| /* |
| * Copyright (C) 2013-2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <poll.h> |
| #include <sys/endian.h> |
| #include <sys/socket.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| #include <sys/uio.h> |
| #include <unistd.h> |
| |
| #include <unordered_set> |
| |
| #include <android-base/file.h> |
| #include <benchmark/benchmark.h> |
| #include <cutils/sockets.h> |
| #include <log/event_tag_map.h> |
| #include <log/log_transport.h> |
| #include <private/android_logger.h> |
| |
| BENCHMARK_MAIN(); |
| |
| // enhanced version of LOG_FAILURE_RETRY to add support for EAGAIN and |
| // non-syscall libs. Since we are benchmarking, or using this in the emergency |
| // signal to stuff a terminating code, we do NOT want to introduce |
| // a syscall or usleep on EAGAIN retry. |
| #define LOG_FAILURE_RETRY(exp) \ |
| ({ \ |
| typeof(exp) _rc; \ |
| do { \ |
| _rc = (exp); \ |
| } while (((_rc == -1) && ((errno == EINTR) || (errno == EAGAIN))) || \ |
| (_rc == -EINTR) || (_rc == -EAGAIN)); \ |
| _rc; \ |
| }) |
| |
| /* |
| * Measure the fastest rate we can reliabley stuff print messages into |
| * the log at high pressure. Expect this to be less than double the process |
| * wakeup time (2ms?) |
| */ |
| static void BM_log_maximum_retry(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| LOG_FAILURE_RETRY(__android_log_print( |
| ANDROID_LOG_INFO, "BM_log_maximum_retry", "%zu", state.iterations())); |
| } |
| } |
| BENCHMARK(BM_log_maximum_retry); |
| |
| /* |
| * Measure the fastest rate we can stuff print messages into the log |
| * at high pressure. Expect this to be less than double the process wakeup |
| * time (2ms?) |
| */ |
| static void BM_log_maximum(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| __android_log_print(ANDROID_LOG_INFO, "BM_log_maximum", "%zu", |
| state.iterations()); |
| } |
| } |
| BENCHMARK(BM_log_maximum); |
| |
| static void set_log_null() { |
| android_set_log_transport(LOGGER_NULL); |
| } |
| |
| static void set_log_default() { |
| android_set_log_transport(LOGGER_DEFAULT); |
| } |
| |
| static void BM_log_maximum_null(benchmark::State& state) { |
| set_log_null(); |
| BM_log_maximum(state); |
| set_log_default(); |
| } |
| BENCHMARK(BM_log_maximum_null); |
| |
| /* |
| * Measure the time it takes to collect the time using |
| * discrete acquisition (state.PauseTiming() to state.ResumeTiming()) |
| * under light load. Expect this to be a syscall period (2us) or |
| * data read time if zero-syscall. |
| * |
| * vdso support in the kernel and the library can allow |
| * clock_gettime to be zero-syscall, but there there does remain some |
| * benchmarking overhead to pause and resume; assumptions are both are |
| * covered. |
| */ |
| static void BM_clock_overhead(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| state.PauseTiming(); |
| state.ResumeTiming(); |
| } |
| } |
| BENCHMARK(BM_clock_overhead); |
| |
| static void do_clock_overhead(benchmark::State& state, clockid_t clk_id) { |
| timespec t; |
| while (state.KeepRunning()) { |
| clock_gettime(clk_id, &t); |
| } |
| } |
| |
| static void BM_time_clock_gettime_REALTIME(benchmark::State& state) { |
| do_clock_overhead(state, CLOCK_REALTIME); |
| } |
| BENCHMARK(BM_time_clock_gettime_REALTIME); |
| |
| static void BM_time_clock_gettime_MONOTONIC(benchmark::State& state) { |
| do_clock_overhead(state, CLOCK_MONOTONIC); |
| } |
| BENCHMARK(BM_time_clock_gettime_MONOTONIC); |
| |
| static void BM_time_clock_gettime_MONOTONIC_syscall(benchmark::State& state) { |
| timespec t; |
| while (state.KeepRunning()) { |
| syscall(__NR_clock_gettime, CLOCK_MONOTONIC, &t); |
| } |
| } |
| BENCHMARK(BM_time_clock_gettime_MONOTONIC_syscall); |
| |
| static void BM_time_clock_gettime_MONOTONIC_RAW(benchmark::State& state) { |
| do_clock_overhead(state, CLOCK_MONOTONIC_RAW); |
| } |
| BENCHMARK(BM_time_clock_gettime_MONOTONIC_RAW); |
