_tune2fs(const char* argv[], int argc) { | 
|  | int ret; | 
|  |  | 
|  | ret = android_fork_execvp_ext(argc, const_cast<char**>(argv), nullptr, true, | 
|  | LOG_KLOG | LOG_FILE, true, nullptr, nullptr, 0); | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | // Enable/disable quota support on the filesystem if needed. | 
|  | static void tune_quota(const std::string& blk_device, const FstabEntry& entry, | 
|  | const struct ext4_super_block* sb, int* fs_stat) { | 
|  | bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0; | 
|  | bool want_quota = entry.fs_mgr_flags.quota; | 
|  |  | 
|  | if (has_quota == want_quota) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tune2fs_available()) { | 
|  | LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device | 
|  | << " because " TUNE2FS_BIN " is missing"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()}; | 
|  |  | 
|  | if (want_quota) { | 
|  | LINFO << "Enabling quotas on " << blk_device; | 
|  | argv[1] = "-Oquota"; | 
|  | argv[2] = "-Qusrquota,grpquota"; | 
|  | *fs_stat |= FS_STAT_QUOTA_ENABLED; | 
|  | } else { | 
|  | LINFO << "Disabling quotas on " << blk_device; | 
|  | argv[1] = "-O^quota"; | 
|  | argv[2] = "-Q^usrquota,^grpquota"; | 
|  | } | 
|  |  | 
|  | if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { | 
|  | LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable") | 
|  | << " quotas on " << blk_device; | 
|  | *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the number of reserved filesystem blocks if needed. | 
|  | static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry, | 
|  | const struct ext4_super_block* sb, int* fs_stat) { | 
|  | if (entry.reserved_size != 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The size to reserve is given in the fstab, but we won't reserve more | 
|  | // than 2% of the filesystem. | 
|  | const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02; | 
|  | uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb); | 
|  |  | 
|  | if (reserved_blocks > max_reserved_blocks) { | 
|  | LWARNING << "Reserved blocks " << reserved_blocks << " is too large; " | 
|  | << "capping to " << max_reserved_blocks; | 
|  | reserved_blocks = max_reserved_blocks; | 
|  | } | 
|  |  | 
|  | if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tune2fs_available()) { | 
|  | LERROR << "Unable to set the number of reserved blocks on " << blk_device | 
|  | << " because " TUNE2FS_BIN " is missing"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks; | 
|  |  | 
|  | auto reserved_blocks_str = std::to_string(reserved_blocks); | 
|  | auto reserved_gid_str = std::to_string(AID_RESERVED_DISK); | 
|  | const char* argv[] = { | 
|  | TUNE2FS_BIN,       "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(), | 
|  | blk_device.c_str()}; | 
|  | if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { | 
|  | LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on " | 
|  | << blk_device; | 
|  | *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enable file-based encryption if needed. | 
|  | static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry, | 
|  | const struct ext4_super_block* sb, int* fs_stat) { | 
|  | bool has_encrypt = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) != 0; | 
|  | bool want_encrypt = entry.fs_mgr_flags.file_encryption; | 
|  |  | 
|  | if (has_encrypt || !want_encrypt) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tune2fs_available()) { | 
|  | LERROR << "Unable to enable ext4 encryption on " << blk_device | 
|  | << " because " TUNE2FS_BIN " is missing"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const char* argv[] = {TUNE2FS_BIN, "-Oencrypt", blk_device.c_str()}; | 
|  |  | 
|  | LINFO << "Enabling ext4 encryption on " << blk_device; | 
|  | if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { | 
|  | LERROR << "Failed to run " TUNE2FS_BIN " to enable " | 
|  | << "ext4 encryption on " << blk_device; | 
|  | *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Enable fs-verity if needed. | 
|  | static void tune_verity(const std::string& blk_device, const FstabEntry& entry, | 
|  | const struct ext4_super_block* sb, int* fs_stat) { | 
|  | bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0; | 
|  | bool want_verity = entry.fs_mgr_flags.fs_verity; | 
|  |  | 
|  | if (has_verity || !want_verity) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::string verity_support; | 
|  | if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) { | 
|  | LERROR << "Failed to open " << SYSFS_EXT4_VERITY; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!(android::base::Trim(verity_support) == "supported")) { | 
|  | LERROR << "Current ext4 verity not supported by kernel"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!tune2fs_available()) { | 
|  | LERROR << "Unable to enable ext4 verity on " << blk_device | 
|  | << " because " TUNE2FS_BIN " is missing"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LINFO << "Enabling ext4 verity on " << blk_device; | 
|  |  | 
|  | const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()}; | 
|  | if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { | 
|  | LERROR << "Failed to run " TUNE2FS_BIN " to enable " | 
|  | << "ext4 verity on " << blk_device; | 
|  | *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Read the primary superblock from an f2fs filesystem.  On failure return | 
|  | // false.  If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC. | 
|  | #define F2FS_BLKSIZE 4096 | 
|  | #define F2FS_SUPER_OFFSET 1024 | 
|  | static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) { | 
|  | android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  | __le32 sb1, sb2; | 
|  |  | 
|  | if (fd < 0) { | 
|  | PERROR << "Failed to open '" << blk_device << "'"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) { | 
|  | PERROR << "Can't read '" << blk_device << "' superblock1"; | 
|  | return false; | 
|  | } | 
|  | if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) != | 
|  | sizeof(sb2)) { | 
|  | PERROR << "Can't read '" << blk_device << "' superblock2"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) { | 
|  | LINFO << "Invalid f2fs superblock on '" << blk_device << "'"; | 
|  | *fs_stat |= FS_STAT_INVALID_MAGIC; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // exported silent version of the above that just answer the question is_f2fs | 
|  | bool fs_mgr_is_f2fs(const std::string& blk_device) { | 
|  | android::base::ErrnoRestorer restore; | 
|  | android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  | if (fd < 0) return false; | 
|  | __le32 sb; | 
|  | if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) { | 
|  | return false; | 
|  | } | 
|  | if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true; | 
|  | if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) != | 
|  | sizeof(sb)) { | 
|  | return false; | 
|  | } | 
|  | return sb == cpu_to_le32(F2FS_SUPER_MAGIC); | 
|  | } | 
|  |  | 
|  | // | 
|  | // Prepare the filesystem on the given block device to be mounted. | 
|  | // | 
|  | // If the "check" option was given in the fstab record, or it seems that the | 
|  | // filesystem was uncleanly shut down, we'll run fsck on the filesystem. | 
|  | // | 
|  | // If needed, we'll also enable (or disable) filesystem features as specified by | 
|  | // the fstab record. | 
|  | // | 
|  | static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry) { | 
|  | int fs_stat = 0; | 
|  |  | 
|  | if (is_extfs(entry.fs_type)) { | 
|  | struct ext4_super_block sb; | 
|  |  | 
|  | if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { | 
|  | if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 || | 
|  | (sb.s_state & EXT4_VALID_FS) == 0) { | 
|  | LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; " | 
|  | << "state flags: 0x" << std::hex << sb.s_state << ", " | 
|  | << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat; | 
|  | fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN; | 
|  | } | 
|  |  | 
|  | // Note: quotas should be enabled before running fsck. | 
|  | tune_quota(blk_device, entry, &sb, &fs_stat); | 
|  | } else { | 
|  | return fs_stat; | 
|  | } | 
|  | } else if (is_f2fs(entry.fs_type)) { | 
|  | if (!read_f2fs_superblock(blk_device, &fs_stat)) { | 
|  | return fs_stat; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (entry.fs_mgr_flags.check || | 
|  | (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) { | 
|  | check_fs(blk_device, entry.fs_type, entry.mount_point, &fs_stat); | 
|  | } | 
|  |  | 
|  | if (is_extfs(entry.fs_type) && | 
|  | (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption || | 
|  | entry.fs_mgr_flags.fs_verity)) { | 
|  | struct ext4_super_block sb; | 
|  |  | 
|  | if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { | 
|  | tune_reserved_size(blk_device, entry, &sb, &fs_stat); | 
|  | tune_encrypt(blk_device, entry, &sb, &fs_stat); | 
|  | tune_verity(blk_device, entry, &sb, &fs_stat); | 
|  | } | 
|  | } | 
|  |  | 
|  | return fs_stat; | 
|  | } | 
|  |  | 
|  | // Mark the given block device as read-only, using the BLKROSET ioctl. | 
|  | bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) { | 
|  | unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  | if (fd < 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ON = readonly; | 
|  | return ioctl(fd, BLKROSET, &ON) == 0; | 
|  | } | 
|  |  | 
|  | // Orange state means the device is unlocked, see the following link for details. | 
|  | // https://source.android.com/security/verifiedboot/verified-boot#device_state | 
|  | bool fs_mgr_is_device_unlocked() { | 
|  | std::string verified_boot_state; | 
|  | if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) { | 
|  | return verified_boot_state == "orange"; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // __mount(): wrapper around the mount() system call which also | 
|  | // sets the underlying block device to read-only if the mount is read-only. | 
|  | // See "man 2 mount" for return values. | 
|  | static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) { | 
|  | // We need this because sometimes we have legacy symlinks that are | 
|  | // lingering around and need cleaning up. | 
|  | struct stat info; | 
|  | if (lstat(target.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) { | 
|  | unlink(target.c_str()); | 
|  | } | 
|  | mkdir(target.c_str(), 0755); | 
|  | errno = 0; | 
|  | unsigned long mountflags = entry.flags; | 
|  | int ret = 0; | 
|  | int save_errno = 0; | 
|  | do { | 
|  | if (save_errno == EAGAIN) { | 
|  | PINFO << "Retrying mount (source=" << source << ",target=" << target | 
|  | << ",type=" << entry.fs_type << ")=" << ret << "(" << save_errno << ")"; | 
|  | } | 
|  | ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags, | 
|  | entry.fs_options.c_str()); | 
|  | save_errno = errno; | 
|  | } while (ret && save_errno == EAGAIN); | 
|  | const char* target_missing = ""; | 
|  | const char* source_missing = ""; | 
|  | if (save_errno == ENOENT) { | 
|  | if (access(target.c_str(), F_OK)) { | 
|  | target_missing = "(missing)"; | 
|  | } else if (access(source.c_str(), F_OK)) { | 
|  | source_missing = "(missing)"; | 
|  | } | 
|  | errno = save_errno; | 
|  | } | 
|  | PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target | 
|  | << target_missing << ",type=" << entry.fs_type << ")=" << ret; | 
|  | if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { | 
|  | fs_mgr_set_blk_ro(source); | 
|  | } | 
|  | errno = save_errno; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool fs_match(const std::string& in1, const std::string& in2) { | 
|  | if (in1.empty() || in2.empty()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto in1_end = in1.size() - 1; | 
|  | while (in1_end > 0 && in1[in1_end] == '/') { | 
|  | in1_end--; | 
|  | } | 
|  |  | 
|  | auto in2_end = in2.size() - 1; | 