| |
| static void BM_time_clock_gettime_BOOTTIME(benchmark::State& state) { |
| do_clock_overhead(state, CLOCK_BOOTTIME); |
| } |
| BENCHMARK(BM_time_clock_gettime_BOOTTIME); |
| |
| static void BM_time_clock_getres_MONOTONIC(benchmark::State& state) { |
| timespec t; |
| while (state.KeepRunning()) { |
| clock_getres(CLOCK_MONOTONIC, &t); |
| } |
| } |
| BENCHMARK(BM_time_clock_getres_MONOTONIC); |
| |
| static void BM_time_clock_getres_MONOTONIC_syscall(benchmark::State& state) { |
| timespec t; |
| while (state.KeepRunning()) { |
| syscall(__NR_clock_getres, CLOCK_MONOTONIC, &t); |
| } |
| } |
| BENCHMARK(BM_time_clock_getres_MONOTONIC_syscall); |
| |
| static void BM_time_time(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| time_t now; |
| now = time(&now); |
| } |
| } |
| BENCHMARK(BM_time_time); |
| |
| /* |
| * Measure the time it takes to submit the android logging data to pstore |
| */ |
| static void BM_pmsg_short(benchmark::State& state) { |
| int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC)); |
| if (pstore_fd < 0) { |
| state.SkipWithError("/dev/pmsg0"); |
| return; |
| } |
| |
| /* |
| * struct { |
| * // what we provide to pstore |
| * android_pmsg_log_header_t pmsg_header; |
| * // what we provide to socket |
| * android_log_header_t header; |
| * // caller provides |
| * union { |
| * struct { |
| * char prio; |
| * char payload[]; |
| * } string; |
| * struct { |
| * uint32_t tag |
| * char payload[]; |
| * } binary; |
| * }; |
| * }; |
| */ |
| |
| struct timespec ts; |
| clock_gettime(android_log_clockid(), &ts); |
| |
| android_pmsg_log_header_t pmsg_header; |
| pmsg_header.magic = LOGGER_MAGIC; |
| pmsg_header.len = |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); |
| pmsg_header.uid = getuid(); |
| pmsg_header.pid = getpid(); |
| |
| android_log_header_t header; |
| header.tid = gettid(); |
| header.realtime.tv_sec = ts.tv_sec; |
| header.realtime.tv_nsec = ts.tv_nsec; |
| |
| static const unsigned nr = 1; |
| static const unsigned header_length = 2; |
| struct iovec newVec[nr + header_length]; |
| |
| newVec[0].iov_base = (unsigned char*)&pmsg_header; |
| newVec[0].iov_len = sizeof(pmsg_header); |
| newVec[1].iov_base = (unsigned char*)&header; |
| newVec[1].iov_len = sizeof(header); |
| |
| android_log_event_int_t buffer; |
| |
| header.id = LOG_ID_EVENTS; |
| buffer.header.tag = 0; |
| buffer.payload.type = EVENT_TYPE_INT; |
| uint32_t snapshot = 0; |
| buffer.payload.data = htole32(snapshot); |
| |
| newVec[2].iov_base = &buffer; |
| newVec[2].iov_len = sizeof(buffer); |
| |
| while (state.KeepRunning()) { |
| ++snapshot; |
| buffer.payload.data = htole32(snapshot); |
| writev(pstore_fd, newVec, nr); |
| } |
| state.PauseTiming(); |
| close(pstore_fd); |
| } |
| BENCHMARK(BM_pmsg_short); |
| |
| /* |
| * Measure the time it takes to submit the android logging data to pstore |
| * best case aligned single block. |
| */ |
| static void BM_pmsg_short_aligned(benchmark::State& state) { |
| int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC)); |
| if (pstore_fd < 0) { |
| state.SkipWithError("/dev/pmsg0"); |
| return; |
| } |
| |
| /* |
| * struct { |
| * // what we provide to pstore |
| * android_pmsg_log_header_t pmsg_header; |
| * // what we provide to socket |
| * android_log_header_t header; |
| * // caller provides |
| * union { |
| * struct { |
| * char prio; |
| * char payload[]; |
| * } string; |
| * struct { |
| * uint32_t tag |
| * char payload[]; |
| * } binary; |
| * }; |
| * }; |
| */ |
| |
| struct timespec ts; |
| clock_gettime(android_log_clockid(), &ts); |
| |
| struct packet { |
| android_pmsg_log_header_t pmsg_header; |
| android_log_header_t header; |
| android_log_event_int_t payload; |
| }; |
| alignas(8) char buf[sizeof(struct packet) + 8]; |
| memset(buf, 0, sizeof(buf)); |
| struct packet* buffer = (struct packet*)(((uintptr_t)buf + 7) & ~7); |
| if (((uintptr_t)&buffer->pmsg_header) & 7) { |
| fprintf(stderr, "&buffer=0x%p iterations=%zu\n", &buffer->pmsg_header, |
| state.iterations()); |
| } |
| |
| buffer->pmsg_header.magic = LOGGER_MAGIC; |
| buffer->pmsg_header.len = |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); |
| buffer->pmsg_header.uid = getuid(); |
| buffer->pmsg_header.pid = getpid(); |
| |
| buffer->header.tid = gettid(); |
| buffer->header.realtime.tv_sec = ts.tv_sec; |
| buffer->header.realtime.tv_nsec = ts.tv_nsec; |
| |
| buffer->header.id = LOG_ID_EVENTS; |
| buffer->payload.header.tag = 0; |
| buffer->payload.payload.type = EVENT_TYPE_INT; |
| uint32_t snapshot = 0; |
| buffer->payload.payload.data = htole32(snapshot); |
| |
| while (state.KeepRunning()) { |
| ++snapshot; |
| buffer->payload.payload.data = htole32(snapshot); |
| write(pstore_fd, &buffer->pmsg_header, |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t) + |
| sizeof(android_log_event_int_t)); |
| } |
| state.PauseTiming(); |
| close(pstore_fd); |
| } |
| BENCHMARK(BM_pmsg_short_aligned); |
| |
| /* |
| * Measure the time it takes to submit the android logging data to pstore |
| * best case aligned single block. |
| */ |
| static void BM_pmsg_short_unaligned1(benchmark::State& state) { |
| int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC)); |
| if (pstore_fd < 0) { |
| state.SkipWithError("/dev/pmsg0"); |
| return; |
| } |
| |
| /* |
| * struct { |
| * // what we provide to pstore |
| * android_pmsg_log_header_t pmsg_header; |
| * // what we provide to socket |
| * android_log_header_t header; |
| * // caller provides |
| * union { |
| * struct { |
| * char prio; |
| * char payload[]; |
| * } string; |
| * struct { |
| * uint32_t tag |
| * char payload[]; |
| * } binary; |
| * }; |
| * }; |
| */ |
| |
| struct timespec ts; |
| clock_gettime(android_log_clockid(), &ts); |
| |
| struct packet { |
| android_pmsg_log_header_t pmsg_header; |
| android_log_header_t header; |
| android_log_event_int_t payload; |
| }; |
| alignas(8) char buf[sizeof(struct packet) + 8]; |
| memset(buf, 0, sizeof(buf)); |
| struct packet* buffer = (struct packet*)((((uintptr_t)buf + 7) & ~7) + 1); |
| if ((((uintptr_t)&buffer->pmsg_header) & 7) != 1) { |
| fprintf(stderr, "&buffer=0x%p iterations=%zu\n", &buffer->pmsg_header, |
| state.iterations()); |
| } |
| |
| buffer->pmsg_header.magic = LOGGER_MAGIC; |
| buffer->pmsg_header.len = |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); |
| buffer->pmsg_header.uid = getuid(); |
| buffer->pmsg_header.pid = getpid(); |
| |
| buffer->header.tid = gettid(); |
| buffer->header.realtime.tv_sec = ts.tv_sec; |
| buffer->header.realtime.tv_nsec = ts.tv_nsec; |
| |
| buffer->header.id = LOG_ID_EVENTS; |
| buffer->payload.header.tag = 0; |
| buffer->payload.payload.type = EVENT_TYPE_INT; |
| uint32_t snapshot = 0; |
| buffer->payload.payload.data = htole32(snapshot); |
| |
| while (state.KeepRunning()) { |
| ++snapshot; |
| buffer->payload.payload.data = htole32(snapshot); |
| write(pstore_fd, &buffer->pmsg_header, |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t) + |
| sizeof(android_log_event_int_t)); |
| } |
| state.PauseTiming(); |
| close(pstore_fd); |
| } |
| BENCHMARK(BM_pmsg_short_unaligned1); |
| |
| /* |
| * Measure the time it takes to submit the android logging data to pstore |
| * best case aligned single block. |
| */ |
| static void BM_pmsg_long_aligned(benchmark::State& state) { |
| int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC)); |
| if (pstore_fd < 0) { |
| state.SkipWithError("/dev/pmsg0"); |
| return; |
| } |
| |
| /* |
| * struct { |
| * // what we provide to pstore |
| * android_pmsg_log_header_t pmsg_header; |
| * // what we provide to socket |
| * android_log_header_t header; |
| * // caller provides |
| * union { |
| * struct { |
| * char prio; |
| * char payload[]; |