|  | while (in2_end > 0 && in2[in2_end] == '/') { | 
|  | in2_end--; | 
|  | } | 
|  |  | 
|  | if (in1_end != in2_end) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i <= in1_end; ++i) { | 
|  | if (in1[i] != in2[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Tries to mount any of the consecutive fstab entries that match | 
|  | // the mountpoint of the one given by fstab[start_idx]. | 
|  | // | 
|  | // end_idx: On return, will be the last entry that was looked at. | 
|  | // attempted_idx: On return, will indicate which fstab entry | 
|  | //     succeeded. In case of failure, it will be the start_idx. | 
|  | // Sets errno to match the 1st mount failure on failure. | 
|  | static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx, | 
|  | int* attempted_idx) { | 
|  | unsigned long i; | 
|  | int mount_errno = 0; | 
|  | bool mounted = false; | 
|  |  | 
|  | // Hunt down an fstab entry for the same mount point that might succeed. | 
|  | for (i = start_idx; | 
|  | // We required that fstab entries for the same mountpoint be consecutive. | 
|  | i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) { | 
|  | // Don't try to mount/encrypt the same mount point again. | 
|  | // Deal with alternate entries for the same point which are required to be all following | 
|  | // each other. | 
|  | if (mounted) { | 
|  | LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point | 
|  | << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as " | 
|  | << fstab[*attempted_idx].fs_type; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]); | 
|  | if (fs_stat & FS_STAT_INVALID_MAGIC) { | 
|  | LERROR << __FUNCTION__ | 
|  | << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point | 
|  | << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i | 
|  | << "].fs_type=" << fstab[i].fs_type; | 
|  | mount_errno = EINVAL;  // continue bootup for FDE | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int retry_count = 2; | 
|  | while (retry_count-- > 0) { | 
|  | if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) { | 
|  | *attempted_idx = i; | 
|  | mounted = true; | 
|  | if (i != start_idx) { | 
|  | LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on " | 
|  | << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type | 
|  | << " instead of " << fstab[start_idx].fs_type; | 
|  | } | 
|  | fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; | 
|  | mount_errno = 0; | 
|  | break; | 
|  | } else { | 
|  | if (retry_count <= 0) break;  // run check_fs only once | 
|  | fs_stat |= FS_STAT_FULL_MOUNT_FAILED; | 
|  | // back up the first errno for crypto decisions. | 
|  | if (mount_errno == 0) { | 
|  | mount_errno = errno; | 
|  | } | 
|  | // retry after fsck | 
|  | check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat); | 
|  | } | 
|  | } | 
|  | log_fs_stat(fstab[i].blk_device, fs_stat); | 
|  | } | 
|  |  | 
|  | /* Adjust i for the case where it was still withing the recs[] */ | 
|  | if (i < fstab.size()) --i; | 
|  |  | 
|  | *end_idx = i; | 
|  | if (!mounted) { | 
|  | *attempted_idx = start_idx; | 
|  | errno = mount_errno; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool TranslateExtLabels(FstabEntry* entry) { | 
|  | if (!StartsWith(entry->blk_device, "LABEL=")) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string label = entry->blk_device.substr(6); | 
|  | if (label.size() > 16) { | 
|  | LERROR << "FS label is longer than allowed by filesystem"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir}; | 
|  | if (!blockdir) { | 
|  | LERROR << "couldn't open /dev/block"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | struct dirent* ent; | 
|  | while ((ent = readdir(blockdir.get()))) { | 
|  | if (ent->d_type != DT_BLK) | 
|  | continue; | 
|  |  | 
|  | unique_fd fd(TEMP_FAILURE_RETRY( | 
|  | openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC))); | 
|  | if (fd < 0) { | 
|  | LERROR << "Cannot open block device /dev/block/" << ent->d_name; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ext4_super_block super_block; | 
|  | if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 || | 
|  | TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) != | 
|  | sizeof(super_block)) { | 
|  | // Probably a loopback device or something else without a readable superblock. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (super_block.s_magic != EXT4_SUPER_MAGIC) { | 
|  | LINFO << "/dev/block/" << ent->d_name << " not ext{234}"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (label == super_block.s_volume_name) { | 
|  | std::string new_blk_device = "/dev/block/"s + ent->d_name; | 
|  |  | 
|  | LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device; | 
|  |  | 
|  | entry->blk_device = new_blk_device; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool needs_block_encryption(const FstabEntry& entry) { | 
|  | if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable()) | 
|  | return true; | 
|  | if (entry.fs_mgr_flags.force_crypt) return true; | 
|  | if (entry.fs_mgr_flags.crypt) { | 
|  | // Check for existence of convert_fde breadcrumb file. | 
|  | auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde"; | 
|  | if (access(convert_fde_name.c_str(), F_OK) == 0) return true; | 
|  | } | 
|  | if (entry.fs_mgr_flags.force_fde_or_fbe) { | 
|  | // Check for absence of convert_fbe breadcrumb file. | 
|  | auto convert_fbe_name = entry.mount_point + "/convert_fbe"; | 
|  | if (access(convert_fbe_name.c_str(), F_OK) != 0) return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool should_use_metadata_encryption(const FstabEntry& entry) { | 
|  | return !entry.key_dir.empty() && | 
|  | (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe); | 
|  | } | 
|  |  | 
|  | // Check to see if a mountable volume has encryption requirements | 
|  | static int handle_encryptable(const FstabEntry& entry) { | 
|  | // If this is block encryptable, need to trigger encryption. | 
|  | if (needs_block_encryption(entry)) { | 