| * } string; |
| * struct { |
| * uint32_t tag |
| * char payload[]; |
| * } binary; |
| * }; |
| * }; |
| */ |
| |
| struct timespec ts; |
| clock_gettime(android_log_clockid(), &ts); |
| |
| struct packet { |
| android_pmsg_log_header_t pmsg_header; |
| android_log_header_t header; |
| android_log_event_int_t payload; |
| }; |
| alignas(8) char buf[sizeof(struct packet) + 8 + LOGGER_ENTRY_MAX_PAYLOAD]; |
| memset(buf, 0, sizeof(buf)); |
| struct packet* buffer = (struct packet*)(((uintptr_t)buf + 7) & ~7); |
| if (((uintptr_t)&buffer->pmsg_header) & 7) { |
| fprintf(stderr, "&buffer=0x%p iterations=%zu\n", &buffer->pmsg_header, |
| state.iterations()); |
| } |
| |
| buffer->pmsg_header.magic = LOGGER_MAGIC; |
| buffer->pmsg_header.len = |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); |
| buffer->pmsg_header.uid = getuid(); |
| buffer->pmsg_header.pid = getpid(); |
| |
| buffer->header.tid = gettid(); |
| buffer->header.realtime.tv_sec = ts.tv_sec; |
| buffer->header.realtime.tv_nsec = ts.tv_nsec; |
| |
| buffer->header.id = LOG_ID_EVENTS; |
| buffer->payload.header.tag = 0; |
| buffer->payload.payload.type = EVENT_TYPE_INT; |
| uint32_t snapshot = 0; |
| buffer->payload.payload.data = htole32(snapshot); |
| |
| while (state.KeepRunning()) { |
| ++snapshot; |
| buffer->payload.payload.data = htole32(snapshot); |
| write(pstore_fd, &buffer->pmsg_header, LOGGER_ENTRY_MAX_PAYLOAD); |
| } |
| state.PauseTiming(); |
| close(pstore_fd); |
| } |
| BENCHMARK(BM_pmsg_long_aligned); |
| |
| /* |
| * Measure the time it takes to submit the android logging data to pstore |
| * best case aligned single block. |
| */ |
| static void BM_pmsg_long_unaligned1(benchmark::State& state) { |
| int pstore_fd = TEMP_FAILURE_RETRY(open("/dev/pmsg0", O_WRONLY | O_CLOEXEC)); |
| if (pstore_fd < 0) { |
| state.SkipWithError("/dev/pmsg0"); |
| return; |
| } |
| |
| /* |
| * struct { |
| * // what we provide to pstore |
| * android_pmsg_log_header_t pmsg_header; |
| * // what we provide to socket |
| * android_log_header_t header; |
| * // caller provides |
| * union { |
| * struct { |
| * char prio; |
| * char payload[]; |
| * } string; |
| * struct { |
| * uint32_t tag |
| * char payload[]; |
| * } binary; |
| * }; |
| * }; |
| */ |
| |
| struct timespec ts; |
| clock_gettime(android_log_clockid(), &ts); |
| |
| struct packet { |
| android_pmsg_log_header_t pmsg_header; |
| android_log_header_t header; |
| android_log_event_int_t payload; |
| }; |
| alignas(8) char buf[sizeof(struct packet) + 8 + LOGGER_ENTRY_MAX_PAYLOAD]; |
| memset(buf, 0, sizeof(buf)); |
| struct packet* buffer = (struct packet*)((((uintptr_t)buf + 7) & ~7) + 1); |
| if ((((uintptr_t)&buffer->pmsg_header) & 7) != 1) { |
| fprintf(stderr, "&buffer=0x%p iterations=%zu\n", &buffer->pmsg_header, |
| state.iterations()); |
| } |
| |
| buffer->pmsg_header.magic = LOGGER_MAGIC; |
| buffer->pmsg_header.len = |
| sizeof(android_pmsg_log_header_t) + sizeof(android_log_header_t); |
| buffer->pmsg_header.uid = getuid(); |
| buffer->pmsg_header.pid = getpid(); |
| |
| buffer->header.tid = gettid(); |
| buffer->header.realtime.tv_sec = ts.tv_sec; |
| buffer->header.realtime.tv_nsec = ts.tv_nsec; |
| |
| buffer->header.id = LOG_ID_EVENTS; |
| buffer->payload.header.tag = 0; |
| buffer->payload.payload.type = EVENT_TYPE_INT; |
| uint32_t snapshot = 0; |
| buffer->payload.payload.data = htole32(snapshot); |
| |
| while (state.KeepRunning()) { |
| ++snapshot; |
| buffer->payload.payload.data = htole32(snapshot); |
| write(pstore_fd, &buffer->pmsg_header, LOGGER_ENTRY_MAX_PAYLOAD); |
| } |
| state.PauseTiming(); |
| close(pstore_fd); |
| } |
| BENCHMARK(BM_pmsg_long_unaligned1); |
| |
| /* |
| * Measure the time it takes to form sprintf plus time using |
| * discrete acquisition under light load. Expect this to be a syscall period |
| * (2us) or sprintf time if zero-syscall time. |