|  | if (umount(entry.mount_point.c_str()) == 0) { | 
|  | return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION; | 
|  | } else { | 
|  | PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted"; | 
|  | return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; | 
|  | } | 
|  | } else if (should_use_metadata_encryption(entry)) { | 
|  | if (umount(entry.mount_point.c_str()) == 0) { | 
|  | return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION; | 
|  | } else { | 
|  | PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt"; | 
|  | return FS_MGR_MNTALL_FAIL; | 
|  | } | 
|  | } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) { | 
|  | LINFO << entry.mount_point << " is file encrypted"; | 
|  | return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED; | 
|  | } else if (entry.is_encryptable()) { | 
|  | return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; | 
|  | } else { | 
|  | return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool call_vdc(const std::vector<std::string>& args) { | 
|  | std::vector<char const*> argv; | 
|  | argv.emplace_back("/system/bin/vdc"); | 
|  | for (auto& arg : args) { | 
|  | argv.emplace_back(arg.c_str()); | 
|  | } | 
|  | LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); | 
|  | int ret = | 
|  | android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), nullptr, false, true); | 
|  | if (ret != 0) { | 
|  | LOG(ERROR) << "vdc returned error code: " << ret; | 
|  | return false; | 
|  | } | 
|  | LOG(DEBUG) << "vdc finished successfully"; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool call_vdc_ret(const std::vector<std::string>& args, int* ret) { | 
|  | std::vector<char const*> argv; | 
|  | argv.emplace_back("/system/bin/vdc"); | 
|  | for (auto& arg : args) { | 
|  | argv.emplace_back(arg.c_str()); | 
|  | } | 
|  | LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); | 
|  | int err = android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), ret, false, true); | 
|  | if (err != 0) { | 
|  | LOG(ERROR) << "vdc call failed with error code: " << err; | 
|  | return false; | 
|  | } | 
|  | LOG(DEBUG) << "vdc finished successfully"; | 
|  | *ret = WEXITSTATUS(*ret); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool fs_mgr_update_logical_partition(FstabEntry* entry) { | 
|  | // Logical partitions are specified with a named partition rather than a | 
|  | // block device, so if the block device is a path, then it has already | 
|  | // been updated. | 
|  | if (entry->blk_device[0] == '/') { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DeviceMapper& dm = DeviceMapper::Instance(); | 
|  | std::string device_name; | 
|  | if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | entry->blk_device = device_name; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | class CheckpointManager { | 
|  | public: | 
|  | CheckpointManager(int needs_checkpoint = -1) : needs_checkpoint_(needs_checkpoint) {} | 
|  |  | 
|  | bool Update(FstabEntry* entry) { | 
|  | if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (entry->fs_mgr_flags.checkpoint_blk) { | 
|  | call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}); | 
|  | } | 
|  |  | 
|  | if (needs_checkpoint_ == UNKNOWN && | 
|  | !call_vdc_ret({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) { | 
|  | LERROR << "Failed to find if checkpointing is needed. Assuming no."; | 
|  | needs_checkpoint_ = NO; | 
|  | } | 
|  |  | 
|  | if (needs_checkpoint_ != YES) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!UpdateCheckpointPartition(entry)) { | 
|  | LERROR << "Could not set up checkpoint partition, skipping!"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Revert(FstabEntry* entry) { | 
|  | if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (device_map_.find(entry->blk_device) == device_map_.end()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::string bow_device = entry->blk_device; | 
|  | entry->blk_device = device_map_[bow_device]; | 
|  | device_map_.erase(bow_device); | 
|  |  | 
|  | DeviceMapper& dm = DeviceMapper::Instance(); | 
|  | if (!dm.DeleteDevice("bow")) { | 
|  | PERROR << "Failed to remove bow device"; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool UpdateCheckpointPartition(FstabEntry* entry) { | 
|  | if (entry->fs_mgr_flags.checkpoint_fs) { | 
|  | if (is_f2fs(entry->fs_type)) { | 
|  | entry->fs_options += ",checkpoint=disable"; | 
|  | } else { | 
|  | LERROR << entry->fs_type << " does not implement checkpoints."; | 
|  | } | 
|  | } else if (entry->fs_mgr_flags.checkpoint_blk) { | 
|  | unique_fd fd(TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC))); | 
|  | if (fd < 0) { | 
|  | PERROR << "Cannot open device " << entry->blk_device; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t size = get_block_device_size(fd) / 512; | 
|  | if (!size) { | 
|  | PERROR << "Cannot get device size"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | android::dm::DmTable table; | 
|  | if (!table.AddTarget( | 
|  | std::make_unique<android::dm::DmTargetBow>(0, size, entry->blk_device))) { | 
|  | LERROR << "Failed to add bow target"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DeviceMapper& dm = DeviceMapper::Instance(); | 
|  | if (!dm.CreateDevice("bow", table)) { | 
|  | PERROR << "Failed to create bow device"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string name; | 
|  | if (!dm.GetDmDevicePathByName("bow", &name)) { | 
|  | PERROR << "Failed to get bow device name"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | device_map_[name] = entry->blk_device; | 
|  | entry->blk_device = name; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum { UNKNOWN = -1, NO = 0, YES = 1 }; | 
|  | int needs_checkpoint_; | 
|  | std::map<std::string, std::string> device_map_; | 
|  | }; | 
|  |  | 
|  | static bool IsMountPointMounted(const std::string& mount_point) { | 
|  | // Check if this is already mounted. | 
|  | Fstab fstab; | 
|  | if (!ReadFstabFromFile("/proc/mounts", &fstab)) { | 
|  | return false; | 
|  | } | 
|  | return GetEntryForMountPoint(&fstab, mount_point) != nullptr; | 
|  | } | 
|  |  | 
|  | // When multiple fstab records share the same mount_point, it will try to mount each | 
|  | // one in turn, and ignore any duplicates after a first successful mount. | 
|  | // Returns -1 on error, and  FS_MGR_MNTALL_* otherwise. | 
|  | int fs_mgr_mount_all(Fstab* fstab, int mount_mode) { | 
|  | int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; | 
|  | int error_count = 0; | 
|  | CheckpointManager checkpoint_manager; | 
|  | AvbUniquePtr avb_handle(nullptr); | 
|  |  | 
|  | if (fstab->empty()) { | 
|  | return FS_MGR_MNTALL_FAIL; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < fstab->size(); i++) { | 
|  | auto& current_entry = (*fstab)[i]; | 
|  |  | 
|  | // If a filesystem should have been mounted in the first stage, we | 
|  | // ignore it here. With one exception, if the filesystem is | 
|  | // formattable, then it can only be formatted in the second stage, | 
|  | // so we allow it to mount here. | 
|  | if (current_entry.fs_mgr_flags.first_stage_mount && | 
|  | (!current_entry.fs_mgr_flags.formattable || | 
|  | IsMountPointMounted(current_entry.mount_point))) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Don't mount entries that are managed by vold or not for the mount mode. | 
|  | if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only || | 
|  | ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) || | 
|  | ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Skip swap and raw partition entries such as boot, recovery, etc. | 
|  | if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" || | 
|  | current_entry.fs_type == "mtd") { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Skip mounting the root partition, as it will already have been mounted. | 
|  | if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") { | 
|  | if ((current_entry.flags & MS_RDONLY) != 0) { | 
|  | fs_mgr_set_blk_ro(current_entry.blk_device); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Translate LABEL= file system labels into block devices. | 
|  | if (is_extfs(current_entry.fs_type)) { | 
|  | if (!TranslateExtLabels(¤t_entry)) { | 
|  | LERROR << "Could not translate label to block device"; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (current_entry.fs_mgr_flags.logical) { | 
|  | if (!fs_mgr_update_logical_partition(¤t_entry)) { | 
|  | LERROR << "Could not set up logical partition, skipping!"; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!checkpoint_manager.Update(¤t_entry)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (current_entry.fs_mgr_flags.wait && | 
|  | !fs_mgr_wait_for_file(current_entry.blk_device, 20s)) { | 
|  | LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (current_entry.fs_mgr_flags.avb) { | 
|  | if (!avb_handle) { | 
|  | avb_handle = AvbHandle::Open(); | 
|  | if (!avb_handle) { | 
|  | LERROR << "Failed to open AvbHandle"; | 
|  | return FS_MGR_MNTALL_FAIL; | 
|  | } | 
|  | } | 
|  | if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) == | 
|  | AvbHashtreeResult::kFail) { | 
|  | LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point | 
|  | << ", skipping!"; | 
|  | // Skips mounting the device. | 
|  | continue; | 
|  | } | 
|  | } else if (!current_entry.avb_keys.empty()) { | 
|  | if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) { | 
|  | LERROR << "Failed to set up AVB on standalone partition: " | 
|  | << current_entry.mount_point << ", skipping!"; | 
|  | // Skips mounting the device. | 
|  | continue; | 
|  | } | 
|  | } else if ((current_entry.fs_mgr_flags.verify)) { | 
|  | int rc = fs_mgr_setup_verity(¤t_entry, true); | 
|  | if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) { | 
|  | LINFO << "Verity disabled"; | 
|  | } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { | 
|  | LERROR << "Could not set up verified partition, skipping!"; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | int last_idx_inspected; | 
|  | int top_idx = i; | 
|  | int attempted_idx = -1; | 
|  |  | 
|  | bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx); | 
|  | auto& attempted_entry = (*fstab)[attempted_idx]; | 
|  | i = last_idx_inspected; | 
|  | int mount_errno = errno; | 
|  |  | 
|  | // Handle success and deal with encryptability. | 
|  | if (mret) { | 
|  | int status = handle_encryptable(attempted_entry); | 
|  |  | 
|  | if (status == FS_MGR_MNTALL_FAIL) { | 
|  | // Fatal error - no point continuing. | 
|  | return status; | 
|  | } | 
|  |  | 
|  | if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { | 
|  | if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { | 
|  | // Log and continue | 
|  | LERROR << "Only one encryptable/encrypted partition supported"; | 
|  | } | 
|  | encryptable = status; | 
|  | if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) { | 
|  | if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.mount_point})) { | 
|  | LERROR << "Encryption failed"; | 
|  | return FS_MGR_MNTALL_FAIL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Success!  Go get the next one. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Mounting failed, understand why and retry. | 
|  | bool wiped = partition_wiped(current_entry.blk_device.c_str()); | 
|  | bool crypt_footer = false; | 
|  | if (mount_errno != EBUSY && mount_errno != EACCES && | 
|  | current_entry.fs_mgr_flags.formattable && wiped) { | 
|  | // current_entry and attempted_entry point at the same partition, but sometimes | 
|  | // at two different lines in the fstab.  Use current_entry for formatting | 
|  | // as that is the preferred one. | 
|  | LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device) | 
|  | << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type | 
|  | << " is formattable. Format it."; | 
|  |  | 
|  | checkpoint_manager.Revert(¤t_entry); | 
|  |  | 