| */ |
| /* helper function */ |
| static void test_print(const char* fmt, ...) { |
| va_list ap; |
| char buf[1024]; |
| |
| va_start(ap, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, ap); |
| va_end(ap); |
| } |
| |
| #define logd_yield() sched_yield() // allow logd to catch up |
| #define logd_sleep() usleep(50) // really allow logd to catch up |
| |
| /* performance test */ |
| static void BM_sprintf_overhead(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| test_print("BM_sprintf_overhead:%zu", state.iterations()); |
| state.PauseTiming(); |
| logd_yield(); |
| state.ResumeTiming(); |
| } |
| } |
| BENCHMARK(BM_sprintf_overhead); |
| |
| /* |
| * Measure the time it takes to submit the android printing logging call |
| * using discrete acquisition discrete acquisition under light load. Expect |
| * this to be a dozen or so syscall periods (40us) plus time to run *printf |
| */ |
| static void BM_log_print_overhead(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| __android_log_print(ANDROID_LOG_INFO, "BM_log_overhead", "%zu", |
| state.iterations()); |
| state.PauseTiming(); |
| logd_yield(); |
| state.ResumeTiming(); |
| } |
| } |
| BENCHMARK(BM_log_print_overhead); |
| |
| /* |
| * Measure the time it takes to submit the android event logging call |
| * using discrete acquisition under light load. Expect this to be a long path |
| * to logger to convert the unknown tag (0) into a tagname (less than 200us). |
| */ |
| static void BM_log_event_overhead(benchmark::State& state) { |
| for (int64_t i = 0; state.KeepRunning(); ++i) { |
| // log tag number 0 is not known, nor shall it ever be known |
| __android_log_btwrite(0, EVENT_TYPE_LONG, &i, sizeof(i)); |
| state.PauseTiming(); |
| logd_yield(); |
| state.ResumeTiming(); |
| } |
| } |
| BENCHMARK(BM_log_event_overhead); |
| |
| /* |
| * Measure the time it takes to submit the android event logging call |
| * using discrete acquisition under light load with a known logtag. Expect |
| * this to be a dozen or so syscall periods (less than 40us) |
| */ |
| static void BM_log_event_overhead_42(benchmark::State& state) { |
| for (int64_t i = 0; state.KeepRunning(); ++i) { |
| // In system/core/logcat/event.logtags: |
| // # These are used for testing, do not modify without updating |
| // # tests/framework-tests/src/android/util/EventLogFunctionalTest.java. |
| // # system/core/liblog/tests/liblog_benchmark.cpp |
| // # system/core/liblog/tests/liblog_test.cpp |
| // 42 answer (to life the universe etc|3) |
| __android_log_btwrite(42, EVENT_TYPE_LONG, &i, sizeof(i)); |
| state.PauseTiming(); |
| logd_yield(); |
| state.ResumeTiming(); |
| } |
| } |
| BENCHMARK(BM_log_event_overhead_42); |
| |
| static void BM_log_event_overhead_null(benchmark::State& state) { |
| set_log_null(); |
| BM_log_event_overhead(state); |
| set_log_default(); |
| } |
| BENCHMARK(BM_log_event_overhead_null); |
| |
| /* |
| * Measure the time it takes to submit the android event logging call |
| * using discrete acquisition under very-light load (<1% CPU utilization). |
| */ |
| static void BM_log_light_overhead(benchmark::State& state) { |
| for (int64_t i = 0; state.KeepRunning(); ++i) { |
| __android_log_btwrite(0, EVENT_TYPE_LONG, &i, sizeof(i)); |
| state.PauseTiming(); |
| usleep(10000); |
| state.ResumeTiming(); |
| } |
| } |
| BENCHMARK(BM_log_light_overhead); |
| |
| static void BM_log_light_overhead_null(benchmark::State& state) { |
| set_log_null(); |
| BM_log_light_overhead(state); |
| set_log_default(); |
| } |
| // Default gets out of hand for this test, so we set a reasonable number of |
| // iterations for a timely result. |
| BENCHMARK(BM_log_light_overhead_null)->Iterations(500); |
| |
| static void caught_latency(int /*signum*/) { |
| unsigned long long v = 0xDEADBEEFA55A5AA5ULL; |
| |
| LOG_FAILURE_RETRY(__android_log_btwrite(0, EVENT_TYPE_LONG, &v, sizeof(v))); |