|  | if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) { | 
|  | unique_fd fd(TEMP_FAILURE_RETRY( | 
|  | open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC))); | 
|  | if (fd >= 0) { | 
|  | LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc; | 
|  | wipe_block_device(fd, get_file_size(fd)); | 
|  | } else { | 
|  | PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open"; | 
|  | } | 
|  | } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) { | 
|  | crypt_footer = true; | 
|  | } | 
|  | if (fs_mgr_do_format(current_entry, crypt_footer) == 0) { | 
|  | // Let's replay the mount actions. | 
|  | i = top_idx - 1; | 
|  | continue; | 
|  | } else { | 
|  | LERROR << __FUNCTION__ << "(): Format failed. " | 
|  | << "Suggest recovery..."; | 
|  | encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // mount(2) returned an error, handle the encryptable/formattable case. | 
|  | if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) { | 
|  | if (wiped) { | 
|  | LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and " | 
|  | << attempted_entry.mount_point << " " << attempted_entry.fs_type | 
|  | << " is encryptable. Suggest recovery..."; | 
|  | encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; | 
|  | continue; | 
|  | } else { | 
|  | // Need to mount a tmpfs at this mountpoint for now, and set | 
|  | // properties that vold will query later for decrypting | 
|  | LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev " | 
|  | << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point | 
|  | << " type " << attempted_entry.fs_type; | 
|  | if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) { | 
|  | ++error_count; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED; | 
|  | } else if (mount_errno != EBUSY && mount_errno != EACCES && | 
|  | should_use_metadata_encryption(attempted_entry)) { | 
|  | if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.mount_point})) { | 
|  | ++error_count; | 
|  | } | 
|  | encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED; | 
|  | continue; | 
|  | } else { | 
|  | // fs_options might be null so we cannot use PERROR << directly. | 
|  | // Use StringPrintf to output "(null)" instead. | 
|  | if (attempted_entry.fs_mgr_flags.no_fail) { | 
|  | PERROR << android::base::StringPrintf( | 
|  | "Ignoring failure to mount an un-encryptable or wiped " | 
|  | "partition on %s at %s options: %s", | 
|  | attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), | 
|  | attempted_entry.fs_options.c_str()); | 
|  | } else { | 
|  | PERROR << android::base::StringPrintf( | 
|  | "Failed to mount an un-encryptable or wiped partition " | 
|  | "on %s at %s options: %s", | 
|  | attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), | 
|  | attempted_entry.fs_options.c_str()); | 
|  | ++error_count; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if ALLOW_ADBD_DISABLE_VERITY == 1  // "userdebug" build | 
|  | fs_mgr_overlayfs_mount_all(fstab); | 
|  | #endif | 
|  |  | 
|  | if (error_count) { | 
|  | return FS_MGR_MNTALL_FAIL; | 
|  | } else { | 
|  | return encryptable; | 
|  | } | 
|  | } | 
|  |  | 
|  | int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) { | 
|  | AvbUniquePtr avb_handle(nullptr); | 
|  | int ret = FsMgrUmountStatus::SUCCESS; | 
|  | for (auto& current_entry : *fstab) { | 
|  | if (!IsMountPointMounted(current_entry.mount_point)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (umount(current_entry.mount_point.c_str()) == -1) { | 
|  | PERROR << "Failed to umount " << current_entry.mount_point; | 
|  | ret |= FsMgrUmountStatus::ERROR_UMOUNT; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (current_entry.fs_mgr_flags.logical) { | 
|  | if (!fs_mgr_update_logical_partition(¤t_entry)) { | 
|  | LERROR << "Could not get logical partition blk_device, skipping!"; | 
|  | ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) { | 
|  | if (!AvbHandle::TearDownAvbHashtree(¤t_entry, true /* wait */)) { | 
|  | LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point; | 
|  | ret |= FsMgrUmountStatus::ERROR_VERITY; | 
|  | continue; | 
|  | } | 
|  | } else if ((current_entry.fs_mgr_flags.verify)) { | 
|  | if (!fs_mgr_teardown_verity(¤t_entry, true /* wait */)) { | 
|  | LERROR << "Failed to tear down verified partition on mount point: " | 
|  | << current_entry.mount_point; | 
|  | ret |= FsMgrUmountStatus::ERROR_VERITY; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // wrapper to __mount() and expects a fully prepared fstab_rec, | 
|  | // unlike fs_mgr_do_mount which does more things with avb / verity etc. | 
|  | int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& mount_point) { | 
|  | // Run fsck if needed | 
|  | prepare_fs_for_mount(entry.blk_device, entry); | 
|  |  | 
|  | int ret = | 
|  | __mount(entry.blk_device, mount_point.empty() ? entry.mount_point : mount_point, entry); | 
|  | if (ret) { | 
|  | ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // If tmp_mount_point is non-null, mount the filesystem there.  This is for the | 
|  | // tmp mount we do to check the user password | 
|  | // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one | 
|  | // in turn, and stop on 1st success, or no more match. | 
|  | static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name, | 
|  | const std::string& n_blk_device, const char* tmp_mount_point, | 
|  | int needs_checkpoint) { | 
|  | int mount_errors = 0; | 
|  | int first_mount_errno = 0; | 
|  | std::string mount_point; | 
|  | CheckpointManager checkpoint_manager(needs_checkpoint); | 
|  | AvbUniquePtr avb_handle(nullptr); | 
|  |  | 
|  | if (!fstab) { | 
|  | return FS_MGR_DOMNT_FAILED; | 
|  | } | 
|  |  | 
|  | for (auto& fstab_entry : *fstab) { | 
|  | if (!fs_match(fstab_entry.mount_point, n_name)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We found our match. | 
|  | // If this swap or a raw partition, report an error. | 
|  | if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" || | 