| } |
| |
| static unsigned long long caught_convert(char* cp) { |
| unsigned long long l = cp[0] & 0xFF; |
| l |= (unsigned long long)(cp[1] & 0xFF) << 8; |
| l |= (unsigned long long)(cp[2] & 0xFF) << 16; |
| l |= (unsigned long long)(cp[3] & 0xFF) << 24; |
| l |= (unsigned long long)(cp[4] & 0xFF) << 32; |
| l |= (unsigned long long)(cp[5] & 0xFF) << 40; |
| l |= (unsigned long long)(cp[6] & 0xFF) << 48; |
| l |= (unsigned long long)(cp[7] & 0xFF) << 56; |
| return l; |
| } |
| |
| static const int alarm_time = 3; |
| |
| /* |
| * Measure the time it takes for the logd posting call to acquire the |
| * timestamp to place into the internal record. Expect this to be less than |
| * 4 syscalls (3us). This test uses manual injection of timing because it is |
| * comparing the timestamp at send, and then picking up the corresponding log |
| * end-to-end long path from logd to see what actual timestamp was submitted. |
| */ |
| static void BM_log_latency(benchmark::State& state) { |
| pid_t pid = getpid(); |
| |
| struct logger_list* logger_list = |
| android_logger_list_open(LOG_ID_EVENTS, ANDROID_LOG_RDONLY, 0, pid); |
| |
| if (!logger_list) { |
| fprintf(stderr, "Unable to open events log: %s\n", strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| |
| signal(SIGALRM, caught_latency); |
| alarm(alarm_time); |
| |
| for (size_t j = 0; state.KeepRunning() && j < 10 * state.iterations(); ++j) { |
| retry: // We allow transitory errors (logd overloaded) to be retried. |
| log_time ts; |
| LOG_FAILURE_RETRY((ts = log_time(CLOCK_REALTIME), |
| android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts)))); |
| |
| for (;;) { |
| log_msg log_msg; |
| int ret = android_logger_list_read(logger_list, &log_msg); |
| alarm(alarm_time); |
| |
| if (ret <= 0) { |
| state.SkipWithError("android_logger_list_read"); |
| break; |
| } |
| if ((log_msg.entry.len != (4 + 1 + 8)) || |
| (log_msg.id() != LOG_ID_EVENTS)) { |
| continue; |
| } |
| |
| char* eventData = log_msg.msg(); |
| |
| if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) { |
| continue; |
| } |
| log_time tx(eventData + 4 + 1); |
| if (ts != tx) { |
| if (0xDEADBEEFA55A5AA5ULL == caught_convert(eventData + 4 + 1)) { |
| state.SkipWithError("signal"); |
| break; |
| } |
| continue; |
| } |
| |
| uint64_t start = ts.nsec(); |
| uint64_t end = log_msg.nsec(); |
| if (end < start) goto retry; |
| state.SetIterationTime((end - start) / (double)NS_PER_SEC); |
| break; |
| } |
| } |
| |
| signal(SIGALRM, SIG_DFL); |
| alarm(0); |
| |
| android_logger_list_free(logger_list); |
| } |
| // Default gets out of hand for this test, so we set a reasonable number of |
| // iterations for a timely result. |
| BENCHMARK(BM_log_latency)->UseManualTime()->Iterations(200); |
| |
| static void caught_delay(int /*signum*/) { |
| unsigned long long v = 0xDEADBEEFA55A5AA6ULL; |
| |
| LOG_FAILURE_RETRY(__android_log_btwrite(0, EVENT_TYPE_LONG, &v, sizeof(v))); |
| } |
| |
| /* |
| * Measure the time it takes for the logd posting call to make it into |
| * the logs. Expect this to be less than double the process wakeup time (2ms). |
| */ |
| static void BM_log_delay(benchmark::State& state) { |
| pid_t pid = getpid(); |
| |
| struct logger_list* logger_list = |
| android_logger_list_open(LOG_ID_EVENTS, ANDROID_LOG_RDONLY, 0, pid); |
| |
| if (!logger_list) { |
| fprintf(stderr, "Unable to open events log: %s\n", strerror(errno)); |
| exit(EXIT_FAILURE); |
| } |
| |
| signal(SIGALRM, caught_delay); |
| alarm(alarm_time); |
| |
| while (state.KeepRunning()) { |
| log_time ts(CLOCK_REALTIME); |
| |
| LOG_FAILURE_RETRY(android_btWriteLog(0, EVENT_TYPE_LONG, &ts, sizeof(ts))); |
| |
| for (;;) { |
| log_msg log_msg; |
| int ret = android_logger_list_read(logger_list, &log_msg); |
| alarm(alarm_time); |
| |
| if (ret <= 0) { |
| state.SkipWithError("android_logger_list_read"); |