|  | fstab_entry.fs_type == "mtd") { | 
|  | LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on " | 
|  | << n_blk_device; | 
|  | return FS_MGR_DOMNT_FAILED; | 
|  | } | 
|  |  | 
|  | if (fstab_entry.fs_mgr_flags.logical) { | 
|  | if (!fs_mgr_update_logical_partition(&fstab_entry)) { | 
|  | LERROR << "Could not set up logical partition, skipping!"; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!checkpoint_manager.Update(&fstab_entry)) { | 
|  | LERROR << "Could not set up checkpoint partition, skipping!"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // First check the filesystem if requested. | 
|  | if (fstab_entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(n_blk_device, 20s)) { | 
|  | LERROR << "Skipping mounting '" << n_blk_device << "'"; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry); | 
|  |  | 
|  | if (fstab_entry.fs_mgr_flags.avb) { | 
|  | if (!avb_handle) { | 
|  | avb_handle = AvbHandle::Open(); | 
|  | if (!avb_handle) { | 
|  | LERROR << "Failed to open AvbHandle"; | 
|  | return FS_MGR_DOMNT_FAILED; | 
|  | } | 
|  | } | 
|  | if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) == | 
|  | AvbHashtreeResult::kFail) { | 
|  | LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point | 
|  | << ", skipping!"; | 
|  | // Skips mounting the device. | 
|  | continue; | 
|  | } | 
|  | } else if (!fstab_entry.avb_keys.empty()) { | 
|  | if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) { | 
|  | LERROR << "Failed to set up AVB on standalone partition: " | 
|  | << fstab_entry.mount_point << ", skipping!"; | 
|  | // Skips mounting the device. | 
|  | continue; | 
|  | } | 
|  | } else if (fstab_entry.fs_mgr_flags.verify) { | 
|  | int rc = fs_mgr_setup_verity(&fstab_entry, true); | 
|  | if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) { | 
|  | LINFO << "Verity disabled"; | 
|  | } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { | 
|  | LERROR << "Could not set up verified partition, skipping!"; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now mount it where requested */ | 
|  | if (tmp_mount_point) { | 
|  | mount_point = tmp_mount_point; | 
|  | } else { | 
|  | mount_point = fstab_entry.mount_point; | 
|  | } | 
|  | int retry_count = 2; | 
|  | while (retry_count-- > 0) { | 
|  | if (!__mount(n_blk_device, mount_point, fstab_entry)) { | 
|  | fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; | 
|  | return FS_MGR_DOMNT_SUCCESS; | 
|  | } else { | 
|  | if (retry_count <= 0) break;  // run check_fs only once | 
|  | if (!first_mount_errno) first_mount_errno = errno; | 
|  | mount_errors++; | 
|  | fs_stat |= FS_STAT_FULL_MOUNT_FAILED; | 
|  | // try again after fsck | 
|  | check_fs(n_blk_device, fstab_entry.fs_type, fstab_entry.mount_point, &fs_stat); | 
|  | } | 
|  | } | 
|  | log_fs_stat(fstab_entry.blk_device, fs_stat); | 
|  | } | 
|  |  | 
|  | // Reach here means the mount attempt fails. | 
|  | if (mount_errors) { | 
|  | PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point; | 
|  | if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY; | 
|  | } else { | 
|  | // We didn't find a match, say so and return an error. | 
|  | LERROR << "Cannot find mount point " << n_name << " in fstab"; | 
|  | } | 
|  | return FS_MGR_DOMNT_FAILED; | 
|  | } | 
|  |  | 
|  | int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) { | 
|  | return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1); | 
|  | } | 
|  |  | 
|  | int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point, | 
|  | bool needs_checkpoint) { | 
|  | return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mount a tmpfs filesystem at the given point. | 
|  | * return 0 on success, non-zero on failure. | 
|  | */ | 
|  | int fs_mgr_do_tmpfs_mount(const char *n_name) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC, | 
|  | CRYPTO_TMPFS_OPTIONS); | 
|  | if (ret < 0) { | 
|  | LERROR << "Cannot mount tmpfs filesystem at " << n_name; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Success */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool InstallZramDevice(const std::string& device) { | 
|  | if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) { | 
|  | PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV; | 
|  | return false; | 
|  | } | 
|  | LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool PrepareZramDevice(const std::string& loop, off64_t size, const std::string& bdev) { | 
|  | if (loop.empty() && bdev.empty()) return true; | 
|  |  | 
|  | if (bdev.length()) { | 
|  | return InstallZramDevice(bdev); | 
|  | } | 
|  |  | 
|  | // Get free loopback | 
|  | unique_fd loop_fd(TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC))); | 
|  | if (loop_fd.get() == -1) { | 
|  | PERROR << "Cannot open loop-control"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int num = ioctl(loop_fd.get(), LOOP_CTL_GET_FREE); | 
|  | if (num == -1) { | 
|  | PERROR << "Cannot get free loop slot"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Prepare target path | 
|  | unique_fd target_fd(TEMP_FAILURE_RETRY(open(loop.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600))); | 
|  | if (target_fd.get() == -1) { | 
|  | PERROR << "Cannot open target path: " << loop; | 
|  | return false; | 
|  | } | 
|  | if (fallocate(target_fd.get(), 0, 0, size) < 0) { | 
|  | PERROR << "Cannot truncate target path: " << loop; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Connect loopback (device_fd) to target path (target_fd) | 
|  | std::string device = android::base::StringPrintf("/dev/block/loop%d", num); | 
|  | unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC))); | 
|  | if (device_fd.get() == -1) { | 
|  | PERROR << "Cannot open /dev/block/loop" << num; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ioctl(device_fd.get(), LOOP_SET_FD, target_fd.get())) { | 
|  | PERROR << "Cannot set loopback to target path"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // set block size & direct IO | 