| break; |
| } |
| if ((log_msg.entry.len != (4 + 1 + 8)) || |
| (log_msg.id() != LOG_ID_EVENTS)) { |
| continue; |
| } |
| |
| char* eventData = log_msg.msg(); |
| |
| if (!eventData || (eventData[4] != EVENT_TYPE_LONG)) { |
| continue; |
| } |
| log_time tx(eventData + 4 + 1); |
| if (ts != tx) { |
| if (0xDEADBEEFA55A5AA6ULL == caught_convert(eventData + 4 + 1)) { |
| state.SkipWithError("signal"); |
| break; |
| } |
| continue; |
| } |
| |
| break; |
| } |
| } |
| state.PauseTiming(); |
| |
| signal(SIGALRM, SIG_DFL); |
| alarm(0); |
| |
| android_logger_list_free(logger_list); |
| } |
| BENCHMARK(BM_log_delay); |
| |
| /* |
| * Measure the time it takes for __android_log_is_loggable. |
| */ |
| static void BM_is_loggable(benchmark::State& state) { |
| static const char logd[] = "logd"; |
| |
| while (state.KeepRunning()) { |
| __android_log_is_loggable_len(ANDROID_LOG_WARN, logd, strlen(logd), |
| ANDROID_LOG_VERBOSE); |
| } |
| } |
| BENCHMARK(BM_is_loggable); |
| |
| /* |
| * Measure the time it takes for android_log_clockid. |
| */ |
| static void BM_clockid(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| android_log_clockid(); |
| } |
| } |
| BENCHMARK(BM_clockid); |
| |
| /* |
| * Measure the time it takes for __android_log_security. |
| */ |
| static void BM_security(benchmark::State& state) { |
| while (state.KeepRunning()) { |
| __android_log_security(); |
| } |
| } |
| BENCHMARK(BM_security); |
| |
| // Keep maps around for multiple iterations |
| static std::unordered_set<uint32_t> set; |
| static EventTagMap* map; |
| |
| static bool prechargeEventMap() { |
| if (map) return true; |
| |
| fprintf(stderr, "Precharge: start\n"); |
| |
| map = android_openEventTagMap(NULL); |
| for (uint32_t tag = 1; tag < USHRT_MAX; ++tag) { |
| size_t len; |
| if (android_lookupEventTag_len(map, &len, tag) == NULL) continue; |
| set.insert(tag); |
| } |
| |
| fprintf(stderr, "Precharge: stop %zu\n", set.size()); |
| |
| return true; |
| } |
| |
| /* |
| * Measure the time it takes for android_lookupEventTag_len |
| */ |
| static void BM_lookupEventTag(benchmark::State& state) { |
| prechargeEventMap(); |
| |
| std::unordered_set<uint32_t>::const_iterator it = set.begin(); |
| |
| while (state.KeepRunning()) { |
| size_t len; |
| android_lookupEventTag_len(map, &len, (*it)); |
| ++it; |
| if (it == set.end()) it = set.begin(); |
| } |
| } |
| BENCHMARK(BM_lookupEventTag); |
| |
| /* |
| * Measure the time it takes for android_lookupEventTag_len |
| */ |
| static uint32_t notTag = 1; |
| |
| static void BM_lookupEventTag_NOT(benchmark::State& state) { |
| prechargeEventMap(); |
| |
| while (set.find(notTag) != set.end()) { |
| ++notTag; |
| if (notTag >= USHRT_MAX) notTag = 1; |
| } |
| |
| while (state.KeepRunning()) { |
| size_t len; |
| android_lookupEventTag_len(map, &len, notTag); |
| } |
| |
| ++notTag; |
| if (notTag >= USHRT_MAX) notTag = 1; |
| } |
| BENCHMARK(BM_lookupEventTag_NOT); |
| |
| /* |
| * Measure the time it takes for android_lookupEventFormat_len |
| */ |
| static void BM_lookupEventFormat(benchmark::State& state) { |
| prechargeEventMap(); |
| |
| std::unordered_set<uint32_t>::const_iterator it = set.begin(); |
| |
| while (state.KeepRunning()) { |
| size_t len; |
| android_lookupEventFormat_len(map, &len, (*it)); |
| ++it; |
| if (it == set.end()) it = set.begin(); |
| } |
| } |
| BENCHMARK(BM_lookupEventFormat); |
| |
| /* |
| * Measure the time it takes for android_lookupEventTagNum plus above |
| */ |
| static void BM_lookupEventTagNum(benchmark::State& state) { |
| prechargeEventMap(); |
| |
| std::unordered_set<uint32_t>::const_iterator it = set.begin(); |
| |
| while (state.KeepRunning()) { |
| size_t len; |
| const char* name = android_lookupEventTag_len(map, &len, (*it)); |
| std::string Name(name, len); |
| const char* format = android_lookupEventFormat_len(map, &len, (*it)); |