|  | if (ioctl(device_fd.get(), LOOP_SET_BLOCK_SIZE, 4096)) { | 
|  | PWARNING << "Cannot set 4KB blocksize to /dev/block/loop" << num; | 
|  | } | 
|  | if (ioctl(device_fd.get(), LOOP_SET_DIRECT_IO, 1)) { | 
|  | PWARNING << "Cannot set direct_io to /dev/block/loop" << num; | 
|  | } | 
|  |  | 
|  | return InstallZramDevice(device); | 
|  | } | 
|  |  | 
|  | bool fs_mgr_swapon_all(const Fstab& fstab) { | 
|  | bool ret = true; | 
|  | for (const auto& entry : fstab) { | 
|  | // Skip non-swap entries. | 
|  | if (entry.fs_type != "swap") { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!PrepareZramDevice(entry.zram_loopback_path, entry.zram_loopback_size, entry.zram_backing_dev_path)) { | 
|  | LERROR << "Skipping losetup for '" << entry.blk_device << "'"; | 
|  | } | 
|  |  | 
|  | if (entry.zram_size > 0) { | 
|  | // A zram_size was specified, so we need to configure the | 
|  | // device.  There is no point in having multiple zram devices | 
|  | // on a system (all the memory comes from the same pool) so | 
|  | // we can assume the device number is 0. | 
|  | if (entry.max_comp_streams >= 0) { | 
|  | auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{ | 
|  | fopen(ZRAM_CONF_MCS, "re"), fclose}; | 
|  | if (zram_mcs_fp == nullptr) { | 
|  | LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS; | 
|  | ret = false; | 
|  | continue; | 
|  | } | 
|  | fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams); | 
|  | } | 
|  |  | 
|  | auto zram_fp = | 
|  | std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose}; | 
|  | if (zram_fp == nullptr) { | 
|  | LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV; | 
|  | ret = false; | 
|  | continue; | 
|  | } | 
|  | fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size); | 
|  | } | 
|  |  | 
|  | if (entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(entry.blk_device, 20s)) { | 
|  | LERROR << "Skipping mkswap for '" << entry.blk_device << "'"; | 
|  | ret = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Initialize the swap area. | 
|  | const char* mkswap_argv[2] = { | 
|  | MKSWAP_BIN, | 
|  | entry.blk_device.c_str(), | 
|  | }; | 
|  | int err = 0; | 
|  | int status; | 
|  | err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), const_cast<char**>(mkswap_argv), | 
|  | &status, true, LOG_KLOG, false, nullptr, nullptr, 0); | 
|  | if (err) { | 
|  | LERROR << "mkswap failed for " << entry.blk_device; | 
|  | ret = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If -1, then no priority was specified in fstab, so don't set | 
|  | * SWAP_FLAG_PREFER or encode the priority */ | 
|  | int flags = 0; | 
|  | if (entry.swap_prio >= 0) { | 
|  | flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK; | 
|  | flags |= SWAP_FLAG_PREFER; | 
|  | } else { | 
|  | flags = 0; | 
|  | } | 
|  | err = swapon(entry.blk_device.c_str(), flags); | 
|  | if (err) { | 
|  | LERROR << "swapon failed for " << entry.blk_device; | 
|  | ret = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool fs_mgr_load_verity_state(int* mode) { | 
|  | /* return the default mode, unless any of the verified partitions are in | 
|  | * logging mode, in which case return that */ | 
|  | *mode = VERITY_MODE_DEFAULT; | 
|  |  | 
|  | Fstab fstab; | 
|  | if (!ReadDefaultFstab(&fstab)) { | 
|  | LERROR << "Failed to read default fstab"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const auto& entry : fstab) { | 
|  | if (entry.fs_mgr_flags.avb) { | 
|  | *mode = VERITY_MODE_RESTART;  // avb only supports restart mode. | 
|  | break; | 
|  | } else if (!entry.fs_mgr_flags.verify) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int current; | 
|  | if (load_verity_state(entry, ¤t) < 0) { | 
|  | continue; | 
|  | } | 
|  | if (current != VERITY_MODE_DEFAULT) { | 
|  | *mode = current; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool fs_mgr_is_verity_enabled(const FstabEntry& entry) { | 
|  | if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DeviceMapper& dm = DeviceMapper::Instance(); | 
|  |  | 
|  | std::string mount_point = GetVerityDeviceName(entry); | 
|  | if (dm.GetState(mount_point) == DmDeviceState::INVALID) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const char* status; | 
|  | std::vector<DeviceMapper::TargetInfo> table; | 
|  | if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) { | 
|  | if (!entry.fs_mgr_flags.verify_at_boot) { | 
|  | return false; | 
|  | } | 
|  | status = "V"; | 
|  | } else { | 
|  | status = table[0].data.c_str(); | 
|  | } | 
|  |  | 
|  | if (*status == 'C' || *status == 'V') { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) { | 
|  | if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DeviceMapper& dm = DeviceMapper::Instance(); | 
|  | std::string device = GetVerityDeviceName(entry); | 
|  |  | 
|  | std::vector<DeviceMapper::TargetInfo> table; | 
|  | if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) { | 
|  | return false; | 
|  | } | 
|  | for (const auto& target : table) { | 
|  | if (strcmp(target.spec.target_type, "verity") == 0 && | 
|  | target.data.find("check_at_most_once") != std::string::npos) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string fs_mgr_get_super_partition_name(int slot) { | 
|  | // Devices upgrading to dynamic partitions are allowed to specify a super | 
|  | // partition name. This includes cuttlefish, which is a non-A/B device. | 
|  | std::string super_partition; | 
|  | if (fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) { | 
|  | if (fs_mgr_get_slot_suffix().empty()) { | 
|  | return super_partition; | 
|  | } | 
|  | std::string suffix; | 
|  | if (slot == 0) { | 
|  | suffix = "_a"; | 
|  | } else if (slot == 1) { | 
|  | suffix = "_b"; | 
|  | } else if (slot == -1) { | 
|  | suffix = fs_mgr_get_slot_suffix(); | 
|  | } | 
|  | return super_partition + suffix; | 
|  | } | 
|  | return LP_METADATA_DEFAULT_PARTITION_NAME; | 
|  | } |