| std::string Format(format, len); |
| state.ResumeTiming(); |
| android_lookupEventTagNum(map, Name.c_str(), Format.c_str(), |
| ANDROID_LOG_UNKNOWN); |
| state.PauseTiming(); |
| ++it; |
| if (it == set.end()) it = set.begin(); |
| } |
| } |
| BENCHMARK(BM_lookupEventTagNum); |
| |
| // Must be functionally identical to liblog internal __send_log_msg. |
| static void send_to_control(char* buf, size_t len) { |
| int sock = |
| socket_local_client("logd", ANDROID_SOCKET_NAMESPACE_RESERVED, SOCK_STREAM | SOCK_CLOEXEC); |
| if (sock < 0) return; |
| size_t writeLen = strlen(buf) + 1; |
| |
| ssize_t ret = TEMP_FAILURE_RETRY(write(sock, buf, writeLen)); |
| if (ret <= 0) { |
| close(sock); |
| return; |
| } |
| while ((ret = read(sock, buf, len)) > 0) { |
| if (((size_t)ret == len) || (len < PAGE_SIZE)) { |
| break; |
| } |
| len -= ret; |
| buf += ret; |
| |
| struct pollfd p = {.fd = sock, .events = POLLIN, .revents = 0 }; |
| |
| ret = poll(&p, 1, 20); |
| if ((ret <= 0) || !(p.revents & POLLIN)) { |
| break; |
| } |
| } |
| close(sock); |
| } |
| |
| static void BM_lookupEventTagNum_logd_new(benchmark::State& state) { |
| fprintf(stderr, |
| "WARNING: " |
| "This test can cause logd to grow in size and hit DOS limiter\n"); |
| // Make copies |
| static const char empty_event_log_tags[] = "# content owned by logd\n"; |
| static const char dev_event_log_tags_path[] = "/dev/event-log-tags"; |
| std::string dev_event_log_tags; |
| if (android::base::ReadFileToString(dev_event_log_tags_path, |
| &dev_event_log_tags) && |
| (dev_event_log_tags.length() == 0)) { |
| dev_event_log_tags = empty_event_log_tags; |
| } |
| static const char data_event_log_tags_path[] = |
| "/data/misc/logd/event-log-tags"; |
| std::string data_event_log_tags; |
| if (android::base::ReadFileToString(data_event_log_tags_path, |
| &data_event_log_tags) && |
| (data_event_log_tags.length() == 0)) { |
| data_event_log_tags = empty_event_log_tags; |
| } |
| |
| while (state.KeepRunning()) { |
| char buffer[256]; |
| memset(buffer, 0, sizeof(buffer)); |
| log_time now(CLOCK_MONOTONIC); |
| char name[64]; |
| snprintf(name, sizeof(name), "a%" PRIu64, now.nsec()); |
| snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"(new|1)\"", |
| name); |
| state.ResumeTiming(); |
| send_to_control(buffer, sizeof(buffer)); |
| state.PauseTiming(); |
| } |
| |
| // Restore copies (logd still know about them, until crash or reboot) |
| if (dev_event_log_tags.length() && |
| !android::base::WriteStringToFile(dev_event_log_tags, |
| dev_event_log_tags_path)) { |
| fprintf(stderr, |
| "WARNING: " |
| "failed to restore %s\n", |
| dev_event_log_tags_path); |
| } |
| if (data_event_log_tags.length() && |
| !android::base::WriteStringToFile(data_event_log_tags, |
| data_event_log_tags_path)) { |
| fprintf(stderr, |
| "WARNING: " |
| "failed to restore %s\n", |
| data_event_log_tags_path); |
| } |
| fprintf(stderr, |
| "WARNING: " |
| "Restarting logd to make it forget what we just did\n"); |
| system("stop logd ; start logd"); |
| } |
| BENCHMARK(BM_lookupEventTagNum_logd_new); |
| |
| static void BM_lookupEventTagNum_logd_existing(benchmark::State& state) { |
| prechargeEventMap(); |
| |
| std::unordered_set<uint32_t>::const_iterator it = set.begin(); |
| |
| while (state.KeepRunning()) { |
| size_t len; |
| const char* name = android_lookupEventTag_len(map, &len, (*it)); |
| std::string Name(name, len); |
| const char* format = android_lookupEventFormat_len(map, &len, (*it)); |
| std::string Format(format, len); |
| |
| char buffer[256]; |
| snprintf(buffer, sizeof(buffer), "getEventTag name=%s format=\"%s\"", |
| Name.c_str(), Format.c_str()); |
| |
| state.ResumeTiming(); |
| send_to_control(buffer, sizeof(buffer)); |
| state.PauseTiming(); |
| ++it; |
| if (it == set.end()) it = set.begin(); |
| } |
| } |
| BENCHMARK(BM_lookupEventTagNum_logd_existing); |